JP2001068157A - Stacked polymer electrolyte battery - Google Patents

Stacked polymer electrolyte battery

Info

Publication number
JP2001068157A
JP2001068157A JP23644699A JP23644699A JP2001068157A JP 2001068157 A JP2001068157 A JP 2001068157A JP 23644699 A JP23644699 A JP 23644699A JP 23644699 A JP23644699 A JP 23644699A JP 2001068157 A JP2001068157 A JP 2001068157A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
negative electrode
electrode
positive electrode
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23644699A
Other languages
Japanese (ja)
Other versions
JP3992261B2 (en
JP2001068157A5 (en
Inventor
Osamu Ishida
修 石田
Osamu Watanabe
修 渡辺
Hiroshi Yamamoto
宏 山本
Tetsuo Kawai
徹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP23644699A priority Critical patent/JP3992261B2/en
Publication of JP2001068157A publication Critical patent/JP2001068157A/en
Publication of JP2001068157A5 publication Critical patent/JP2001068157A5/en
Application granted granted Critical
Publication of JP3992261B2 publication Critical patent/JP3992261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stacked polymer electrolyte battery with high safety, capable of preventing emitting smoke.ignition even when the battery is short- circuited being nailed or crushed. SOLUTION: This polymer electrolyte battery is assembled by sealing a stacked electrode group formed by stacking positive electrodes 1 having a positive electrode mix layer 1b formed on at least one side of a positive electrode current collector 1a and negative electrodes 2 having a negative electrode mix layer 2b formed on at least one side of a negative electrode current collector 2a so as to interpose a polymer electrolyte layer between a set of electrodes into an outer case 4 containing a metal foil. A short-circuiting and heat radiation accelerating member 30 made of one metal plate is installed on at least one outside of the outer case 4, the metal plate is connected to an electrode terminal of either one electrode of the positive electrode and the negative electrode, or a short-circuiting and heat radiation accelerating unit 10 formed by arranging two metal plates through an insulating plate is installed as the short- circuiting for and heat radiation accelerating member, and two metal plates are connected respectively to an electrode terminal of the electrodes having different polarities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層形ポリマー電
解質電池に関し、さらに詳しくは、特に携帯用電子機
器、電気自動車、ロードレベリングなどの電源として使
用するのに適した積層形ポリマー電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stacked polymer electrolyte battery, and more particularly, to a stacked polymer electrolyte battery suitable for use as a power source for portable electronic devices, electric vehicles, road leveling, and the like.

【0002】[0002]

【従来の技術】ポリマー電解質電池では、電極および電
解質をシート状にすることができ、それによって、A4
版、B5版などの大面積でしかも薄形の電池の作製が可
能になり、各種薄形製品への適用が可能になるため、電
池に使用範囲が大きく広がっている。特にポリマー電解
質を用いた電池は、耐漏液性を含めた安全性、貯蔵性が
優れており、しかも薄く、フレキシブルであることか
ら、機器の形状に合わせた電池を設計できるという、今
までの電池にない特徴を持っている。
2. Description of the Related Art In a polymer electrolyte battery, the electrodes and the electrolyte can be made into a sheet shape, whereby A4
It is possible to manufacture a battery having a large area and a thin shape such as a plate and a B5 plate, and it is possible to apply the battery to various types of thin products. In particular, batteries using polymer electrolytes have excellent safety and storage properties, including liquid leakage resistance, and are thin and flexible, so that batteries that match the shape of equipment can be designed to date. Has features not found in

【0003】このポリマー電解質電池は、通常、アルミ
ニウム箔を芯材にし、内面側に接着層となる熱融着性樹
脂フィルムを配置したラミネートフィルムを外装体に用
い、得ようとする電気容量に応じて、シート状の電極と
シート状のポリマー電解質層とを積層した積層電極群を
外装体で外装することによって、薄いシート形電池に仕
上げられる。
[0003] This polymer electrolyte battery usually uses a laminate film in which an aluminum foil is used as a core material and a heat-fusible resin film serving as an adhesive layer is disposed on the inner surface side as an outer package. Then, a thin sheet-type battery is completed by covering the laminated electrode group, in which the sheet-like electrode and the sheet-like polymer electrolyte layer are laminated, with an outer package.

【0004】この積層形ポリマー電解質電池では、電極
の積層枚数が少なく、電気容量や電気容量密度が低い場
合、すなわち、内在するエネルギーが低い場合には、上
記の優れた安全性が確保される。しかしながら、電極の
積層枚数が多くなって、電気容量や電気容量密度が高く
なると、安全性が充分でなくなり、釘刺しや圧壊などで
電極同士が短絡した場合、大電流が流れ、発熱し、発
煙、発火、破裂などの事故に至る場合のあることが判明
した。
In this laminated polymer electrolyte battery, when the number of laminated electrodes is small and the electric capacity or electric capacity density is low, that is, when the inherent energy is low, the above-mentioned excellent safety is secured. However, when the number of stacked electrodes increases and the electric capacity and electric capacity density increase, the safety is not sufficient.If the electrodes are short-circuited due to nail penetration or crushing, a large current flows, heat is generated, and smoke is generated. It has been found that fire, rupture and other accidents may occur.

【0005】上記のような問題は、短絡時に流れる大電
流を積層電極群の外に流し、同時に、熱の放散を速やか
にし、蓄熱を少なくすることによって解決することがで
きる。ところが、従来の積層形ポリマー電解質電池の積
層電極群は、熱伝導の悪いポリマー電解質層を介して正
極と負極が対向し、それらを複数枚重ね、かつ、熱伝導
の悪い熱融着性樹脂フィルムを内面側に配置した外装体
で外装しているため、短絡などの発熱による電池内部で
の蓄熱が大きく、内部温度の上昇が大きくなって、発
煙、発火、破裂などの事故に至るものと考えられる。
[0005] The above-mentioned problem can be solved by causing a large current flowing at the time of short-circuit to flow out of the stacked electrode group, and simultaneously dissipating heat quickly and reducing heat storage. However, the laminated electrode group of the conventional laminated polymer electrolyte battery has a structure in which a positive electrode and a negative electrode face each other via a polymer electrolyte layer having poor heat conduction, a plurality of such layers are stacked, and a heat-fusible resin film having poor heat conduction is formed. It is thought that heat is stored inside the battery due to heat generation such as a short circuit, and the internal temperature rises greatly, leading to accidents such as smoke, ignition, and rupture due to the exterior being placed inside the battery. Can be

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点を解決し、電池構造に工夫を凝らす
ことにより、高容量化した場合でも安全性を高め、安全
性の高い積層形ポリマー電解質電池を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and enhances the safety even when the capacity is increased by improving the battery structure. An object of the present invention is to provide a stacked polymer electrolyte battery.

【0007】[0007]

【課題を解決するための手段】本発明は、正極集電体の
少なくとも一方の面に正極合剤層を形成してなる正極
と、負極集電体の少なくとも一方の面に負極合剤層を形
成してなる負極とを、それぞれの間にポリマー電解質層
を介在させて積層した積層電極群を金属箔を含む外装体
で外装する積層形ポリマー電解質電池であって、上記外
装体の少なくとも一方の外側に短絡形成兼放熱促進部材
を設けることによって、上記課題を解決したものであ
る。
According to the present invention, there is provided a positive electrode having a positive electrode mixture layer formed on at least one surface of a positive electrode current collector, and a negative electrode mixture layer formed on at least one surface of a negative electrode current collector. A negative electrode formed, and a laminated polymer electrolyte battery in which a laminated electrode group laminated with a polymer electrolyte layer interposed therebetween is packaged with a package containing a metal foil, and at least one of the above package. This problem has been solved by providing a short-circuit formation and heat dissipation promoting member on the outside.

【0008】すなわち、上記短絡形成兼放熱促進部材に
より、釘刺しや圧壊などによる積層電極群内部での短絡
より先に外部短絡させて、電池電圧を低下させ、化学反
応による発熱を低減させることができる。しかも、上記
短絡形成兼放熱促進部材が積層電極群の外側に設けられ
ているので、その短絡形成兼放熱促進部材により放熱を
スムーズに行わせることができる。したがって、この短
絡形成兼放熱促進部材を設けたことにより、高容量化し
た場合でも、安全性を高めることができ、安全性の高い
積層形ポリマー電解質電池を提供することができる。
That is, the short-circuiting and heat-dissipating member can be externally short-circuited prior to short-circuiting inside the laminated electrode group due to nail penetration or crushing, thereby lowering the battery voltage and reducing heat generation due to a chemical reaction. it can. In addition, since the short-circuit formation and heat dissipation promoting member is provided outside the stacked electrode group, heat can be smoothly radiated by the short-circuit formation and heat dissipation promotion member. Therefore, by providing the short-circuit formation and heat dissipation promoting member, safety can be enhanced even when the capacity is increased, and a laminated polymer electrolyte battery with high safety can be provided.

【0009】[0009]

【発明の実施の形態】本発明における短絡形成兼放熱促
進部材としては、次の二つに大別される。そのひとつ
は、外装体の表面のプラスチックフィルムを絶縁体とし
て用い、外装体の外側に設けた1枚の金属板と、外装体
を構成する金属箔との間で短絡形成兼放熱促進ユニット
としての機能を発現させるものである。このとき、外装
体の外側に設けた金属板と外装体を構成する金属箔はそ
れぞれ異なった極性の電極の電極端子と接続し、それら
の間で釘刺しや圧壊などによる積層電極群内部での短絡
より先に外部短絡させて、電池電圧を低下させ、化学反
応による発熱を低減させる。そして、それらは積層電極
群の外側に配置しているため、放熱もスムーズに行われ
る。また、外装体表面の絶縁性を完全にするために、上
記金属板と外装体表面との間に、別途絶縁板を設けた
り、それぞれを接着して固定するなどの手段を講じても
よい。そして、短絡形成兼放熱促進ユニットを形成する
ため、外部金属板および外装体を構成する金属箔は、厚
さ30μm以上のものが好ましい。ただし、それらの金
属板や金属箔があまりにも厚くなりすぎると電気容量密
度を低下させることになり、積層形ポリマー電解質電池
の特徴を失わせてしまうおそれがあるので、上記のよう
に30μm以上で200μm以下が好ましい。そして、
その形態は必ずしも非多孔質状である必要はなく、パン
チングメタル、網状あるいはラス状メタルなどの多孔質
状のものであってもよく、また、その材質は、特に限定
されることはないが、正極端子と接続するものはアルミ
ニウムやステンレス鋼などが好ましく、負極端子と接続
するものは銅、ニッケル、ステンレス鋼などが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The short-circuit formation and heat dissipation promoting members of the present invention are roughly classified into the following two. One of them is to use a plastic film on the surface of the exterior body as an insulator, and form a short-circuit and heat dissipation promotion unit between one metal plate provided outside the exterior body and the metal foil that constitutes the exterior body. A function is developed. At this time, the metal plate provided on the outside of the exterior body and the metal foil constituting the exterior body are respectively connected to the electrode terminals of electrodes having different polarities, and the nails are punctured or crushed between the inside of the laminated electrode group. An external short circuit occurs before the short circuit, thereby lowering the battery voltage and reducing heat generated by a chemical reaction. And since they are arranged outside the stacked electrode group, the heat radiation is also performed smoothly. In addition, in order to completely insulate the surface of the exterior body, a means of separately providing an insulation plate between the metal plate and the surface of the exterior body, or bonding and fixing them may be taken. Then, in order to form the short-circuit formation and heat dissipation promotion unit, the metal foil constituting the external metal plate and the exterior body preferably has a thickness of 30 μm or more. However, if those metal plates or metal foils are too thick, the electric capacity density will be reduced, and the characteristics of the laminated polymer electrolyte battery may be lost. It is preferably 200 μm or less. And
The form does not necessarily need to be non-porous, and may be a porous material such as a punching metal, a net-like or a lath-like metal, and the material is not particularly limited, Those connected to the positive electrode terminal are preferably aluminum or stainless steel, and those connected to the negative electrode terminal are preferably copper, nickel, stainless steel or the like.

【0010】短絡形成兼放熱促進部材のもうひとつの形
態としては、外装体の外側に絶縁板を介して2枚の金属
板を配置してなる短絡形成兼放熱促進ユニットを設置す
るものである。その際、上記短絡形成兼放熱促進ユニッ
トの2枚の金属板はそれぞれ異なった極性の電極端子と
接続し、それらの間で釘刺しや圧壊などによる積層電極
群内部での短絡より先に外部短絡させて、電池電圧を低
下させ、化学反応による発熱を低減させる。そして、そ
れらの金属板は積層電極群の外側に配置しているので、
放熱もスムーズに行われる。そして、上記短絡形成兼放
熱促進部材の金属板はより完全な短絡回路を形成させる
ために、厚さ30μm以上のものが好ましい。ただし、
上記金属板があまりにも厚くなりすぎると電気容量密度
を低下させることになり、積層形ポリマー電解質電池の
特徴を失わせてしまうおそれがあるので、上記のように
30μm以上で200μm以下が好ましい。そして、そ
の形態は必ずしも非多孔質状である必要はなく、パンチ
ングメタル、網状あるいはラス状メタルなどの多孔質状
のものであってもよく、また、その材質は、特に限定さ
れることはないが、正極端子と接続するものはアルミニ
ウムやステンレス鋼などが好ましく、負極端子と接続す
るものは銅、ニッケル、ステンレス鋼などが好ましい。
As another form of the short-circuit formation and heat dissipation promoting member, there is provided a short-circuit formation and heat dissipation promotion unit in which two metal plates are arranged outside the exterior body via an insulating plate. At this time, the two metal plates of the short-circuit formation and heat dissipation promotion unit are connected to electrode terminals having different polarities, respectively, and an external short-circuit is established between the two metal plates before a short-circuit in the stacked electrode group due to nail penetration or crushing. As a result, the battery voltage is reduced, and the heat generated by the chemical reaction is reduced. And since those metal plates are arranged outside the laminated electrode group,
Heat dissipation is also performed smoothly. The metal plate of the short-circuit formation and heat dissipation promoting member preferably has a thickness of 30 μm or more in order to form a more complete short circuit. However,
If the metal plate is too thick, the electric capacity density is reduced, and the characteristics of the laminated polymer electrolyte battery may be lost. Therefore, the thickness is preferably 30 μm or more and 200 μm or less as described above. The form is not necessarily required to be non-porous, and may be porous such as punched metal, net-shaped or lath-shaped metal, and the material is not particularly limited. However, the one connected to the positive electrode terminal is preferably aluminum or stainless steel, and the one connected to the negative electrode terminal is preferably copper, nickel, stainless steel or the like.

【0011】また、絶縁板としては、2枚の金属板を電
気的に隔離できればその材質を問わないが、上記金属板
の場合と同様に、高温貯蔵や加圧などによってポリマー
電解質層からの電解液の漏出があった場合を考慮する
と、例えば、耐有機溶剤性のあるポリエチレン、ポリプ
ロピレン、フッ素系樹脂、ポリイミド、ポリエステル、
ポリフェニレンサルファイドなどのプラスチックなどが
好ましい。そして、その形態としては、シート、フィル
ム、織布、不織布、網、パンチング、ラス状などのいず
れであってもよい。また、その厚さも電気絶縁が可能で
あれば薄いほど好ましいが、絶縁の確実性や生産性を考
慮すると、2μm以上で200μm以下のものが好まし
い。
The insulating plate may be made of any material as long as the two metal plates can be electrically isolated from each other. However, similarly to the case of the above-mentioned metal plate, the electrolysis from the polymer electrolyte layer by high-temperature storage or pressurization is performed. Considering the case of leakage of the liquid, for example, polyethylene, polypropylene, fluorine resin, polyimide, polyester with organic solvent resistance,
Plastics such as polyphenylene sulfide are preferred. The form may be any of a sheet, a film, a woven fabric, a nonwoven fabric, a net, a punch, a lath, and the like. The thickness is preferably as thin as possible if electrical insulation is possible. However, in consideration of reliability of insulation and productivity, the thickness is preferably 2 μm or more and 200 μm or less.

【0012】さらに、後述の短絡形成兼放熱促進ユニッ
ト作製時の容易さや、完成ユニットの可搬性を考慮する
と、2枚の金属板と絶縁板の3者が一体になっていて、
かつ電池と一体化していることが好ましい。そのため
に、金属板や絶縁板の表面に接着剤を付着させたものを
用いたり、別途接着シートを用意して、3者を一体化し
てもよい。
Further, considering the ease of manufacturing a short-circuit formation and heat dissipation promoting unit described later and the portability of the completed unit, the three members of the two metal plates and the insulating plate are integrated.
And it is preferable that it is integrated with the battery. For this purpose, a metal plate or an insulating plate with an adhesive attached to the surface may be used, or an adhesive sheet may be separately prepared to integrate the three members.

【0013】本発明において、積層電極群を作製するに
あたり、正極、負極、ポリマー電解質層はそれぞれ別々
に作製したものを積層してもよいが、あらかじめ正極ま
たは負極の少なくとも一方の電極をポリマー電解質層で
包囲して、電極とポリマー電解質層とを一体化しておく
ことが好ましい。この場合の形態としては、例えば、ポ
リマー電解質層の支持体となる多孔質シートを袋状にし
て電極を包囲した後、その全体をポリマー電解質の前駆
体であるゲル化成分を含有する電解液に含浸、ゲル化し
て、ポリマー電解質を含有した電極と支持体との一体化
物を作製する場合や、ポリマー電解質を含有した電極
を、多孔質シートの支持体を内在した、短冊状のポリマ
ー電解質シートで挟み込むことによって、電極とポリマ
ー電解質層とを一体化する場合などが挙げられる。さら
に、後者の電極を短冊状のポリマー電解質シートで挟み
込むことにより電極をポリマー電解質層で包囲する場
合、1枚の短冊状のポリマー電解質シートをそのほぼ中
央部で折り返してそのポリマー電解質シートの間に電極
を挟み込むことにより電極をポリマー電解質層で包囲す
る場合と、電極を2枚の短冊状のポリマー電解質シート
の間に挟み込むことにより電極をポリマー電解質層で包
囲する場合とがある。
In the present invention, when producing a laminated electrode group, the positive electrode, the negative electrode, and the polymer electrolyte layer may be formed separately from each other, but at least one of the positive electrode and the negative electrode may be previously laminated to the polymer electrolyte layer. , And the electrode and the polymer electrolyte layer are preferably integrated. In this case, for example, after surrounding the electrodes in a bag-shaped porous sheet serving as a support for the polymer electrolyte layer, the whole is converted into an electrolyte containing a gelling component that is a precursor of the polymer electrolyte. Impregnation and gelation to produce an integrated product of an electrode containing a polymer electrolyte and a support, or an electrode containing a polymer electrolyte with a strip-shaped polymer electrolyte sheet containing a porous sheet support There is a case where the electrode and the polymer electrolyte layer are integrated by sandwiching. Furthermore, when the latter electrode is sandwiched between strip-shaped polymer electrolyte sheets to surround the electrodes with a polymer electrolyte layer, one strip-shaped polymer electrolyte sheet is folded at substantially the center thereof and is interposed between the polymer electrolyte sheets. There are a case where the electrode is surrounded by the polymer electrolyte layer by sandwiching the electrode, and a case where the electrode is surrounded by the polymer electrolyte layer by sandwiching the electrode between two strip-shaped polymer electrolyte sheets.

【0014】上記の場合において、ポリマー電解質の支
持体となる多孔質シートとしては、例えば、不織布や微
孔性フィルムなどが用いられる。上記不織布としては、
例えば、ポリプロピレン、ポリエチレン、ポリエチレン
テレフタレート、ポリブチレンテレフタレートなどの不
織布などが挙げられる。また、微孔性フィルムとして
は、例えば、ポリプロピレン、ポリエチレン、エチレン
−プロピレン共重合体の微孔性フィルムなどが挙げられ
る。
In the above case, for example, a nonwoven fabric or a microporous film is used as the porous sheet serving as a support for the polymer electrolyte. As the above nonwoven fabric,
For example, nonwoven fabrics such as polypropylene, polyethylene, polyethylene terephthalate, and polybutylene terephthalate can be used. Examples of the microporous film include microporous films of polypropylene, polyethylene, and ethylene-propylene copolymer.

【0015】不織布は、空孔率が高く、ゲル化成分を含
有する電解液を含浸させやすいので、好適に使用できる
ことから、不織布を支持体として用いる場合について詳
述すると、この不織布としては、例えば、坪量が12g
/m2 で厚さが30μmという非常に薄い不織布を用い
ることができる。
Since the nonwoven fabric has a high porosity and is easily impregnated with an electrolytic solution containing a gelling component, it can be suitably used. Therefore, the case where the nonwoven fabric is used as a support will be described in detail. , Basis weight is 12g
/ M 2 and a very thin nonwoven fabric having a thickness of 30 μm can be used.

【0016】このような不織布は、薄いために引っ張り
強度をはじめとする機械的強度が低く、単体では取り扱
いにくいが、例えば、袋状にし、その袋状の不織布に電
極を収容することにより電極を包囲して、不織布と電極
とを一体化させることにより電極の強度で不織布の強度
不足を補うことができる。また、袋状にしなくても、短
冊状の不織布をそのほぼ中央部で折り返してその不織布
の間に電極を挟み込むことにより電極を不織布で包囲し
て電極と不織布とを一体化させることや2枚の短冊状の
不織布を重ね合わせその一端をシールしてその不織布の
間に電極を挟み込むことにより電極を支持体で包囲して
電極と不織布とを一体化させることによっても、電極の
強度で不織布の強度不足を補うことができ、電池組立時
の作業性の向上や内部抵抗の減少、負荷特性の向上を達
成できる。また、支持体として微孔性フィルムを用いる
場合も、上記不織布の場合と同様である。
Such a nonwoven fabric has a low mechanical strength such as tensile strength because of its thinness, and is difficult to handle alone. For example, the nonwoven fabric is formed into a bag and the electrodes are accommodated in the bag-shaped nonwoven fabric. By surrounding and integrating the nonwoven fabric and the electrode, the strength of the electrode can compensate for the insufficient strength of the nonwoven fabric. Also, without forming a bag shape, the strip-shaped non-woven fabric is folded almost at the center, and the electrode is sandwiched between the non-woven fabrics to surround the electrode with the non-woven fabric and integrate the electrode and the non-woven fabric. By overlapping the strip-shaped non-woven fabric, sealing one end of the non-woven fabric, sandwiching the electrode between the non-woven fabrics, surrounding the electrode with a support, and integrating the electrode and the non-woven fabric, the strength of the non-woven fabric also increases the strength of the electrode. Insufficient strength can be compensated, and workability during battery assembly can be improved, internal resistance can be reduced, and load characteristics can be improved. The case where a microporous film is used as the support is the same as the case of the nonwoven fabric.

【0017】上記のように、不織布などの多孔質シート
からなる支持体で電極を包囲して電極と支持体とを一体
化し、それにゲル化成分を含有する電解液を含浸させて
ゲル化させることにより、電極とポリマー電解質層との
間が、それぞれ単独でゲル化して電極とポリマー電解質
シートにしてから積層するよりも、界面の接着状態が良
好で、層間に気泡、異物などが介在することが少ないの
で、界面でのイオン移動がスムーズになり、正極と負極
間の反応性が向上する。また、正極、負極のいずれかの
一方の電極を支持体で包囲することによって、物理的セ
パレートの役割も果たすことができる。
As described above, the electrode is surrounded by a support made of a porous sheet such as a nonwoven fabric, and the electrode and the support are integrated, and the electrode is impregnated with an electrolytic solution containing a gelling component to be gelled. Thereby, the adhesion between the electrodes and the polymer electrolyte layer is better than when the electrodes and the polymer electrolyte sheet are individually gelled to form the electrode and the polymer electrolyte sheet and then laminated, and bubbles, foreign substances, and the like can be interposed between the layers. Since the amount is small, the ion transfer at the interface becomes smooth, and the reactivity between the positive electrode and the negative electrode is improved. In addition, by surrounding one of the positive electrode and the negative electrode with a support, it can also serve as a physical separator.

【0018】そして、正極または負極のいずれかの一方
の電極をポリマー電解質層で包囲して電極とポリマー電
解質層とを一体化させればよいが、その際、正極をポリ
マー電解質層で包囲して正極とポリマー電解質層とを一
体化させると、負極をポリマー電解質層で包囲する場合
より、電池容量を大きくすることができる。すなわち、
通常、デンドライトの発生の防止や安全性の確保から負
極を正極より大きくすることが一般に行われているので
正極をポリマー電解質層で包囲すれば、負極をポリマー
電解質層で包囲するより、ポリマー電解質層の寸法を小
さくでき、その結果、電池容量を大きくすることができ
る。また、負極をポリマー電解質層で包囲して負極とポ
リマー電解質層とを一体化させる場合も、負極とポリマ
ー電解質層との界面状態を均一にすることができるの
で、正極の場合と同様に、反応性の向上に効果がある。
Then, one of the positive electrode and the negative electrode may be surrounded by the polymer electrolyte layer to integrate the electrode and the polymer electrolyte layer. At this time, the positive electrode is surrounded by the polymer electrolyte layer. When the positive electrode and the polymer electrolyte layer are integrated, the battery capacity can be larger than when the negative electrode is surrounded by the polymer electrolyte layer. That is,
Generally, it is common practice to make the negative electrode larger than the positive electrode in order to prevent dendrite generation and ensure safety.If the positive electrode is surrounded by the polymer electrolyte layer, then the negative electrode is surrounded by the polymer electrolyte layer rather than the polymer electrolyte layer. Can be reduced, and as a result, the battery capacity can be increased. Also, when the negative electrode is surrounded by the polymer electrolyte layer and the negative electrode and the polymer electrolyte layer are integrated, the interface state between the negative electrode and the polymer electrolyte layer can be made uniform. It is effective in improving the properties.

【0019】さらに、正極および負極の両電極をポリマ
ー電解質層で包囲すると、そのぶんポリマー電解質層の
厚みは増加するが、両電極ともポリマー電解質層と一体
化するので、正極、負極のいずれについても分極を減少
させることができ、充放電時の反応をスムーズに進行さ
せることができるので、負荷特性を大幅に向上させるこ
とができる。
Further, if both the positive electrode and the negative electrode are surrounded by the polymer electrolyte layer, the thickness of the polymer electrolyte layer is increased, but both electrodes are integrated with the polymer electrolyte layer. Since the polarization can be reduced and the reaction at the time of charging / discharging can proceed smoothly, the load characteristics can be greatly improved.

【0020】本発明において、電極とポリマー電解質層
との一体化とは、電極とポリマー電解質層との間に気泡
や異物などを含まないで、電極とポリマー電解質層とを
密接させることを意味していて、不可分に接着させるこ
となどを意味するものではない。
In the present invention, the integration of the electrode and the polymer electrolyte layer means that the electrode and the polymer electrolyte layer are brought into close contact with each other without bubbles or foreign matter between the electrode and the polymer electrolyte layer. It does not mean that it is inseparably bonded.

【0021】上記不織布などの多孔質シートからなる支
持体を袋状にする場合、その袋状体は、例えば、四角形
状のものとして説明すると、通常、一辺が開口し、他の
三辺がシールされているが、そのシールにあたって、連
続的にシールすることは必ずしも要求されず、不連続に
シールしたものであってもよい。
When the support made of a porous sheet such as the above nonwoven fabric is formed into a bag shape, if the bag shape is described as, for example, a rectangular shape, one side is usually open and the other three sides are sealed. However, the sealing is not always required to be continuously performed, and the sealing may be discontinuously performed.

【0022】電極を袋状の支持体に収容するにあたっ
て、あらかじめ支持体を袋状にしておくことは要求され
ず、電極を短冊状の支持体(例えば、長さが電極の長さ
の2倍以上で、幅が電極の幅より広いサイズの短冊状の
支持体)の長さ方向のほぼ中央部より一方の側に載置
し、他方の幅を折返し(つまり、電極がほぼ中央部で折
り返した支持体間に挟み込まれる状態にし)、その幅方
向の両側部を連続的または不連続的にシールして、電極
が袋状の支持体に収容された状態にすればよい。
When accommodating the electrode in the bag-like support, it is not required that the support is made into a bag-like shape in advance, and the electrode is made into a strip-like support (for example, the length is twice the length of the electrode). As described above, a strip-shaped support having a width larger than the width of the electrode is placed on one side from the substantially central portion in the length direction, and the other width is folded back (that is, the electrode is folded back substantially at the center portion). It is sufficient that the electrodes are housed in a bag-like support by sealing the two sides in the width direction continuously or discontinuously.

【0023】また、2枚の支持体を重ね合わせてその一
端をシールしてその間に電極を挟み込む場合も、あらか
じめシールしておくことは要求されず、電極を1枚の短
冊状の支持体(例えば、長さが電極の長さより長く、幅
が電極の幅より広いサイズの短冊状の支持体)に載置
し、もう1枚の短冊状の支持体をその上にのせ、それら
の支持体の一端を連続的または不連続的にシールして、
電極が支持体の間に挟み込まれた状態にすればよい。
In the case where two supports are overlapped and one end thereof is sealed and an electrode is sandwiched between the two supports, it is not necessary to seal the electrodes in advance. For example, it is placed on a strip-shaped support whose length is longer than the length of the electrode and whose width is wider than the width of the electrode), another strip-shaped support is placed thereon, and the support At one end, continuously or discontinuously,
What is necessary is just to make the electrode sandwiched between the support bodies.

【0024】ポリマー電解質層を構成するための電解液
としては、例えば、ジメチルカーボネート、ジエチルカ
ーボネート、メチルエチルカーボネート、プロピオン酸
メチル、エチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート、γ−ブチロラクトン、エチ
レングリコールサルファイト、1,2−ジメトキシエタ
ン、1,3−ジオキソラン、テトラヒドロフラン、2−
メチル−テトラヒドロフラン、ジエチルエーテルなどの
有機溶媒に、例えば、LiClO4 、LiPF 6 、Li
BF4 、LiAsF6 、LiCF3 SO3 、LiC4
9 SO3 、LiCF3 CO2 、Li2 2 4 (S
3 2 、LiN(CF3 SO2 2 、LiC(CF3
SO2 3 、LiCn 2n+1 SO3 (n≧2)、Li
N(RfOSO2 2 〔ここでRfはフルオロアルキル
基〕などの無機イオン塩を溶解させることによって調製
したものが使用される。この無機イオン塩の電解液中の
濃度としては、0.5〜1.5mol/l、特に0.9
〜1.25mol/lが好ましい。
Electrolyte for forming polymer electrolyte layer
As, for example, dimethyl carbonate, diethyl carbonate
-Carbonate, methyl ethyl carbonate, propionic acid
Methyl, ethylene carbonate, propylene carbonate
G, butylene carbonate, γ-butyrolactone, ethyl
Len glycol sulfite, 1,2-dimethoxy eta
1,3-dioxolan, tetrahydrofuran, 2-
Methyl-tetrahydrofuran, diethyl ether, etc.
In an organic solvent, for example, LiClOFour, LiPF 6, Li
BFFour, LiAsF6, LiCFThreeSOThree, LiCFourF
9SOThree, LiCFThreeCOTwo, LiTwoCTwoFFour(S
OThree)Two, LiN (CFThreeSOTwo)Two, LiC (CFThree
SOTwo)Three, LiCnF2n + 1SOThree(N ≧ 2), Li
N (RfOSOTwo)Two[Where Rf is fluoroalkyl
Prepared by dissolving inorganic ion salts such as
Is used. This inorganic ion salt in the electrolyte
The concentration is 0.5 to 1.5 mol / l, especially 0.9
~ 1.25 mol / l is preferred.

【0025】また、電解液をポリマー電解質に変化させ
るゲル化成分としては、例えば、ポリフッ化ビニリデ
ン、ポリエチレンオキサイド、ポリアクリロニトリル、
フッ化ビニリデン−六フッ化プロピレン共重合体などの
ように直鎖状のポリマーを加熱することにより電解液に
溶解させた後、冷却することによって電解液をゲル化さ
せるポリマーや、活性光線で重合可能な二重結合を一分
子あたり2個以上含みモノマーまたはプレポリマーを主
成分とする架橋性組成物などが挙げられる。
As the gelling component for converting the electrolytic solution into a polymer electrolyte, for example, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile,
After dissolving a linear polymer such as a vinylidene fluoride-propylene hexafluoride copolymer in an electrolytic solution by heating and then cooling it to polymerize the electrolytic solution, or polymerizing with actinic rays Examples include a crosslinkable composition containing two or more possible double bonds per molecule and containing a monomer or a prepolymer as a main component.

【0026】上記活性光線で重合可能なモノマーとして
は、まず、二重結合を一分子あたり2個有するモノマー
(二官能架橋性モノマー)として、例えば、1,3−ブ
タンジオールジアクリレート、1,4−ブタンジオール
ジアクリレート、1,6−ヘキサンジオールジアクリレ
ート、エチレングリコールジアクリレート、ジエチレン
グリコールジアクリレート、トリエチレングリコールジ
アクリレート、テトラエチレングリコールジアクリレー
ト、ポリエチレングリコールジアクリレート、プロピレ
ングリコールジアクリレート、ジプロピレングリコール
ジアクリレート、トリプロピレングリコールジアクリレ
ート、エトキシ化ビスフェノールAジアクリレート、ノ
ボラックジアクリレート、プロポキシ化ネオペンチルグ
リコールジアクリレートなどの二官能アクリレートおよ
び上記アクリレートと同様の二官能メタクリレートなど
が挙げられる。
Examples of the monomer capable of being polymerized by actinic light include monomers having two double bonds per molecule (bifunctional crosslinkable monomers) such as 1,3-butanediol diacrylate and 1,4 -Butanediol diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, propylene glycol diacrylate, dipropylene glycol diacrylate Acrylate, tripropylene glycol diacrylate, ethoxylated bisphenol A diacrylate, novolak diacrylate, propoxylated neopentyl glycol diacrylate Such as difunctional acrylates and the acrylate and similar difunctional methacrylates such as chromatography bets and the like.

【0027】また、活性光線で重合可能な二重結合を一
分子あたり3個有するモノマー(三官能架橋性モノマ
ー)としては、例えば、トリス(2−ヒドロキシエチ
ル)イソシアヌレートトリアクリレート、トリメチロー
ルプロパントリアクリレート、エトキシ化トリメチロー
ルプロパントリアクリレート、ペンタエリスリトールト
リアクリレート、プロポキシ化トリメチロールプロパン
トリアクリレート、プロポキシ化グリセリルトリアクリ
レート、カプロラクトン変性トリメチロールプロパンア
クリレートなどの三官能アクリレートおよび上記アクリ
レートと同様の三官能メタクリレートなどが挙げられ
る。
Examples of monomers having three double bonds polymerizable by actinic rays per molecule (trifunctional crosslinking monomers) include, for example, tris (2-hydroxyethyl) isocyanurate triacrylate, trimethylolpropane triacrylate. Trifunctional acrylates such as acrylate, ethoxylated trimethylolpropane triacrylate, pentaerythritol triacrylate, propoxylated trimethylolpropane triacrylate, propoxylated glyceryl triacrylate, caprolactone-modified trimethylolpropane acrylate, and trifunctional methacrylates similar to the above acrylates Is mentioned.

【0028】そして、活性光線で重合可能な二重結合を
一分子あたり4個以上有するモノマー(四官能以上の架
橋性モノマー)としては、例えば、ペンタエリスリトー
ルテトラアクリレート、ジトリメチロールプロパンテト
ラアクリレート、エトキシ化ペンタエリスリトールテト
ラアクリレート、ジペンタエリスリトールヒドロキシペ
ンタアクリレート、ジペンタエリスリトールヘキサアク
リレートなどの四官能以上のアクリレートおよび上記ア
クリレートと同様の四官能以上のメタクリレートなどが
挙げられる。
Examples of the monomer having four or more double bonds per molecule capable of being polymerized by actinic light (tetrafunctional or more crosslinkable monomer) include, for example, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated Examples include tetrafunctional or higher acrylates such as pentaerythritol tetraacrylate, dipentaerythritol hydroxypentaacrylate, dipentaerythritol hexaacrylate, and tetrafunctional or higher methacrylates similar to the above acrylates.

【0029】また、活性光線で重合可能な二重結合を2
個以上、好ましくは4個以上有するプレポリマーとして
は、例えば、ウレタンアクリレート、エポキシアクリレ
ート、ポリエステルアクリレートのプレポリマーなどが
挙げられ、前記のモノマーに代えて用いることができ
る。
Further, a double bond which can be polymerized by actinic rays
Examples of the prepolymer having at least four, preferably four or more include prepolymers of urethane acrylate, epoxy acrylate, and polyester acrylate, and can be used in place of the above-mentioned monomers.

【0030】本発明において、上記の活性光線で重合可
能な二重結合を一分子あたり2個以上有するモノマーま
たはプレポリマーは、主成分として用いられておればよ
く、例えばゲル硬さなどの物性調整のために一官能モノ
マーなども併用することができる。また、二官能モノマ
ーと六官能モノマーとを混合するというような使い方も
できる。
In the present invention, the monomer or prepolymer having two or more double bonds per molecule capable of being polymerized by actinic light may be used as a main component, for example, for adjusting physical properties such as gel hardness. For this purpose, a monofunctional monomer or the like can be used in combination. Further, a usage such as mixing a bifunctional monomer and a hexafunctional monomer is also possible.

【0031】本発明において、活性光線で重合可能な二
重結合を一分子あたり2個以上有するモノマーまたはプ
レポリマーを主成分とする架橋性組成物とは、上記架橋
性組成物を活性光線で重合可能な二重結合を一分子あた
り2個以上有するモノマーまたはプレポリマーのみで構
成する場合と、一官能モノマーなどと活性光線で重合可
能な二重結合を一分子あたり2個以上有するモノマーま
たはプレポリマーとを併用する場合の両者を含むが、後
者のように活性光線で重合可能な二重結合を一分子あた
り2個以上有するモノマーまたはプレポリマーを一官能
モノマーなどと併用する場合、その架橋性組成物におい
て、活性光線で重合可能な二重結合を一分子あたり2個
以上有するモノマーまたはプレポリマーが50重量%以
上、特に70重量%以上であることが好ましい。また、
架橋性組成物はそれを構成するものがすべて架橋性でな
くてもよく、全体として架橋性であればよく、例えば、
必要に応じて他の成分を添加することもできる。
In the present invention, the term "crosslinkable composition comprising a monomer or a prepolymer having two or more double bonds per molecule which can be polymerized by actinic light" as a main component means that the above-mentioned crosslinkable composition is polymerized by actinic light. Monomers or prepolymers containing only possible monomers or prepolymers having two or more double bonds per molecule, and monomers or prepolymers having two or more double bonds per molecule that can be polymerized with actinic rays with monofunctional monomers In the case where a monomer or a prepolymer having two or more double bonds per molecule capable of being polymerized by actinic rays is used in combination with a monofunctional monomer or the like as in the latter case, the crosslinkable composition Of a monomer or a prepolymer having two or more double bonds per molecule which can be polymerized by actinic light, more than 50% by weight, especially 70% by weight. Or more at a wavelength of 550 nm. Also,
The crosslinkable composition does not have to be all crosslinkable as long as the constituents thereof are not crosslinkable, as long as it is entirely crosslinkable.
Other components can be added as needed.

【0032】そして、必要に応じ、重合開始剤として、
例えば、ベンゾイン類、ベンゾインアルキルエーテル
類、ベンゾフェノン類、ベンゾイルフェニルフォスフィ
ンオキサイド類、アセトフェノン類、チオキサントン
類、アントラキノン類などを使用することができる。さ
らに重合開始剤の増感剤としてアルキルアミン類、アミ
ノエステル類なども使用することができる。
And, if necessary, as a polymerization initiator,
For example, benzoins, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, acetophenones, thioxanthones, anthraquinones, and the like can be used. Further, alkylamines, aminoesters and the like can be used as a sensitizer of the polymerization initiator.

【0033】本発明において、活性光線としては、例え
ば、紫外線(UV)、電子線(EB)、可視光線、遠紫
外線などを使用することができる。
In the present invention, for example, ultraviolet rays (UV), electron beams (EB), visible rays, far ultraviolet rays, etc. can be used as the active rays.

【0034】[0034]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明は実施例に例示のもののみ
に限定されることはない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those illustrated in the embodiments.

【0035】実施例1 まず、この実施例1において用いる正極および負極の作
製、ゲル化成分含有電解液の調製について先に説明す
る。
Example 1 First, the preparation of the positive electrode and the negative electrode used in Example 1 and the preparation of an electrolyte solution containing a gelling component will be described first.

【0036】正極の作製:正極活物質であるLiCoO
2 80重量部、導電助剤であるアセチレンブラック10
重量部、バインダーであるポリフッ化ビニリデン10重
量部とをN−メチルピロリドンを溶剤として均一になる
ように混合し、正極合剤含有ペーストを調製した。この
正極合剤含有ペーストを正極集電体となる厚さ20μm
のアルミニウム箔の両面に塗布し、乾燥した後、カレン
ダー処理を行って、全厚が130μmになるように正極
合剤層の厚みを調整し、正極合剤層形成部分の面積が7
0mm×40mmになるように切断して正極を作製し
た。ただし、上記正極の作製にあたっては、アルミニウ
ム箔の一部に正極合剤含有ペーストを塗布せず、アルミ
ニウム箔の露出部を残し、そのアルミニウム箔の露出部
を正極端子などとの接続のためのリード部とした。この
正極の断面図を図1に模式的に示す。図1に示すよう
に、正極1は正極集電体1aの両面に正極合剤層1bを
形成することによって作製され、そのリード部1cは上
記正極集電体1aを構成するアルミニウム箔の一部に正
極合剤含有ペーストを塗布せず、アルミニウム箔を露出
させることによって構成されている。
Preparation of positive electrode: LiCoO as positive electrode active material
2 80 parts by weight, acetylene black 10 as a conductive additive
The mixture was uniformly mixed with 10 parts by weight of polyvinylidene fluoride as a binder using N-methylpyrrolidone as a solvent to prepare a positive electrode mixture-containing paste. This positive electrode mixture-containing paste is used as a positive electrode current collector with a thickness of 20 μm.
Is applied to both sides of the aluminum foil, dried and then calendered to adjust the thickness of the positive electrode mixture layer so that the total thickness becomes 130 μm.
The positive electrode was manufactured by cutting so as to be 0 mm × 40 mm. However, in producing the above positive electrode, the positive electrode mixture-containing paste was not applied to part of the aluminum foil, leaving an exposed portion of the aluminum foil, and connecting the exposed portion of the aluminum foil to a lead for connection with a positive electrode terminal or the like. Department. FIG. 1 schematically shows a cross-sectional view of this positive electrode. As shown in FIG. 1, the positive electrode 1 is produced by forming a positive electrode mixture layer 1b on both surfaces of a positive electrode current collector 1a, and a lead portion 1c thereof is part of an aluminum foil constituting the positive electrode current collector 1a. It is constituted by exposing the aluminum foil without applying the paste containing the positive electrode mixture to the aluminum foil.

【0037】負極Aの作製:負極活物質である黒鉛90
重量部とポリフッ化ビニリデン10重量部とをN−メチ
ルピロリドンを溶剤として均一になるように混合して負
極合剤含有ペーストを調製し、厚さ10μmの銅箔から
なる負極集電体の両面に塗布し、乾燥した後、カレンダ
ー処理を行って全厚が130μmになるように負極合剤
層の厚みを調整し、負極合剤層形成部分の面積が72m
m×42mmになるように切断して負極Aを作製した。
上記切断は負極端子との接続部分となるリード部を電極
の幅方向に対して中央位置になるようにした。また、上
記正極の場合と同様に、負極Aの作製にあたっても、銅
箔の一部に負極合剤含有ペーストを塗布せず、銅箔の露
出部を残し、その銅箔の露出部を負極端子などとの接続
のためのリード部とした。このようにして作製した負極
Aは、負極合剤層が負極集電体の両面に形成された、い
わゆる両面塗布負極と呼ばれるものである。この負極A
の断面図を図2に模式的に示す。図2に示すように、負
極Aは負極集電体2aの両面に負極合剤層2bを形成す
ることによって作製され、そのリード部2cは上記負極
集電体2aを構成する銅箔の一部に負極合剤含有ペース
トを塗布せず、銅箔を露出させて構成されている。な
お、図示にあたっては、この負極Aおよび後述の負極B
とも同一の参照符号2を付して示す。
Preparation of negative electrode A: graphite 90 as a negative electrode active material
Parts by weight and 10 parts by weight of polyvinylidene fluoride are uniformly mixed with N-methylpyrrolidone as a solvent to prepare a negative electrode mixture-containing paste, and on both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm. After coating and drying, calendering is performed to adjust the thickness of the negative electrode mixture layer so that the total thickness becomes 130 μm, and the area of the negative electrode mixture layer formation portion is 72 m.
The negative electrode A was prepared by cutting to a size of mx 42 mm.
In the above cutting, the lead portion to be connected to the negative electrode terminal was located at the center position in the width direction of the electrode. Also, as in the case of the above-mentioned positive electrode, in producing the negative electrode A, the negative electrode mixture-containing paste was not applied to a part of the copper foil, leaving an exposed portion of the copper foil, and connecting the exposed portion of the copper foil to the negative electrode terminal. It is a lead part for connection with such as. The negative electrode A thus manufactured is a so-called double-sided coated negative electrode in which a negative electrode mixture layer is formed on both surfaces of a negative electrode current collector. This negative electrode A
2 is schematically shown in FIG. As shown in FIG. 2, the negative electrode A is formed by forming a negative electrode mixture layer 2b on both surfaces of a negative electrode current collector 2a, and its lead portion 2c is a part of a copper foil constituting the negative electrode current collector 2a. The negative electrode mixture-containing paste is not applied to the substrate and the copper foil is exposed. In the drawing, the negative electrode A and a negative electrode B described later are used.
Both are denoted by the same reference numeral 2.

【0038】負極Bの作製:上記負極Aの場合と同様の
負極合剤含有ペーストを厚さ10μmの銅箔からなる負
極集電体の片面に塗布し、乾燥した後、カレンダー処理
を行って全厚が70μmになるように負極合剤層の厚み
を調整し、負極合剤層形成部分の面積が72mm×42
mmになるように切断して負極Bを作製した。この負極
Bの作製にあたっても、銅箔の一部に負極合剤含有ペー
ストを塗布せず、銅箔の露出部を残し、その銅箔の露出
部を負極端子などとの接続のためのリード部とした。こ
のようにして作製した負極Bは、負極合剤層が負極集電
体の片面のみに形成された、いわゆる片面塗布負極と呼
ばれているものである。この負極Bの断面図を図3に模
式的に示す。図3に示すように、負極Bは負極集電体2
aの片面のみに負極合剤層2bを形成することによって
作製されている。
Preparation of Negative Electrode B: The same negative electrode mixture-containing paste as in the case of the above-mentioned negative electrode A was applied to one surface of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried, and then subjected to a calendering treatment. The thickness of the negative electrode mixture layer was adjusted so that the thickness became 70 μm, and the area of the negative electrode mixture layer formation portion was 72 mm × 42.
mm to obtain a negative electrode B. In preparing the negative electrode B, the negative electrode mixture-containing paste was not applied to part of the copper foil, leaving an exposed portion of the copper foil, and connecting the exposed portion of the copper foil to a lead portion for connection with a negative electrode terminal or the like. And The negative electrode B thus produced is a so-called single-sided coated negative electrode in which the negative electrode mixture layer is formed only on one side of the negative electrode current collector. FIG. 3 schematically shows a cross-sectional view of the negative electrode B. As shown in FIG. 3, the negative electrode B is the negative electrode current collector 2
The negative electrode mixture layer 2b is formed only on one surface of the substrate a.

【0039】ゲル化成分含有電解液の調製:プロピレン
カーボネートとエチレンカーボネートとの体積比1:1
の混合溶媒にLiPF6 を1.22mol/l溶解させ
ることによって調製した電解液に、開始剤として2,
4,6−トリメチルベンゾイルジフェニルフォスフィン
オキサイド〔商品名:ルシリンTPO、ビーエーエスエ
フジャパン(株)製〕をあらかじめモノマー成分に対し
て2重量%加えて溶解しておき、そこにジペンタエリス
リトールヘキサアクリレートを使用開始10分前に濃度
が6重量%になるように加えて混合し、ゲル化成分を含
有する電解液を調製した。このゲル化成分を含有する電
解液を上記標題のように「ゲル化成分含有電解液」と簡
略化して表現する。
Preparation of electrolyte solution containing gelling component: volume ratio of propylene carbonate to ethylene carbonate 1: 1
In an electrolyte prepared by dissolving 1.22 mol / l of LiPF 6 in a mixed solvent of
4,6-Trimethylbenzoyldiphenylphosphine oxide (trade name: Lucirin TPO, manufactured by BSF Japan Co., Ltd.) was previously added and dissolved at 2% by weight based on the monomer component, and dipentaerythritol hexaacrylate was added thereto. Ten minutes before the start of use, the mixture was added to a concentration of 6% by weight and mixed to prepare an electrolytic solution containing a gelling component. The electrolytic solution containing the gelling component is simply expressed as “gelling component-containing electrolytic solution” as described above.

【0040】上記のように作製した正極をポリマー電解
質層の支持体となる不織布で包んで、正極と支持体とを
一体化しておき、その全体にゲル化成分含有電解液を含
浸させ、ゲル化して、ポリマー電解質含有正極ユニット
を得た。負極は不織布で包むことなく、ゲル化成分含有
電解液を含浸させ、ゲル化して、ポリマー電解質含有負
極を得た。それらの作製方法の詳細を次に示す。
The positive electrode prepared as described above is wrapped with a nonwoven fabric serving as a support for the polymer electrolyte layer, the positive electrode and the support are integrated, and the whole is impregnated with a gelling component-containing electrolyte to form a gel. Thus, a polymer electrolyte-containing positive electrode unit was obtained. The negative electrode was impregnated with a gelling component-containing electrolyte solution without being wrapped with a nonwoven fabric, and gelled to obtain a polymer electrolyte-containing negative electrode. The details of the manufacturing method are described below.

【0041】ポリマー電解質含有正極ユニットの作製:
支持体としては、厚さ30μm、坪量12g/m2 のポ
リブチレンテレフタレート不織布〔NKK社製、MB1
230(商品名)〕を用い、これを長さ×幅が144m
m×42mmの短冊状に切断した。
Preparation of Positive Electrode Unit Containing Polymer Electrolyte:
As a support, a polybutylene terephthalate nonwoven fabric having a thickness of 30 μm and a basis weight of 12 g / m 2 [manufactured by NKK, MB1
230 (trade name)], and the length × width is 144 m
It was cut into a strip of mx 42 mm.

【0042】そして、正極の正極合剤層形成部分とリー
ド部とにまたがるようにして、厚さ50μm、幅3mm
のポリイミドテープをその両面から貼着し、短絡の防止
および端子の強度保持と図った。また、リード部の正極
端子との接続に用いる部分のすべての表面を、熱により
接着面の粘着性が失われる熱剥離テープで被覆した後、
この正極を上記ポリブチレンテレフタレート不織布の長
さ方向の中央部より左側の部分に載置し、右側の部分を
折り返して正極を覆った後、その幅方向の両側部を熱融
着器〔商品名:ポリシーラー、富士イパルス(株)製〕
でシールして支持体としてのポリブチレンテレフタレー
ト不織布を袋状にし、両者を密接させて正極と支持体と
を一体化した。この正極と支持体とを一体化した正極ユ
ニットを前記ゲル化成分含有電解液に減圧下で1分間浸
漬して正極ユニットにゲル化成分含有電解液を含浸させ
た後、ポリエチレン製の袋に入れて密閉した。つぎに、
そのポリエチレン製袋の両面から、フュージョンUVシ
ステムズ・ジャパン(株)製の紫外線照射装置を用い
て、紫外線を1W/cm2 の照度で10秒間照射し、電
解液中のモノマー成分を重合させるとともに、電解液を
ゲル化してゲル状ポリマー電解質とした。このポリマー
電解質層と正極との一体化物を袋から取り出し、そのリ
ード部の正極端子との接続に用いる部分に150℃の熱
風を吹き付けることによって熱剥離テープを該部分から
剥がし、ポリマー電解質保持正極ユニットを得た。
Then, the thickness of the cathode is 50 μm and the width is 3 mm
Was adhered from both sides to prevent short circuit and maintain the strength of the terminals. Also, after covering the entire surface of the portion of the lead portion used for connection with the positive electrode terminal with a heat release tape that loses the adhesiveness of the adhesive surface due to heat,
The positive electrode is placed on the left side of the center of the polybutylene terephthalate nonwoven fabric in the longitudinal direction, and the right side is folded back to cover the positive electrode. : Policyr, Fuji Impulse Co., Ltd.]
To form a bag of polybutylene terephthalate nonwoven fabric as a support, and the two were brought into close contact to integrate the positive electrode and the support. The positive electrode unit in which the positive electrode and the support are integrated is immersed in the gelling component-containing electrolyte for 1 minute under reduced pressure to impregnate the positive electrode unit with the gelling component-containing electrolyte, and then put in a polyethylene bag. And sealed. Next,
UV rays were radiated from both sides of the polyethylene bag at an illuminance of 1 W / cm 2 for 10 seconds using an UV irradiator manufactured by Fusion UV Systems Japan Co., Ltd. to polymerize the monomer component in the electrolytic solution. The electrolyte was gelled to form a gel polymer electrolyte. The integrated body of the polymer electrolyte layer and the positive electrode is taken out of the bag, the hot peeling tape is peeled off from the bag by blowing hot air of 150 ° C. onto a portion of the lead portion used for connection with the positive electrode terminal, and the polymer electrolyte holding positive electrode unit is removed. I got

【0043】ポリマー電解質含有負極Aの作製:上記の
ように作製した負極Aの負極合剤層形成部分とリード部
とにまたがるようにして、厚さ50μm、幅3mmのポ
リイミドテープをその両面から貼着し、短絡の防止およ
び端子の強度保持を図った。また、リード部の負極端子
との接続に用いる部分のすべての表面を、熱により接着
面の粘着性が失われる熱剥離テープで被覆した後、この
負極Aを前記ゲル化成分含有電解液に減圧下で1分間浸
漬して、ゲル化成分含有電解液を含浸させた後、ポリエ
チレン製の袋に入れて密閉した。つぎに、ポリエチレン
製の袋の両面から、フュージョンUVシステムズ・ジャ
パン(株)製の紫外線照射装置を用いて、紫外線を1W
/cm2 の照度で10秒間照射し、電解液中のモノマー
成分を重合させるとともに、電解液をゲル化してゲル状
ポリマー電解質とした。このゲル状ポリマー電解質を保
持させた負極Aを袋から取り出し、そのリード部の負極
端子との接続に用いる部分に150℃の熱風を吹き付け
ることによって熱剥離テープを該部分から剥がし、ポリ
マー電解質含有負極Aを得た。
Preparation of the polymer electrolyte-containing negative electrode A: A polyimide tape having a thickness of 50 μm and a width of 3 mm was attached to both sides of the negative electrode A prepared as described above so as to extend over the negative electrode mixture layer forming portion and the lead portion. To prevent short circuits and maintain the strength of the terminals. After covering the entire surface of the portion of the lead portion used for connection with the negative electrode terminal with a heat release tape that loses the adhesiveness of the adhesive surface due to heat, the negative electrode A was decompressed into the gelled component-containing electrolytic solution. After immersion for 1 minute in the lower part to impregnate the electrolytic solution containing the gelling component, the resultant was put in a polyethylene bag and sealed. Next, ultraviolet light was applied to both sides of the polyethylene bag at a rate of 1 W using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd.
Irradiation was performed for 10 seconds at an illuminance of / cm 2 to polymerize the monomer components in the electrolytic solution and gel the electrolytic solution to obtain a gel polymer electrolyte. The negative electrode A holding the gelled polymer electrolyte is taken out of the bag, and a hot air of 150 ° C. is blown to a portion of the lead portion used for connection with the negative electrode terminal, thereby peeling off the thermal release tape from the portion, and the polymer electrolyte-containing negative electrode. A was obtained.

【0044】ポリマー電解質含有負極Bの作製:上記の
ように作製した負極Bの負極合剤層形成部分とリード部
とにまたがるようにして、厚さ50μm、幅3mmのポ
リイミドテープをその両面から貼着し、短絡の防止およ
び端子の強度保持を図った。また、リード部の負極端子
との接続に用いる部分のすべての表面を、熱により接着
面の粘着性が失われる熱剥離テープで被覆した後、この
負極Bを前記ゲル化成分含有電解液に減圧下で1分間浸
漬して、ゲル化成分含有電解液を含浸させた後、ポリエ
チレン製の袋に入れて密閉した。つぎに、そのポリエチ
レン製袋の外側から、上記負極Bの負極合剤層形成部分
が配置する側にフュージョンUVシステムズ・ジャパン
(株)製の紫外線照射装置を用いて、紫外線を1W/c
2 の照度で10秒間照射し、電解液中のモノマー成分
を重合させるとともに、電解液をゲル化してゲル状ポリ
マー電解質とした。このゲル状ポリマー電解質を保持さ
せた負極Bを袋から取り出し、そのリード部の負極端子
との接続に用いる部分に150℃の熱風を吹き付けるこ
とによって熱剥離テープを該部分から剥がし、ポリマー
電解質含有負極Bを得た。
Preparation of Polymer Electrolyte-Containing Negative Electrode B: A polyimide tape having a thickness of 50 μm and a width of 3 mm was attached to both sides of the negative electrode B prepared as described above so as to straddle the negative electrode mixture layer forming portion and the lead portion. To prevent short circuits and maintain the strength of the terminals. Further, after covering all surfaces of a portion of the lead portion used for connection with the negative electrode terminal with a heat release tape which loses the adhesiveness of the adhesive surface due to heat, the negative electrode B was decompressed into the gelled component-containing electrolytic solution. After immersion for 1 minute in the lower part to impregnate the electrolytic solution containing the gelling component, the resultant was put in a polyethylene bag and sealed. Next, from the outside of the polyethylene bag, ultraviolet rays were irradiated at 1 W / c by using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd. on the side where the negative electrode mixture layer forming portion of the negative electrode B was arranged.
Irradiation was performed for 10 seconds at an illuminance of m 2 to polymerize the monomer components in the electrolyte and gel the electrolyte to form a gel polymer electrolyte. The negative electrode B holding the gel polymer electrolyte is taken out of the bag, and a hot air at 150 ° C. is blown to a portion of the lead portion used for connection with the negative electrode terminal, thereby peeling off the thermal release tape from the portion. B was obtained.

【0045】つぎに、前記のようにして作製したポリマ
ー電解質保持正極ユニット5枚と、ポリマー電解質保持
負極A4枚と、ポリマー電解質保持負極B2枚を用意
し、ポリマー電解質保持負極B、ポリマー電解質保持正
極ユニット、ポリマー電解質保持負極A、ポリマー電解
質保持正極ユニット、ポリマー電解質保持負極A、ポリ
マー電解質保持正極ユニット、ポリマー電解質保持負極
A、ポリマー電解質保持正極ユニット、ポリマー電解質
保持負極A、ポリマー電解質保持正極ユニット、ポリマ
ー電解質保持負極Bの順に積層して積層電極群を得た。
この時、2枚のポリマー電解質保持負極Bの負極合剤層
形成部分は、いずれも積層電極群の内部側を向くように
して積層した。つまり、2枚のポリマー電解質保持負極
Bの厚さ10μmの銅箔からなる負極集電体を積層電極
群の外面側を向くように配置した。
Next, five polymer electrolyte holding positive electrode units, four polymer electrolyte holding negative electrodes A, and two polymer electrolyte holding negative electrodes B prepared as described above were prepared. Unit, polymer electrolyte holding anode A, polymer electrolyte holding cathode unit, polymer electrolyte holding anode A, polymer electrolyte holding cathode unit, polymer electrolyte holding anode A, polymer electrolyte holding anode unit, polymer electrolyte holding anode A, polymer electrolyte holding cathode unit, The polymer electrolyte-holding negative electrode B was laminated in this order to obtain a laminated electrode group.
At this time, the negative electrode mixture layer forming portions of the two polymer electrolyte-holding negative electrodes B were stacked so that both faced the inside of the stacked electrode group. That is, the two negative electrode current collectors made of copper foil having a thickness of 10 μm of the polymer electrolyte holding negative electrode B were arranged so as to face the outer surface of the stacked electrode group.

【0046】この積層電極群と図4に基づき説明する
と、積層電極群の一番下側には、ポリマー電解質保持負
極20(このポリマー電解質保持負極20は、負極B、
つまり片面塗布負極にポリマー電解質を保持させたもの
である)が配置し、その上に、ポリマー電解質保持正極
ユニット10、ポリマー電解質保持負極20、ポリマー
電解質保持正極ユニット10、ポリマー電解質保持負極
20、ポリマー電解質保持正極ユニット10、ポリマー
電解質保持負極20、ポリマー電解質保持正極ユニット
10、ポリマー電解質保持負極20、ポリマー電解質保
持正極ユニット10、ポリマー電解質保持負極20(こ
のポリマー電解質保持負極20は、負極B、つまり、片
面塗布負極にポリマー電解質を保持させたものであり、
最外層の2枚のポリマー電解質保持負極20以外は、す
べて負極A、つまり、両面塗布負極にポリマー電解質を
保持させたものである)の順に積層されている。そし
て、図中、ポリマー電解質保持正極ユニット10の周囲
の白抜き部分はポリマー電解質保持正極ユニット10の
作製にあたって正極の周囲に支持体として不織布を配置
したことを示すために図示したものである。
Referring to this laminated electrode group and FIG. 4, the lowermost side of the laminated electrode group is provided with a polymer electrolyte holding negative electrode 20 (this polymer electrolyte holding negative electrode 20 is a negative electrode B,
That is, a polymer electrolyte is held on a single-sided coated negative electrode), and a polymer electrolyte holding positive electrode unit 10, a polymer electrolyte holding negative electrode 20, a polymer electrolyte holding positive electrode unit 10, a polymer electrolyte holding negative electrode 20, a polymer electrolyte holding negative electrode 20, Electrolyte holding positive electrode unit 10, polymer electrolyte holding negative electrode 20, polymer electrolyte holding positive electrode unit 10, polymer electrolyte holding negative electrode 20, polymer electrolyte holding positive electrode unit 10, polymer electrolyte holding negative electrode 20 (this polymer electrolyte holding negative electrode 20 is a negative electrode B, , A single-sided coated negative electrode holding a polymer electrolyte,
Except for the two outermost polymer electrolyte holding negative electrodes 20, all are stacked in the order of the negative electrode A, that is, the double-sided coated negative electrode holding the polymer electrolyte. In the drawing, a white portion around the polymer electrolyte holding positive electrode unit 10 is shown to show that a nonwoven fabric is arranged as a support around the positive electrode in producing the polymer electrolyte holding positive electrode unit 10.

【0047】上記積層電極群の外装に用いる外装体は、
図5に示すように、保護フィルム4a、金属箔4b、熱
融着性樹脂フィルム4cの3層ラミネートフィルムから
なり、この実施例では、上記保護フィルム4aとして厚
さ30μmのナイロンフィルムが用いられており、金属
箔4bとしては厚さ50μmのアルミニウム箔が用いら
れ、熱融着性樹脂フィルム4cとしては厚さ30μmの
変性ポリオレフィンフィルムが用いられていて、上記ナ
イロンフィルムはアルミニウム箔の損傷や腐食を防ぎ、
アルミニウム箔は水分やガスの透過を阻止し、変性ポリ
オレフィンフィルムは接着層として作用する。この外装
体4は上記積層電極群の外装にあたって2枚用いられ、
両者とも同じ構成のものであるが、そのうちの一方は、
上記積層電極群を収容しやすいように、あらかじめ鍔付
きの容器状に成形され、他方はプレート状をしていて、
それぞれ変性ポリオレフィンフィルムを内面側にして、
積層電極群の周囲に配置し、その接合部を加熱して変性
ポリオレフィンフィルムを熱融着させて封止する。
An exterior body used for the exterior of the above-mentioned laminated electrode group includes:
As shown in FIG. 5, the protective film 4a is composed of a three-layer laminate film of a metal foil 4b and a heat-fusible resin film 4c. In this embodiment, a 30 μm thick nylon film is used as the protective film 4a. An aluminum foil having a thickness of 50 μm is used as the metal foil 4b, and a modified polyolefin film having a thickness of 30 μm is used as the heat-fusible resin film 4c. Prevent,
The aluminum foil blocks the passage of moisture and gas, and the modified polyolefin film acts as an adhesive layer. Two exterior bodies 4 are used for exterior of the laminated electrode group,
Both have the same configuration, but one of them is
In order to easily accommodate the stacked electrode group, it is formed in a container shape with a flange in advance, and the other is in a plate shape,
With the modified polyolefin film on the inner side,
The modified polyolefin film is disposed around the stacked electrode group, and the joint is heated to seal the modified polyolefin film by heat fusion.

【0048】図6にこの外装体で上記積層電極群を外装
したときの正極のリード部と正極端子との接続状態を模
式的に示す。図6に示すように、正極のリード部1cは
並列接続されてまとめられ、正極端子5の一方の端部に
接続され、正極端子5の他方の端部は外装体4、4間の
シール部4dを通過して外部に引き出されている。
FIG. 6 schematically shows a connection state between the positive electrode lead portion and the positive electrode terminal when the above-mentioned laminated electrode group is covered with this package. As shown in FIG. 6, the lead portions 1c of the positive electrode are connected in parallel and put together, connected to one end of the positive terminal 5, and the other end of the positive terminal 5 is a sealing portion between the outer bodies 4,4. It is drawn outside through 4d.

【0049】そして、外装体で積層電極群を外装した
後、図6のA部(外装体4、4のシール部4dであって
正極端子5が引き出されている箇所)の外装体の表面か
ら超音波照射すると、外装体の変性ポリオレフィンフィ
ルムが溶融し、外装体中のアルミニウム箔と正極端子と
が接続できる。この状態を示すために、図6のA部を拡
大し、その要部を模式的に示したのが図7である。すな
わち、図7に示すように、外装体4中の熱融着性樹脂フ
ィルム4cである変性ポリオレフィンフィルムが溶融
し、金属箔4bであるアルミニウム箔と正極端子5とが
接続している。なお、上記超音波溶接に際しては、超音
波発信器としてブランソン社製947M型を用い、4k
g/cm2 の加圧下で、80ジュールのウエルドエネル
ギーをアンプリチュード80%で2秒間印加したが、こ
の条件は状況にあわせて種々に変更できる。
Then, after the laminated electrode group is packaged with the package, the surface of the package of the portion A in FIG. 6 (the seal portion 4d of the package 4 and the portion where the positive electrode terminal 5 is drawn out) is viewed from the surface of the package. When the ultrasonic irradiation is performed, the modified polyolefin film of the outer package is melted, and the aluminum foil in the outer package and the positive electrode terminal can be connected. In order to show this state, FIG. 7 is an enlarged view of a portion A in FIG. 6 and schematically shows a main part thereof. That is, as shown in FIG. 7, the modified polyolefin film as the heat-fusible resin film 4c in the exterior body 4 is melted, and the aluminum foil as the metal foil 4b and the positive electrode terminal 5 are connected. At the time of the above ultrasonic welding, a 947M type manufactured by Branson was used as an ultrasonic transmitter, and 4 k
Under a pressure of g / cm 2 , a weld energy of 80 Joules was applied at 80% amplitude for 2 seconds, but this condition can be changed variously according to the situation.

【0050】これとは別に、短絡形成兼放熱促進部材を
構成する金属板として負極集電体と同形状に打ち抜いた
厚さ50μmのステンレス鋼板(ただし、負極の外部リ
ードとしての負極端子と接続するために、リード部は長
くした)と、72mm×42mmに打ち抜いた厚さ30
μmの両面接着シートを、それぞれ2枚ずつ用意し、積
層電極群を外装後の外装体の上面および下面に上記両面
接着シートを貼り付けた後、その両面接着シートのフリ
ーの面に上記ステンレス鋼板を貼り付けた。図8に上記
短絡形成兼放熱促進部材30を構成する金属板としての
ステンレス鋼板の配置場所(ただし、上面側のみ)を示
す。また、図9に上記短絡形成兼放熱促進部材30を構
成する金属板としてのステンレス鋼板を外装体4の外側
に配置した状態での負極のリード部および上記短絡形成
兼放熱促進部材を構成する金属板のリード部と負極端子
との接続状態を模式的に示す。上記短絡形成兼放熱促進
部材30を構成する金属板としてのステンレス鋼板は積
層電極群を構成する負極の位置にあわせて外装体4の外
側に配置され、そのリード部30aが負極端子6と接続
されている。ただし、図9では上記短絡形成兼放熱促進
部材30を構成する金属板としてのステンレス鋼板を外
装体4に貼着するために使用した両面接着シートの図示
は省略している。この負極のリード部2cと負極端子6
との接続は、通常通りに行われていて、それぞれの負極
のリード部2cの集合体と負極端子6の一方の端部とを
接続し、該負極端子6の他方の端部は外装体4、4間の
シール部4dを通過して外部に引き出されている。そし
て、図8中、5は正極端子であるが、この正極端子5と
上記負極端子6との間には6mmの間隙が設けられてい
て、通常の条件下では両者が接触して短絡を引き起こす
ことはない。
Separately from this, a 50 μm-thick stainless steel plate punched out in the same shape as the negative electrode current collector as a metal plate constituting the short-circuit formation and heat dissipation promoting member (however, it is connected to the negative electrode terminal as an external lead of the negative electrode) For this reason, the lead portion was lengthened) and the thickness 30 punched into 72 mm x 42 mm
2 μm double-sided adhesive sheets are prepared, and the laminated electrode group is attached to the upper and lower surfaces of the outer package after the outer package, and then the stainless steel sheet is attached to the free surface of the double-sided adhesive sheet. Was pasted. FIG. 8 shows a place where the stainless steel plate as the metal plate constituting the short-circuit formation / heat dissipation promoting member 30 is arranged (only the upper surface side). FIG. 9 shows a lead portion of a negative electrode in a state where a stainless steel plate as a metal plate constituting the short-circuit formation / heat dissipation promoting member 30 is disposed outside the exterior body 4 and a metal constituting the short-circuit formation / heat dissipation promotion member. The connection state of the lead part of a board and a negative electrode terminal is shown typically. A stainless steel plate as a metal plate constituting the short-circuit formation / radiation promoting member 30 is disposed outside the exterior body 4 in accordance with the position of the negative electrode constituting the laminated electrode group, and its lead portion 30 a is connected to the negative electrode terminal 6. ing. However, in FIG. 9, the illustration of the double-sided adhesive sheet used for attaching the stainless steel plate as the metal plate constituting the short-circuit formation / radiation promoting member 30 to the exterior body 4 is omitted. The negative electrode lead 2c and the negative electrode terminal 6
Is connected as usual, and connects the aggregate of the lead portions 2c of the respective negative electrodes to one end of the negative electrode terminal 6, and the other end of the negative electrode terminal 6 is , And is drawn out through the seal portion 4d between them. In FIG. 8, reference numeral 5 denotes a positive electrode terminal, and a gap of 6 mm is provided between the positive electrode terminal 5 and the negative electrode terminal 6, and under normal conditions, they contact each other to cause a short circuit. Never.

【0051】実施例2 積層電極群を外装体で外装するまでは実施例1と同様で
あるが、正極の外部リードとしての正極端子と外装体の
ラミネートフィルム中のアルミニウム箔とを接続せずに
積層形ポリマー電池を組み立てた。
Example 2 The procedure was the same as in Example 1 until the laminated electrode group was packaged with the package, but without connecting the positive electrode terminal as the external lead of the positive electrode and the aluminum foil in the laminate film of the package. A stacked polymer battery was assembled.

【0052】上記電池とは別に、正極集電体と同形状に
打ち抜いた厚さ50μmのステンレス鋼板(ただし、正
極の外部リードとしての正極端子との接続のために、リ
ード部は長くした)と、負極集電体と同形状に打ち抜い
た厚さ50μmのステンレス鋼板(ただし、負極の外部
リードとしての負極端子との接続のために、リード部は
長くした)、および72mm×42mmに打ち抜いた厚
さ30μmのポリフェニレンサルファイドフィルムを用
意し、そのポリフェニレンサルファイドフィルムを介し
て2枚のステンレス鋼板とが対向するように配置して短
絡形成兼放熱促進ユニットを構成し、それを電池の外部
(つまり、外装体の外部)に配置し、幅6mmで厚さ5
0μmのポリエステル製粘着テープで電池に固定した
後、上記短絡形成兼放熱促進ユニットの正極集電体と同
形状に打ち抜いたステンレス鋼板のリード部と正極の外
部リードとしての正極端子とを超音波溶接で接続し、負
極と同形状に打ち抜いたステンレス鋼板と負極の外部リ
ードとしての負極端子とを超音波溶接で接続した。な
お、上記ポリフェニルサルファイドフィルムと2枚のス
テンレス鋼板とで構成される短絡形成兼放熱促進ユニッ
トの配置場所は、実施例1の短絡形成兼放熱促進部材の
場合と同様であり、短絡形成兼放熱促進ユニットを積層
電極群とそれに接続された正極端子および負極端子とに
重なるように配置した。図10に上記短絡形成兼放熱促
進ユニットの2枚のステンレス鋼板とポリフェニレンサ
ルファイドフィルムの位置関係を示す。図10に示すよ
うに、短絡形成兼放熱促進ユニットは絶縁板(本実施例
ではポリフェニレンサルファイドフィルム)31と該絶
縁板31を介して配置した2枚の金属板(本実施例では
ステンレス鋼板)32、33とで構成されている。そし
て、図10に示す短絡形成兼放熱促進部材30としての
短絡形成兼放熱促進ユニットの上側の金属板32が正極
集電体と同形状に打ち抜いたステンレス鋼板であって、
そのリード部32aが正極の外部リードとしての正極端
子5と電池外部で接続され、下側の金属板33が負極集
電体と同形状に打ち抜かれたステンレス鋼板であって、
そのリード部33aが負極の外部リードとしての負極端
子6と電池外部で接続される。
Separately from the above battery, a 50 μm-thick stainless steel plate punched in the same shape as the positive electrode current collector (however, the lead portion was lengthened for connection with the positive electrode terminal as an external lead of the positive electrode) A 50 μm-thick stainless steel plate punched in the same shape as the negative electrode current collector (however, the lead portion was lengthened for connection with the negative electrode terminal as an external lead of the negative electrode), and a thickness punched to 72 mm × 42 mm A polyphenylene sulfide film having a thickness of 30 μm is prepared, and two stainless steel plates are arranged so as to face each other with the polyphenylene sulfide film interposed therebetween to form a short-circuit formation and heat dissipation promoting unit. (Outside the body), width 6 mm and thickness 5
After fixing to the battery with a polyester adhesive tape of 0 μm, the lead of a stainless steel plate punched in the same shape as the positive electrode current collector of the short-circuit formation and heat dissipation promotion unit and the positive terminal as the external lead of the positive electrode are ultrasonically welded. , And a stainless steel plate punched into the same shape as the negative electrode and a negative electrode terminal as an external lead of the negative electrode were connected by ultrasonic welding. The location of the short-circuit formation and heat dissipation promotion unit composed of the polyphenylsulfide film and the two stainless steel plates is the same as that of the short-circuit formation and heat dissipation promotion member of the first embodiment. The accelerating unit was disposed so as to overlap the stacked electrode group and the positive electrode terminal and the negative electrode terminal connected thereto. FIG. 10 shows the positional relationship between the two stainless steel sheets and the polyphenylene sulfide film of the short-circuit formation and heat dissipation promoting unit. As shown in FIG. 10, the short-circuit formation and heat dissipation promoting unit is composed of an insulating plate (polyphenylene sulfide film in this embodiment) 31 and two metal plates (stainless steel plate in this embodiment) 32 disposed via the insulating plate 31. , 33. A stainless steel plate in which the upper metal plate 32 of the short-circuit formation and heat dissipation promotion unit as the short-circuit formation and heat dissipation promotion member 30 shown in FIG. 10 is punched in the same shape as the positive electrode current collector,
The lead portion 32a is connected to the positive electrode terminal 5 as an external lead of the positive electrode outside the battery, and the lower metal plate 33 is a stainless steel plate punched in the same shape as the negative electrode current collector,
The lead portion 33a is connected to the negative electrode terminal 6 as an external lead of the negative electrode outside the battery.

【0053】比較例1 上記実施例1〜2のような短絡形成兼放熱促進部材を設
けなかった以外は、実施例1と同様に積層形ポリマー電
解質電池を作製した。
Comparative Example 1 A laminated polymer electrolyte battery was produced in the same manner as in Example 1 except that the short-circuit formation and heat dissipation promoting member as in Examples 1 and 2 was not provided.

【0054】上記実施例1〜2および比較例1の電池の
表面に熱電対を貼り付け、Vブロックの上に載せ、軸部
の直径3mmのステンレス鋼製釘を5mm/秒の速度で
積層電極群に対して直角に突き刺し、電池の最高到達温
度を測定した。その結果を表1に示す。
A thermocouple was attached to the surfaces of the batteries of Examples 1 and 2 and Comparative Example 1, placed on a V block, and a stainless steel nail having a shaft portion having a diameter of 3 mm was laminated at a speed of 5 mm / sec. The group was pierced at right angles to the group, and the maximum temperature of the battery was measured. Table 1 shows the results.

【0055】[0055]

【表1】 [Table 1]

【0056】表1に示すように、実施例1の電池は最高
到達温度が135℃であって発煙・発火がなく、また、
実施例2の電池も最高到達温度が121℃であって発煙
・発火がなかった。これに対して、短絡形成兼放熱促進
部材を設けていない比較例1の電池は最高到達温度が2
00℃以上であって、発熱反応が暴走するとされている
150℃よりもかなり高いものであり、また、発煙・発
火を起こすものがあった。
As shown in Table 1, the maximum temperature of the battery of Example 1 was 135 ° C., and there was no smoking or ignition.
The maximum temperature of the battery of Example 2 was 121 ° C., and there was no smoke or ignition. On the other hand, the battery of Comparative Example 1 in which the short-circuit formation / radiation promoting member was not provided had a maximum temperature of 2
The temperature was higher than 00 ° C., which was considerably higher than 150 ° C., at which the exothermic reaction was liable to run away.

【0057】[0057]

【発明の効果】以上説明したように、本発明では、釘刺
しや圧壊によって短絡した場合でも、発煙・発火を防
ぎ、安全性の高い積層形ポリマー電解質電池を提供する
ことができた。
As described above, according to the present invention, even if a short circuit occurs due to nail penetration or crushing, it is possible to provide a laminated polymer electrolyte battery that prevents smoke and ignition and has high safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の積層形ポリマー電解質電池
に用いる正極を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a positive electrode used in a laminated polymer electrolyte battery according to Example 1 of the present invention.

【図2】本発明の実施例1の積層形ポリマー電解質電池
に用いる負極Aを模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a negative electrode A used in the laminated polymer electrolyte battery of Example 1 of the present invention.

【図3】本発明の実施例1の積層形ポリマー電解質電池
に用いる負極Bを模式的に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing a negative electrode B used in the laminated polymer electrolyte battery of Example 1 of the present invention.

【図4】本発明の実施例1の積層形ポリマー電解質電池
に用いる積層電極群を模式的に示す断面図である。
FIG. 4 is a cross-sectional view schematically illustrating a stacked electrode group used in the stacked polymer electrolyte battery of Example 1 of the present invention.

【図5】本発明の実施例1の積層形ポリマー電解質電池
に用いる外装体を模式的に示す断面図である。
FIG. 5 is a cross-sectional view schematically showing an outer package used for the laminated polymer electrolyte battery of Example 1 of the present invention.

【図6】本発明の実施例1の積層形ポリマー電解質電池
において、正極のリード部と正極端子との接続状態を模
式的に示す断面図である。
FIG. 6 is a cross-sectional view schematically showing a connection state between a lead portion of a positive electrode and a positive electrode terminal in the laminated polymer electrolyte battery of Example 1 of the present invention.

【図7】図6のA部の要部の拡大図である。FIG. 7 is an enlarged view of a main part of a portion A in FIG. 6;

【図8】本発明の実施例1の積層形ポリマー電解質電池
において、短絡形成兼放熱促進部材の配置場所を模式的
に示す平面図である。
FIG. 8 is a plan view schematically showing a place where a short-circuit formation and heat dissipation promoting member is arranged in the laminated polymer electrolyte battery of Example 1 of the present invention.

【図9】本発明の実施例1の積層形ポリマー電解質電池
において、短絡形成兼放熱促進部材を構成する金属板を
外装体の外側に配置した状態での負極リード部および上
記短絡形成兼放熱促進部材を構成する金属板のリード部
と負極端子との接続状態を模式的に示す断面図である。
FIG. 9 is a cross-sectional view of the laminated polymer electrolyte battery according to the first embodiment of the present invention in which the metal plate constituting the short-circuit formation / heat dissipation promoting member is disposed outside the outer package; It is sectional drawing which shows typically the connection state of the lead part of the metal plate which comprises a member, and a negative electrode terminal.

【図10】本発明の実施例2の積層形ポリマー電解質電
池において、外装体の外側に配置する短絡形成兼放熱促
進部材としての短絡形成兼放熱促進ユニットの構成部材
の位置関係を模式的に示す図で、(a)はその平面図、
(b)はそのX−X線断面図の要部拡大図である。
FIG. 10 schematically shows a positional relationship between components of a short-circuit formation and heat dissipation promotion unit as a short-circuit formation and heat dissipation promotion member arranged outside the outer package in the laminated polymer electrolyte battery of Example 2 of the present invention. In the drawing, (a) is a plan view thereof,
(B) is an enlarged view of a main part of the XX line cross-sectional view.

【符号の説明】[Explanation of symbols]

1 正極 1a 正極集電体 1b 正極合剤層 1c リード部 2 負極 2a 負極集電体 2b 負極合剤層 3 ポリマー電解質層 4 外装体 4a 保護フィルム 4b 金属箔 4c 熱融着性樹脂フィルム 4d シール部 5 正極端子 6 負極端子 10 ポリマー電解質保持正極ユニット 20 ポリマー電解質保持負極 30 短絡形成兼放熱促進部材 30a リード部 31 絶縁板 32 金属板 32a リード部 33 金属板 33a リード部 DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 1b Positive electrode mixture layer 1c Lead part 2 Negative electrode 2a Negative electrode collector 2b Negative electrode mixture layer 3 Polymer electrolyte layer 4 Outer body 4a Protective film 4b Metal foil 4c Heat-fusible resin film 4d Seal part 5 Positive electrode terminal 6 Negative electrode terminal 10 Polymer electrolyte holding positive electrode unit 20 Polymer electrolyte holding negative electrode 30 Short circuit forming and heat dissipation promoting member 30a Lead portion 31 Insulating plate 32 Metal plate 32a Lead portion 33 Metal plate 33a Lead portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 宏 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 川合 徹夫 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H022 AA09 BB11 CC05 CC08 CC09 CC19 KK03 5H029 AJ03 AJ12 AK03 AL07 AM00 AM02 AM03 AM04 AM05 AM07 AM16 BJ04 BJ12 CJ22 DJ02 DJ03 DJ07 EJ01 EJ12  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Hiroshi Yamamoto, 1-88 Ushitora, Ibaraki City, Osaka Prefecture Inside Hitachi Maxell Co., Ltd. (72) Tetsuo Kawai 1-188, Usutora, Ibaraki City, Osaka Hitachi Maxell F term (reference) 5H022 AA09 BB11 CC05 CC08 CC09 CC19 KK03 5H029 AJ03 AJ12 AK03 AL07 AM00 AM02 AM03 AM04 AM05 AM07 AM16 BJ04 BJ12 CJ22 DJ02 DJ03 DJ07 EJ01 EJ12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体の少なくとも一方の面に正極
合剤層を形成してなる正極と、負極集電体の少なくとも
一方の面に負極合剤層を形成してなる負極とを、それぞ
れの間にポリマー電解質層を介在させて積層した積層電
極群を、金属箔を含む外装体で外装する積層形ポリマー
電解質電池であって、上記外装体の少なくとも一方の外
側に短絡形成兼放熱促進部材を設けたことを特徴とする
積層形ポリマー電解質電池。
A positive electrode having a positive electrode mixture layer formed on at least one surface of a positive electrode current collector, and a negative electrode having a negative electrode mixture layer formed on at least one surface of a negative electrode current collector, A laminated polymer electrolyte battery in which a laminated electrode group laminated with a polymer electrolyte layer interposed therebetween is packaged with a package containing a metal foil, wherein a short circuit is formed and heat dissipation is promoted outside at least one of the package. A laminated polymer electrolyte battery comprising a member.
【請求項2】 外装体の外側に設けた短絡形成兼放熱促
進部材が、1枚の金属板からなり、上記金属板を正極ま
たは負極のいずれか一方の電極の電極端子と接続し、他
方の電極の電極端子と外装体中の金属箔とを接続した請
求項1記載の積層形ポリマー電解質電池。
2. The short-circuit formation and heat dissipation promoting member provided outside the exterior body is made of one metal plate, and the metal plate is connected to an electrode terminal of one of a positive electrode and a negative electrode, and the other is connected to the other. 2. The laminated polymer electrolyte battery according to claim 1, wherein an electrode terminal of the electrode is connected to a metal foil in the outer package.
【請求項3】 外装体の外側に設けた短絡形成兼放熱促
進部材が、絶縁板を介して2枚の金属板を配置してなる
短絡形成兼放熱促進ユニットからなり、上記2枚の金属
板をそれぞれ異なる極性の電極の電極端子と接続した請
求項1記載の積層形ポリマー電解質電池。
3. The short-circuit formation and heat dissipation promotion member provided outside the exterior body comprises a short-circuit formation and heat dissipation promotion unit in which two metal plates are arranged via an insulating plate. 2. The stacked polymer electrolyte battery according to claim 1, wherein each of the electrodes is connected to an electrode terminal of an electrode having a different polarity.
JP23644699A 1999-08-24 1999-08-24 Stacked polymer electrolyte battery Expired - Fee Related JP3992261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23644699A JP3992261B2 (en) 1999-08-24 1999-08-24 Stacked polymer electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23644699A JP3992261B2 (en) 1999-08-24 1999-08-24 Stacked polymer electrolyte battery

Publications (3)

Publication Number Publication Date
JP2001068157A true JP2001068157A (en) 2001-03-16
JP2001068157A5 JP2001068157A5 (en) 2005-04-07
JP3992261B2 JP3992261B2 (en) 2007-10-17

Family

ID=17000879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23644699A Expired - Fee Related JP3992261B2 (en) 1999-08-24 1999-08-24 Stacked polymer electrolyte battery

Country Status (1)

Country Link
JP (1) JP3992261B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310402A (en) * 2004-04-16 2005-11-04 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle loading these
JP2006107995A (en) * 2004-10-07 2006-04-20 Aoi Electronics Co Ltd Large capacity secondary battery excellent in heat dissipation and safety
JP2009543317A (en) * 2006-07-10 2009-12-03 エルジー・ケム・リミテッド Safety kit for secondary battery
CN101640282A (en) * 2008-07-30 2010-02-03 Nec东金株式会社 Stacked secondary battery
CN101931103A (en) * 2009-06-24 2010-12-29 能源科技国际有限公司 Unit cell for secondary battery having conductive sheet layer and lithium ion secondary battery
JP2012028089A (en) * 2010-07-21 2012-02-09 Sanyo Electric Co Ltd Nonaqueous secondary battery and nonaqueous secondary battery pack
KR20140072794A (en) * 2012-12-05 2014-06-13 삼성에스디아이 주식회사 Non-aqueous electrolyte rechargeable battery pack
EP3386006A1 (en) 2017-04-07 2018-10-10 Toyota Jidosha Kabushiki Kaisha Stacked battery
JP2018181527A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 All-solid battery
JP2018181462A (en) * 2017-04-05 2018-11-15 トヨタ自動車株式会社 All-solid battery
US10651456B2 (en) 2017-04-07 2020-05-12 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and method for producing all-solid-state battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905991B1 (en) * 2016-10-26 2018-10-08 현대자동차주식회사 Pouch type battery cell with enhanced safety against piercing

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310402A (en) * 2004-04-16 2005-11-04 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle loading these
JP4617704B2 (en) * 2004-04-16 2011-01-26 日産自動車株式会社 Bipolar battery, battery pack, and vehicle equipped with these
JP2006107995A (en) * 2004-10-07 2006-04-20 Aoi Electronics Co Ltd Large capacity secondary battery excellent in heat dissipation and safety
JP2009543317A (en) * 2006-07-10 2009-12-03 エルジー・ケム・リミテッド Safety kit for secondary battery
CN101640282A (en) * 2008-07-30 2010-02-03 Nec东金株式会社 Stacked secondary battery
CN101640282B (en) * 2008-07-30 2013-12-25 Nec能源元器件株式会社 Stacked secondary battery
CN101931103A (en) * 2009-06-24 2010-12-29 能源科技国际有限公司 Unit cell for secondary battery having conductive sheet layer and lithium ion secondary battery
JP2011009182A (en) * 2009-06-24 2011-01-13 Enertech Internatl Inc Unit cell for secondary battery equipped with conductive sheet layer and lithium ion secondary battery using the same
JP2012028089A (en) * 2010-07-21 2012-02-09 Sanyo Electric Co Ltd Nonaqueous secondary battery and nonaqueous secondary battery pack
JP2014112478A (en) * 2012-12-05 2014-06-19 Samsung Sdi Co Ltd Nonaqueous electrolyte secondary battery pack
KR20140072794A (en) * 2012-12-05 2014-06-13 삼성에스디아이 주식회사 Non-aqueous electrolyte rechargeable battery pack
KR102119050B1 (en) * 2012-12-05 2020-06-29 삼성에스디아이 주식회사 Non-aqueous electrolyte rechargeable battery pack
JP2018181462A (en) * 2017-04-05 2018-11-15 トヨタ自動車株式会社 All-solid battery
US10700338B2 (en) 2017-04-05 2020-06-30 Toyota Jidosha Kabushiki Kaisha All-solid-state battery with layered current shunt part
EP3386006A1 (en) 2017-04-07 2018-10-10 Toyota Jidosha Kabushiki Kaisha Stacked battery
KR20180113910A (en) 2017-04-07 2018-10-17 도요타 지도샤(주) Stacked battery
JP2018181527A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 All-solid battery
RU2678439C1 (en) * 2017-04-07 2019-01-29 Тойота Дзидося Кабусики Кайся Packaged battery
US10651456B2 (en) 2017-04-07 2020-05-12 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and method for producing all-solid-state battery
US10665850B2 (en) 2017-04-07 2020-05-26 Toyota Jidosha Kabushiki Kaisha Stacked battery

Also Published As

Publication number Publication date
JP3992261B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP2001068156A (en) Stacked polymer electrolyte battery
KR101419572B1 (en) Bipolar electrode/separator assembly, bipolar battery comprising the same and method of manufacturing the same
JP4144312B2 (en) Bipolar battery
JP3615491B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR100430123B1 (en) Nonaqueous electrolyte battery and production method therefor
JP4281129B2 (en) Lithium ion secondary battery
JP4162175B2 (en) Polymer electrolyte battery
JP3850977B2 (en) Method for producing polymer solid electrolyte battery
JP2001068157A (en) Stacked polymer electrolyte battery
WO2022001235A1 (en) Separator for electrochemical apparatus, electrochemical apparatus, and electronic apparatus
JP2000235850A (en) Layered polymer electrolyte battery
US20010008726A1 (en) Adhesive for battery, battery using the same and method of fabricating a battery using the same
JP2001273929A (en) Polymer battery and its manufacturing method
JP4070367B2 (en) Laminated polymer electrolyte battery and sheet battery manufacturing method
JPH0963550A (en) Battery
JP2001126678A (en) Laminate polymer electrolyte battery
JP4292490B2 (en) Laminated pack battery
JPH0521086A (en) Electrode and battery using this
JPH10261386A (en) Battery case and battery
JP3821465B2 (en) Polymer electrolyte battery
WO1999048162A1 (en) Lithium ion battery and method of manufacture thereof
JP2001068161A (en) Stacked polymer electrolyte battery
WO1999026308A1 (en) Bonding agent for cells and cell using the same
WO1999048164A1 (en) Secondary battery and method for forming the same
JP2000260470A (en) Polymer electrolyte battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees