JP3992261B2 - Stacked polymer electrolyte battery - Google Patents
Stacked polymer electrolyte battery Download PDFInfo
- Publication number
- JP3992261B2 JP3992261B2 JP23644699A JP23644699A JP3992261B2 JP 3992261 B2 JP3992261 B2 JP 3992261B2 JP 23644699 A JP23644699 A JP 23644699A JP 23644699 A JP23644699 A JP 23644699A JP 3992261 B2 JP3992261 B2 JP 3992261B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- polymer electrolyte
- positive electrode
- laminated
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、シート形電池の一形態である積層形ポリマー電解質電池と、シート形電池の製造方法に関し、さらに詳しくは、特に携帯用電子機器、電気自動車、ロードレベリングなどの電源として使用するのに適した積層形ポリマー電解質電池と、金属箔を芯材とするラミネートフィルム外装体を有するシート形電池の製造方法に関する。
【0002】
【従来の技術】
シート形電池のような薄型の電池は、各種薄型製品への適用が可能であり、特に、ポリマー電解質を用いたシート形電池は、耐漏液性を含めた安全性、貯蔵性が優れているという特徴を有する。しかも、電極および電解質をシート状にすることができるため、A4版、B5版などの大面積でしかも薄形の電池の作製が可能になり、フレキシブルで機器の形状に合わせた電池を設計できるという、今までの電池にない特徴を持っていることから、電池の使用範囲が大きく広がっている。
【0003】
このポリマー電解質電池は、通常、アルミニウム箔を芯材にし、内面側に接着層となる熱融着性樹脂フィルムを配置したラミネートフィルムを外装体に用い、得ようとする電気容量に応じて、シート状の電極とシート状のポリマー電解質層とを積層した積層電極群を外装体で外装することによって、薄いシート形電池に仕上げられる。
【0004】
この積層形ポリマー電解質電池では、電極の積層枚数が少なく、電気容量や電気容量密度が低い場合、すなわち、内在するエネルギーが低い場合には、上記の優れた安全性が確保される。しかしながら、電極の積層枚数が多くなって、電気容量や電気容量密度が高くなると、安全性が充分でなくなり、釘刺しや圧壊などで電極同士が短絡した場合、大電流が流れ、発熱し、発煙、発火、破裂などの事故に至る場合のあることが判明した。
【0005】
上記のような問題は、短絡時に流れる大電流を積層電極群の外に流し、同時に、熱の放散を速やかにし、蓄熱を少なくすることによって解決することができる。ところが、従来の積層形ポリマー電解質電池の積層電極群は、熱伝導の悪いポリマー電解質層を介して正極と負極が対向し、それらを複数枚重ね、かつ、熱伝導の悪い熱融着性樹脂フィルムを内面側に配置した外装体で外装しているため、短絡などの発熱による電池内部での蓄熱が大きく、内部温度の上昇が大きくなって、発煙、発火、破裂などの事故に至るものと考えられる。
【0006】
【発明が解決しようとする課題】
本発明は、上記のようなシート形電池における従来技術の問題点を解決し、電池構造に工夫を凝らすことにより、高容量化した場合でも安全性を高め、安全性の高い積層形ポリマー電解質電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、正極集電体の少なくとも一方の面に正極合剤層を形成してなる正極と、負極集電体の少なくとも一方の面に負極合剤層を形成してなる負極とを、それぞれの間にポリマー電解質層を介在させて積層した積層電極群を、金属箔を芯材とするラミネートフィルム外装体で外装する積層形ポリマー電解質電池であって、上記外装体の少なくとも一方の外側に、(1)1枚の金属板からなる短絡形成兼放熱促進部材を設け、上記短絡形成兼放熱促進部材を正極または負極のいずれか一方の電極の電極端子と電気的に接続し、他方の電極の電極端子と外装体中の金属箔とを接続するか、または(2)絶縁板を介して2枚の金属板を配置してなる短絡形成兼放熱促進ユニットからなる短絡形成兼放熱促進部材を設け、上記短絡形成兼放熱促進部材の上記2枚の金属板をそれぞれ異なる極性の電極の電極端子と電気的に接続することによって、上記課題を解決したものである。
【0008】
すなわち、上記短絡形成兼放熱促進部材により、釘刺しや圧壊などによる積層電極群内部での短絡より先に外部短絡させて、電池電圧を低下させ、化学反応による発熱を低減させることができる。しかも、上記短絡形成兼放熱促進部材が積層電極群の外側に設けられているので、その短絡形成兼放熱促進部材により放熱をスムーズに行わせることができる。したがって、この短絡形成兼放熱促進部材を設けたことにより、高容量化した場合でも、安全性を高めることができ、安全性の高い積層形ポリマー電解質電池を提供することができる。
【0009】
【発明の実施の形態】
本発明における短絡形成兼放熱促進部材としては、次の二つに大別される。そのひとつは、外装体の表面のプラスチックフィルムを絶縁体として用い、外装体の外側に設けた1枚の金属板と、外装体を構成する金属箔との間で短絡形成兼放熱促進ユニットとしての機能を発現させるものである。このとき、外装体の外側に設けた金属板と外装体を構成する金属箔はそれぞれ異なった極性の電極の電極端子と接続し、それらの間で釘刺しや圧壊などによる積層電極群内部での短絡より先に外部短絡させて、電池電圧を低下させ、化学反応による発熱を低減させる。そして、それらは積層電極群の外側に配置しているため、放熱もスムーズに行われる。また、外装体表面の絶縁性を完全にするために、上記金属板と外装体表面との間に、別途絶縁板を設けたり、それぞれを接着して固定するなどの手段を講じてもよい。そして、短絡形成兼放熱促進ユニットを形成するため、外部金属板および外装体を構成する金属箔は、厚さ30μm以上のものが好ましい。ただし、それらの金属板や金属箔があまりにも厚くなりすぎると電気容量密度を低下させることになり、積層形ポリマー電解質電池の特徴を失わせてしまうおそれがあるので、上記のように30μm以上で200μm以下が好ましい。そして、その形態は必ずしも非多孔質状である必要はなく、パンチングメタル、網状あるいはラス状メタルなどの多孔質状のものであってもよく、また、その材質は、特に限定されることはないが、正極端子と接続するものはアルミニウムやステンレス鋼などが好ましく、負極端子と接続するものは銅、ニッケル、ステンレス鋼などが好ましい。
【0010】
短絡形成兼放熱促進部材のもうひとつの形態としては、外装体の外側に絶縁板を介して2枚の金属板を配置してなる短絡形成兼放熱促進ユニットを設置するものである。その際、上記短絡形成兼放熱促進ユニットの2枚の金属板はそれぞれ異なった極性の電極端子と接続し、それらの間で釘刺しや圧壊などによる積層電極群内部での短絡より先に外部短絡させて、電池電圧を低下させ、化学反応による発熱を低減させる。そして、それらの金属板は積層電極群の外側に配置しているので、放熱もスムーズに行われる。そして、上記短絡形成兼放熱促進部材の金属板はより完全な短絡回路を形成させるために、厚さ30μm以上のものが好ましい。ただし、上記金属板があまりにも厚くなりすぎると電気容量密度を低下させることになり、積層形ポリマー電解質電池の特徴を失わせてしまうおそれがあるので、上記のように30μm以上で200μm以下が好ましい。そして、その形態は必ずしも非多孔質状である必要はなく、パンチングメタル、網状あるいはラス状メタルなどの多孔質状のものであってもよく、また、その材質は、特に限定されることはないが、正極端子と接続するものはアルミニウムやステンレス鋼などが好ましく、負極端子と接続するものは銅、ニッケル、ステンレス鋼などが好ましい。
【0011】
また、絶縁板としては、2枚の金属板を電気的に隔離できればその材質を問わないが、上記金属板の場合と同様に、高温貯蔵や加圧などによってポリマー電解質層からの電解液の漏出があった場合を考慮すると、例えば、耐有機溶剤性のあるポリエチレン、ポリプロピレン、フッ素系樹脂、ポリイミド、ポリエステル、ポリフェニレンサルファイドなどのプラスチックなどが好ましい。そして、その形態としては、シート、フィルム、織布、不織布、網、パンチング、ラス状などのいずれであってもよい。また、その厚さも電気絶縁が可能であれば薄いほど好ましいが、絶縁の確実性や生産性を考慮すると、2μm以上で200μm以下のものが好ましい。
【0012】
さらに、後述の短絡形成兼放熱促進ユニット作製時の容易さや、完成ユニットの可搬性を考慮すると、2枚の金属板と絶縁板の3者が一体になっていて、かつ電池と一体化していることが好ましい。そのために、金属板や絶縁板の表面に接着剤を付着させたものを用いたり、別途接着シートを用意して、3者を一体化してもよい。
【0013】
本発明において、積層電極群を作製するにあたり、正極、負極、ポリマー電解質層はそれぞれ別々に作製したものを積層してもよいが、あらかじめ正極または負極の少なくとも一方の電極をポリマー電解質層で包囲して、電極とポリマー電解質層とを一体化しておくことが好ましい。この場合の形態としては、例えば、ポリマー電解質層の支持体となる多孔質シートを袋状にして電極を包囲した後、その全体をポリマー電解質の前駆体であるゲル化成分を含有する電解液に含浸、ゲル化して、ポリマー電解質を含有した電極と支持体との一体化物を作製する場合や、ポリマー電解質を含有した電極を、多孔質シートの支持体を内在した、短冊状のポリマー電解質シートで挟み込むことによって、電極とポリマー電解質層とを一体化する場合などが挙げられる。さらに、後者の電極を短冊状のポリマー電解質シートで挟み込むことにより電極をポリマー電解質層で包囲する場合、1枚の短冊状のポリマー電解質シートをそのほぼ中央部で折り返してそのポリマー電解質シートの間に電極を挟み込むことにより電極をポリマー電解質層で包囲する場合と、電極を2枚の短冊状のポリマー電解質シートの間に挟み込むことにより電極をポリマー電解質層で包囲する場合とがある。
【0014】
上記の場合において、ポリマー電解質の支持体となる多孔質シートとしては、例えば、不織布や微孔性フィルムなどが用いられる。上記不織布としては、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどの不織布などが挙げられる。また、微孔性フィルムとしては、例えば、ポリプロピレン、ポリエチレン、エチレン−プロピレン共重合体の微孔性フィルムなどが挙げられる。
【0015】
不織布は、空孔率が高く、ゲル化成分を含有する電解液を含浸させやすいので、好適に使用できることから、不織布を支持体として用いる場合について詳述すると、この不織布としては、例えば、坪量が12g/m2 で厚さが30μmという非常に薄い不織布を用いることができる。
【0016】
このような不織布は、薄いために引っ張り強度をはじめとする機械的強度が低く、単体では取り扱いにくいが、例えば、袋状にし、その袋状の不織布に電極を収容することにより電極を包囲して、不織布と電極とを一体化させることにより電極の強度で不織布の強度不足を補うことができる。また、袋状にしなくても、短冊状の不織布をそのほぼ中央部で折り返してその不織布の間に電極を挟み込むことにより電極を不織布で包囲して電極と不織布とを一体化させることや2枚の短冊状の不織布を重ね合わせその一端をシールしてその不織布の間に電極を挟み込むことにより電極を支持体で包囲して電極と不織布とを一体化させることによっても、電極の強度で不織布の強度不足を補うことができ、電池組立時の作業性の向上や内部抵抗の減少、負荷特性の向上を達成できる。また、支持体として微孔性フィルムを用いる場合も、上記不織布の場合と同様である。
【0017】
上記のように、不織布などの多孔質シートからなる支持体で電極を包囲して電極と支持体とを一体化し、それにゲル化成分を含有する電解液を含浸させてゲル化させることにより、電極とポリマー電解質層との間が、それぞれ単独でゲル化して電極とポリマー電解質シートにしてから積層するよりも、界面の接着状態が良好で、層間に気泡、異物などが介在することが少ないので、界面でのイオン移動がスムーズになり、正極と負極間の反応性が向上する。また、正極、負極のいずれかの一方の電極を支持体で包囲することによって、物理的セパレートの役割も果たすことができる。
【0018】
そして、正極または負極のいずれかの一方の電極をポリマー電解質層で包囲して電極とポリマー電解質層とを一体化させればよいが、その際、正極をポリマー電解質層で包囲して正極とポリマー電解質層とを一体化させると、負極をポリマー電解質層で包囲する場合より、電池容量を大きくすることができる。すなわち、通常、デンドライトの発生の防止や安全性の確保から負極を正極より大きくすることが一般に行われているので正極をポリマー電解質層で包囲すれば、負極をポリマー電解質層で包囲するより、ポリマー電解質層の寸法を小さくでき、その結果、電池容量を大きくすることができる。また、負極をポリマー電解質層で包囲して負極とポリマー電解質層とを一体化させる場合も、負極とポリマー電解質層との界面状態を均一にすることができるので、正極の場合と同様に、反応性の向上に効果がある。
【0019】
さらに、正極および負極の両電極をポリマー電解質層で包囲すると、そのぶんポリマー電解質層の厚みは増加するが、両電極ともポリマー電解質層と一体化するので、正極、負極のいずれについても分極を減少させることができ、充放電時の反応をスムーズに進行させることができるので、負荷特性を大幅に向上させることができる。
【0020】
本発明において、電極とポリマー電解質層との一体化とは、電極とポリマー電解質層との間に気泡や異物などを含まないで、電極とポリマー電解質層とを密接させることを意味していて、不可分に接着させることなどを意味するものではない。
【0021】
上記不織布などの多孔質シートからなる支持体を袋状にする場合、その袋状体は、例えば、四角形状のものとして説明すると、通常、一辺が開口し、他の三辺がシールされているが、そのシールにあたって、連続的にシールすることは必ずしも要求されず、不連続にシールしたものであってもよい。
【0022】
電極を袋状の支持体に収容するにあたって、あらかじめ支持体を袋状にしておくことは要求されず、電極を短冊状の支持体(例えば、長さが電極の長さの2倍以上で、幅が電極の幅より広いサイズの短冊状の支持体)の長さ方向のほぼ中央部より一方の側に載置し、他方の幅を折返し(つまり、電極がほぼ中央部で折り返した支持体間に挟み込まれる状態にし)、その幅方向の両側部を連続的または不連続的にシールして、電極が袋状の支持体に収容された状態にすればよい。
【0023】
また、2枚の支持体を重ね合わせてその一端をシールしてその間に電極を挟み込む場合も、あらかじめシールしておくことは要求されず、電極を1枚の短冊状の支持体(例えば、長さが電極の長さより長く、幅が電極の幅より広いサイズの短冊状の支持体)に載置し、もう1枚の短冊状の支持体をその上にのせ、それらの支持体の一端を連続的または不連続的にシールして、電極が支持体の間に挟み込まれた状態にすればよい。
【0024】
ポリマー電解質層を構成するための電解液としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイト、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどの有機溶媒に、例えば、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiCF3 SO3 、LiC4 F9 SO3 、LiCF3 CO2 、Li2 C2 F4 (SO3 )2 、LiN(CF3 SO2 )2 、LiC(CF3 SO2 )3 、LiCn F 2n+1 SO3 (n≧2)、LiN(RfOSO2 )2 〔ここでRfはフルオロアルキル基〕などの無機イオン塩を溶解させることによって調製したものが使用される。この無機イオン塩の電解液中の濃度としては、0.5〜1.5mol/l、特に0.9〜1.25mol/lが好ましい。
【0025】
また、電解液をポリマー電解質に変化させるゲル化成分としては、例えば、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリアクリロニトリル、フッ化ビニリデン−六フッ化プロピレン共重合体などのように直鎖状のポリマーを加熱することにより電解液に溶解させた後、冷却することによって電解液をゲル化させるポリマーや、活性光線で重合可能な二重結合を一分子あたり2個以上含みモノマーまたはプレポリマーを主成分とする架橋性組成物などが挙げられる。
【0026】
上記活性光線で重合可能なモノマーとしては、まず、二重結合を一分子あたり2個有するモノマー(二官能架橋性モノマー)として、例えば、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、エトキシ化ビスフェノールAジアクリレート、ノボラックジアクリレート、プロポキシ化ネオペンチルグリコールジアクリレートなどの二官能アクリレートおよび上記アクリレートと同様の二官能メタクリレートなどが挙げられる。
【0027】
また、活性光線で重合可能な二重結合を一分子あたり3個有するモノマー(三官能架橋性モノマー)としては、例えば、トリス(2−ヒドロキシエチル)イソシアヌレートトリアクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、プロポキシ化グリセリルトリアクリレート、カプロラクトン変性トリメチロールプロパンアクリレートなどの三官能アクリレートおよび上記アクリレートと同様の三官能メタクリレートなどが挙げられる。
【0028】
そして、活性光線で重合可能な二重結合を一分子あたり4個以上有するモノマー(四官能以上の架橋性モノマー)としては、例えば、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートなどの四官能以上のアクリレートおよび上記アクリレートと同様の四官能以上のメタクリレートなどが挙げられる。
【0029】
また、活性光線で重合可能な二重結合を2個以上、好ましくは4個以上有するプレポリマーとしては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレートのプレポリマーなどが挙げられ、前記のモノマーに代えて用いることができる。
【0030】
本発明において、上記の活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーは、主成分として用いられておればよく、例えばゲル硬さなどの物性調整のために一官能モノマーなども併用することができる。また、二官能モノマーと六官能モノマーとを混合するというような使い方もできる。
【0031】
本発明において、活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーを主成分とする架橋性組成物とは、上記架橋性組成物を活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーのみで構成する場合と、一官能モノマーなどと活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーとを併用する場合の両者を含むが、後者のように活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーを一官能モノマーなどと併用する場合、その架橋性組成物において、活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーが50重量%以上、特に70重量%以上であることが好ましい。また、架橋性組成物はそれを構成するものがすべて架橋性でなくてもよく、全体として架橋性であればよく、例えば、必要に応じて他の成分を添加することもできる。
【0032】
そして、必要に応じ、重合開始剤として、例えば、ベンゾイン類、ベンゾインアルキルエーテル類、ベンゾフェノン類、ベンゾイルフェニルフォスフィンオキサイド類、アセトフェノン類、チオキサントン類、アントラキノン類などを使用することができる。さらに重合開始剤の増感剤としてアルキルアミン類、アミノエステル類なども使用することができる。
【0033】
本発明において、活性光線としては、例えば、紫外線(UV)、電子線(EB)、可視光線、遠紫外線などを使用することができる。
【0034】
【実施例】
つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明は実施例に例示のもののみに限定されることはない。
【0035】
実施例1
まず、この実施例1において用いる正極および負極の作製、ゲル化成分含有電解液の調製について先に説明する。
【0036】
正極の作製:
正極活物質であるLiCoO2 80重量部、導電助剤であるアセチレンブラック10重量部、バインダーであるポリフッ化ビニリデン10重量部とをN−メチルピロリドンを溶剤として均一になるように混合し、正極合剤含有ペーストを調製した。この正極合剤含有ペーストを正極集電体となる厚さ20μmのアルミニウム箔の両面に塗布し、乾燥した後、カレンダー処理を行って、全厚が130μmになるように正極合剤層の厚みを調整し、正極合剤層形成部分の面積が70mm×40mmになるように切断して正極を作製した。ただし、上記正極の作製にあたっては、アルミニウム箔の一部に正極合剤含有ペーストを塗布せず、アルミニウム箔の露出部を残し、そのアルミニウム箔の露出部を正極端子などとの接続のためのリード部とした。この正極の断面図を図1に模式的に示す。図1に示すように、正極1は正極集電体1aの両面に正極合剤層1bを形成することによって作製され、そのリード部1cは上記正極集電体1aを構成するアルミニウム箔の一部に正極合剤含有ペーストを塗布せず、アルミニウム箔を露出させることによって構成されている。
【0037】
負極Aの作製:
負極活物質である黒鉛90重量部とポリフッ化ビニリデン10重量部とをN−メチルピロリドンを溶剤として均一になるように混合して負極合剤含有ペーストを調製し、厚さ10μmの銅箔からなる負極集電体の両面に塗布し、乾燥した後、カレンダー処理を行って全厚が130μmになるように負極合剤層の厚みを調整し、負極合剤層形成部分の面積が72mm×42mmになるように切断して負極Aを作製した。上記切断は負極端子との接続部分となるリード部を電極の幅方向に対して中央位置になるようにした。また、上記正極の場合と同様に、負極Aの作製にあたっても、銅箔の一部に負極合剤含有ペーストを塗布せず、銅箔の露出部を残し、その銅箔の露出部を負極端子などとの接続のためのリード部とした。このようにして作製した負極Aは、負極合剤層が負極集電体の両面に形成された、いわゆる両面塗布負極と呼ばれるものである。この負極Aの断面図を図2に模式的に示す。図2に示すように、負極Aは負極集電体2aの両面に負極合剤層2bを形成することによって作製され、そのリード部2cは上記負極集電体2aを構成する銅箔の一部に負極合剤含有ペーストを塗布せず、銅箔を露出させて構成されている。なお、図示にあたっては、この負極Aおよび後述の負極Bとも同一の参照符号2を付して示す。
【0038】
負極Bの作製:
上記負極Aの場合と同様の負極合剤含有ペーストを厚さ10μmの銅箔からなる負極集電体の片面に塗布し、乾燥した後、カレンダー処理を行って全厚が70μmになるように負極合剤層の厚みを調整し、負極合剤層形成部分の面積が72mm×42mmになるように切断して負極Bを作製した。この負極Bの作製にあたっても、銅箔の一部に負極合剤含有ペーストを塗布せず、銅箔の露出部を残し、その銅箔の露出部を負極端子などとの接続のためのリード部とした。このようにして作製した負極Bは、負極合剤層が負極集電体の片面のみに形成された、いわゆる片面塗布負極と呼ばれているものである。この負極Bの断面図を図3に模式的に示す。図3に示すように、負極Bは負極集電体2aの片面のみに負極合剤層2bを形成することによって作製されている。
【0039】
ゲル化成分含有電解液の調製:
プロピレンカーボネートとエチレンカーボネートとの体積比1:1の混合溶媒にLiPF6 を1.22mol/l溶解させることによって調製した電解液に、開始剤として2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド〔商品名:ルシリンTPO、ビーエーエスエフジャパン(株)製〕をあらかじめモノマー成分に対して2重量%加えて溶解しておき、そこにジペンタエリスリトールヘキサアクリレートを使用開始10分前に濃度が6重量%になるように加えて混合し、ゲル化成分を含有する電解液を調製した。このゲル化成分を含有する電解液を上記標題のように「ゲル化成分含有電解液」と簡略化して表現する。
【0040】
上記のように作製した正極をポリマー電解質層の支持体となる不織布で包んで、正極と支持体とを一体化しておき、その全体にゲル化成分含有電解液を含浸させ、ゲル化して、ポリマー電解質含有正極ユニットを得た。負極は不織布で包むことなく、ゲル化成分含有電解液を含浸させ、ゲル化して、ポリマー電解質含有負極を得た。それらの作製方法の詳細を次に示す。
【0041】
ポリマー電解質含有正極ユニットの作製:
支持体としては、厚さ30μm、坪量12g/m2 のポリブチレンテレフタレート不織布〔NKK社製、MB1230(商品名)〕を用い、これを長さ×幅が144mm×42mmの短冊状に切断した。
【0042】
そして、正極の正極合剤層形成部分とリード部とにまたがるようにして、厚さ50μm、幅3mmのポリイミドテープをその両面から貼着し、短絡の防止および端子の強度保持と図った。また、リード部の正極端子との接続に用いる部分のすべての表面を、熱により接着面の粘着性が失われる熱剥離テープで被覆した後、この正極を上記ポリブチレンテレフタレート不織布の長さ方向の中央部より左側の部分に載置し、右側の部分を折り返して正極を覆った後、その幅方向の両側部を熱融着器〔商品名:ポリシーラー、富士イパルス(株)製〕でシールして支持体としてのポリブチレンテレフタレート不織布を袋状にし、両者を密接させて正極と支持体とを一体化した。この正極と支持体とを一体化した正極ユニットを前記ゲル化成分含有電解液に減圧下で1分間浸漬して正極ユニットにゲル化成分含有電解液を含浸させた後、ポリエチレン製の袋に入れて密閉した。つぎに、そのポリエチレン製袋の両面から、フュージョンUVシステムズ・ジャパン(株)製の紫外線照射装置を用いて、紫外線を1W/cm2 の照度で10秒間照射し、電解液中のモノマー成分を重合させるとともに、電解液をゲル化してゲル状ポリマー電解質とした。このポリマー電解質層と正極との一体化物を袋から取り出し、そのリード部の正極端子との接続に用いる部分に150℃の熱風を吹き付けることによって熱剥離テープを該部分から剥がし、ポリマー電解質保持正極ユニットを得た。
【0043】
ポリマー電解質含有負極Aの作製:
上記のように作製した負極Aの負極合剤層形成部分とリード部とにまたがるようにして、厚さ50μm、幅3mmのポリイミドテープをその両面から貼着し、短絡の防止および端子の強度保持を図った。また、リード部の負極端子との接続に用いる部分のすべての表面を、熱により接着面の粘着性が失われる熱剥離テープで被覆した後、この負極Aを前記ゲル化成分含有電解液に減圧下で1分間浸漬して、ゲル化成分含有電解液を含浸させた後、ポリエチレン製の袋に入れて密閉した。つぎに、ポリエチレン製の袋の両面から、フュージョンUVシステムズ・ジャパン(株)製の紫外線照射装置を用いて、紫外線を1W/cm2 の照度で10秒間照射し、電解液中のモノマー成分を重合させるとともに、電解液をゲル化してゲル状ポリマー電解質とした。このゲル状ポリマー電解質を保持させた負極Aを袋から取り出し、そのリード部の負極端子との接続に用いる部分に150℃の熱風を吹き付けることによって熱剥離テープを該部分から剥がし、ポリマー電解質含有負極Aを得た。
【0044】
ポリマー電解質含有負極Bの作製:
上記のように作製した負極Bの負極合剤層形成部分とリード部とにまたがるようにして、厚さ50μm、幅3mmのポリイミドテープをその両面から貼着し、短絡の防止および端子の強度保持を図った。また、リード部の負極端子との接続に用いる部分のすべての表面を、熱により接着面の粘着性が失われる熱剥離テープで被覆した後、この負極Bを前記ゲル化成分含有電解液に減圧下で1分間浸漬して、ゲル化成分含有電解液を含浸させた後、ポリエチレン製の袋に入れて密閉した。つぎに、そのポリエチレン製袋の外側から、上記負極Bの負極合剤層形成部分が配置する側にフュージョンUVシステムズ・ジャパン(株)製の紫外線照射装置を用いて、紫外線を1W/cm2 の照度で10秒間照射し、電解液中のモノマー成分を重合させるとともに、電解液をゲル化してゲル状ポリマー電解質とした。このゲル状ポリマー電解質を保持させた負極Bを袋から取り出し、そのリード部の負極端子との接続に用いる部分に150℃の熱風を吹き付けることによって熱剥離テープを該部分から剥がし、ポリマー電解質含有負極Bを得た。
【0045】
つぎに、前記のようにして作製したポリマー電解質保持正極ユニット5枚と、ポリマー電解質保持負極A4枚と、ポリマー電解質保持負極B2枚を用意し、ポリマー電解質保持負極B、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極A、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極A、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極A、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極A、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極Bの順に積層して積層電極群を得た。この時、2枚のポリマー電解質保持負極Bの負極合剤層形成部分は、いずれも積層電極群の内部側を向くようにして積層した。つまり、2枚のポリマー電解質保持負極Bの厚さ10μmの銅箔からなる負極集電体を積層電極群の外面側を向くように配置した。
【0046】
この積層電極群と図4に基づき説明すると、積層電極群の一番下側には、ポリマー電解質保持負極20(このポリマー電解質保持負極20は、負極B、つまり片面塗布負極にポリマー電解質を保持させたものである)が配置し、その上に、ポリマー電解質保持正極ユニット10、ポリマー電解質保持負極20、ポリマー電解質保持正極ユニット10、ポリマー電解質保持負極20、ポリマー電解質保持正極ユニット10、ポリマー電解質保持負極20、ポリマー電解質保持正極ユニット10、ポリマー電解質保持負極20、ポリマー電解質保持正極ユニット10、ポリマー電解質保持負極20(このポリマー電解質保持負極20は、負極B、つまり、片面塗布負極にポリマー電解質を保持させたものであり、最外層の2枚のポリマー電解質保持負極20以外は、すべて負極A、つまり、両面塗布負極にポリマー電解質を保持させたものである)の順に積層されている。そして、図中、ポリマー電解質保持正極ユニット10の周囲の白抜き部分はポリマー電解質保持正極ユニット10の作製にあたって正極の周囲に支持体として不織布を配置したことを示すために図示したものである。
【0047】
上記積層電極群の外装に用いる外装体は、図5に示すように、保護フィルム4a、金属箔4b、熱融着性樹脂フィルム4cの3層ラミネートフィルムからなり、この実施例では、上記保護フィルム4aとして厚さ30μmのナイロンフィルムが用いられており、金属箔4bとしては厚さ50μmのアルミニウム箔が用いられ、熱融着性樹脂フィルム4cとしては厚さ30μmの変性ポリオレフィンフィルムが用いられていて、上記ナイロンフィルムはアルミニウム箔の損傷や腐食を防ぎ、アルミニウム箔は水分やガスの透過を阻止し、変性ポリオレフィンフィルムは接着層として作用する。この外装体4は上記積層電極群の外装にあたって2枚用いられ、両者とも同じ構成のものであるが、そのうちの一方は、上記積層電極群を収容しやすいように、あらかじめ鍔付きの容器状に成形され、他方はプレート状をしていて、それぞれ変性ポリオレフィンフィルムを内面側にして、積層電極群の周囲に配置し、その接合部を加熱して変性ポリオレフィンフィルムを熱融着させて封止する。
【0048】
図6にこの外装体で上記積層電極群を外装したときの正極のリード部と正極端子との接続状態を模式的に示す。図6に示すように、正極のリード部1cは並列接続されてまとめられ、正極端子5の一方の端部に接続され、正極端子5の他方の端部は外装体4、4間のシール部4dを通過して外部に引き出されている。
【0049】
そして、外装体で積層電極群を外装した後、図6のA部(外装体4、4のシール部4dであって正極端子5が引き出されている箇所)の外装体の表面から超音波照射すると、外装体の変性ポリオレフィンフィルムが溶融し、外装体中のアルミニウム箔と正極端子とが接続できる。この状態を示すために、図6のA部を拡大し、その要部を模式的に示したのが図7である。すなわち、図7に示すように、外装体4中の熱融着性樹脂フィルム4cである変性ポリオレフィンフィルムが溶融し、金属箔4bであるアルミニウム箔と正極端子5とが接続している。なお、上記超音波溶接に際しては、超音波発信器としてブランソン社製947M型を用い、4kg/cm2 の加圧下で、80ジュールのウエルドエネルギーをアンプリチュード80%で2秒間印加したが、この条件は状況にあわせて種々に変更できる。
【0050】
これとは別に、短絡形成兼放熱促進部材を構成する金属板として負極集電体と同形状に打ち抜いた厚さ50μmのステンレス鋼板(ただし、負極の外部リードとしての負極端子と接続するために、リード部は長くした)と、72mm×42mmに打ち抜いた厚さ30μmの両面接着シートを、それぞれ2枚ずつ用意し、積層電極群を外装後の外装体の上面および下面に上記両面接着シートを貼り付けた後、その両面接着シートのフリーの面に上記ステンレス鋼板を貼り付けた。図8に上記短絡形成兼放熱促進部材30を構成する金属板としてのステンレス鋼板の配置場所(ただし、上面側のみ)を示す。また、図9に上記短絡形成兼放熱促進部材30を構成する金属板としてのステンレス鋼板を外装体4の外側に配置した状態での負極のリード部および上記短絡形成兼放熱促進部材を構成する金属板のリード部と負極端子との接続状態を模式的に示す。上記短絡形成兼放熱促進部材30を構成する金属板としてのステンレス鋼板は積層電極群を構成する負極の位置にあわせて外装体4の外側に配置され、そのリード部30aが負極端子6と接続されている。ただし、図9では上記短絡形成兼放熱促進部材30を構成する金属板としてのステンレス鋼板を外装体4に貼着するために使用した両面接着シートの図示は省略している。この負極のリード部2cと負極端子6との接続は、通常通りに行われていて、それぞれの負極のリード部2cの集合体と負極端子6の一方の端部とを接続し、該負極端子6の他方の端部は外装体4、4間のシール部4dを通過して外部に引き出されている。そして、図8中、5は正極端子であるが、この正極端子5と上記負極端子6との間には6mmの間隙が設けられていて、通常の条件下では両者が接触して短絡を引き起こすことはない。
【0051】
実施例2
積層電極群を外装体で外装するまでは実施例1と同様であるが、正極の外部リードとしての正極端子と外装体のラミネートフィルム中のアルミニウム箔とを接続せずに積層形ポリマー電池を組み立てた。
【0052】
上記電池とは別に、正極集電体と同形状に打ち抜いた厚さ50μmのステンレス鋼板(ただし、正極の外部リードとしての正極端子との接続のために、リード部は長くした)と、負極集電体と同形状に打ち抜いた厚さ50μmのステンレス鋼板(ただし、負極の外部リードとしての負極端子との接続のために、リード部は長くした)、および72mm×42mmに打ち抜いた厚さ30μmのポリフェニレンサルファイドフィルムを用意し、そのポリフェニレンサルファイドフィルムを介して2枚のステンレス鋼板とが対向するように配置して短絡形成兼放熱促進ユニットを構成し、それを電池の外部(つまり、外装体の外部)に配置し、幅6mmで厚さ50μmのポリエステル製粘着テープで電池に固定した後、上記短絡形成兼放熱促進ユニットの正極集電体と同形状に打ち抜いたステンレス鋼板のリード部と正極の外部リードとしての正極端子とを超音波溶接で接続し、負極と同形状に打ち抜いたステンレス鋼板と負極の外部リードとしての負極端子とを超音波溶接で接続した。なお、上記ポリフェニルサルファイドフィルムと2枚のステンレス鋼板とで構成される短絡形成兼放熱促進ユニットの配置場所は、実施例1の短絡形成兼放熱促進部材の場合と同様であり、短絡形成兼放熱促進ユニットを積層電極群とそれに接続された正極端子および負極端子とに重なるように配置した。図10に上記短絡形成兼放熱促進ユニットの2枚のステンレス鋼板とポリフェニレンサルファイドフィルムの位置関係を示す。図10に示すように、短絡形成兼放熱促進ユニットは絶縁板(本実施例ではポリフェニレンサルファイドフィルム)31と該絶縁板31を介して配置した2枚の金属板(本実施例ではステンレス鋼板)32、33とで構成されている。そして、図10に示す短絡形成兼放熱促進部材30としての短絡形成兼放熱促進ユニットの上側の金属板32が正極集電体と同形状に打ち抜いたステンレス鋼板であって、そのリード部32aが正極の外部リードとしての正極端子5と電池外部で接続され、下側の金属板33が負極集電体と同形状に打ち抜かれたステンレス鋼板であって、そのリード部33aが負極の外部リードとしての負極端子6と電池外部で接続される。
【0053】
比較例1
上記実施例1〜2のような短絡形成兼放熱促進部材を設けなかった以外は、実施例1と同様に積層形ポリマー電解質電池を作製した。
【0054】
上記実施例1〜2および比較例1の電池の表面に熱電対を貼り付け、Vブロックの上に載せ、軸部の直径3mmのステンレス鋼製釘を5mm/秒の速度で積層電極群に対して直角に突き刺し、電池の最高到達温度を測定した。その結果を表1に示す。
【0055】
【表1】
【0056】
表1に示すように、実施例1の電池は最高到達温度が135℃であって発煙・発火がなく、また、実施例2の電池も最高到達温度が121℃であって発煙・発火がなかった。これに対して、短絡形成兼放熱促進部材を設けていない比較例1の電池は最高到達温度が200℃以上であって、発熱反応が暴走するとされている150℃よりもかなり高いものであり、また、発煙・発火を起こすものがあった。
【0057】
【発明の効果】
以上説明したように、本発明では、釘刺しや圧壊によって短絡した場合でも、発煙・発火を防ぎ、安全性の高い積層形ポリマー電解質電池を提供することができた。
【図面の簡単な説明】
【図1】本発明の実施例1の積層形ポリマー電解質電池に用いる正極を模式的に示す断面図である。
【図2】本発明の実施例1の積層形ポリマー電解質電池に用いる負極Aを模式的に示す断面図である。
【図3】本発明の実施例1の積層形ポリマー電解質電池に用いる負極Bを模式的に示す断面図である。
【図4】本発明の実施例1の積層形ポリマー電解質電池に用いる積層電極群を模式的に示す断面図である。
【図5】本発明の実施例1の積層形ポリマー電解質電池に用いる外装体を模式的に示す断面図である。
【図6】本発明の実施例1の積層形ポリマー電解質電池において、正極のリード部と正極端子との接続状態を模式的に示す断面図である。
【図7】図6のA部の要部の拡大図である。
【図8】本発明の実施例1の積層形ポリマー電解質電池において、短絡形成兼放熱促進部材の配置場所を模式的に示す平面図である。
【図9】本発明の実施例1の積層形ポリマー電解質電池において、短絡形成兼放熱促進部材を構成する金属板を外装体の外側に配置した状態での負極リード部および上記短絡形成兼放熱促進部材を構成する金属板のリード部と負極端子との接続状態を模式的に示す断面図である。
【図10】本発明の実施例2の積層形ポリマー電解質電池において、外装体の外側に配置する短絡形成兼放熱促進部材としての短絡形成兼放熱促進ユニットの構成部材の位置関係を模式的に示す図で、(a)はその平面図、(b)はそのX−X線断面図の要部拡大図である。
【符号の説明】
1 正極
1a 正極集電体
1b 正極合剤層
1c リード部
2 負極
2a 負極集電体
2b 負極合剤層
3 ポリマー電解質層
4 外装体
4a 保護フィルム
4b 金属箔
4c 熱融着性樹脂フィルム
4d シール部
5 正極端子
6 負極端子
10 ポリマー電解質保持正極ユニット
20 ポリマー電解質保持負極
30 短絡形成兼放熱促進部材
30a リード部
31 絶縁板
32 金属板
32a リード部
33 金属板
33a リード部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated polymer electrolyte battery, which is an embodiment of a sheet battery, and a method for manufacturing the sheet battery, and more particularly to use as a power source for portable electronic devices, electric vehicles, road leveling, and the like. The present invention relates to a suitable laminated polymer electrolyte battery and a method for producing a sheet battery having a laminate film outer package having a metal foil as a core material.
[0002]
[Prior art]
A thin battery such as a sheet battery can be applied to various thin products, and in particular, a sheet battery using a polymer electrolyte is excellent in safety and storage properties including leakage resistance. Has characteristics. In addition, since the electrode and the electrolyte can be formed into a sheet shape, it is possible to produce a thin battery having a large area such as A4 plate and B5 plate, and it is possible to design a battery that is flexible and adapted to the shape of the device. Because it has characteristics not found in conventional batteries, the range of use of batteries has greatly expanded.
[0003]
This polymer electrolyte battery is usually a laminated film in which an aluminum foil is used as a core material and a heat-fusible resin film serving as an adhesive layer is arranged on the inner surface side for an exterior body. The laminated electrode group obtained by laminating the electrode in the form of a sheet and the polymer electrolyte layer in the form of a sheet is covered with an outer package to complete a thin sheet battery.
[0004]
In this laminated polymer electrolyte battery, when the number of laminated electrodes is small and the electric capacity and electric capacity density are low, that is, when the inherent energy is low, the above-described excellent safety is ensured. However, as the number of stacked electrodes increases and the capacitance and density increase, safety is not sufficient, and when the electrodes are short-circuited due to nail penetration or crushing, a large current flows, heat is generated, and smoke is emitted. It has been found that there may be accidents such as ignition and rupture.
[0005]
The above problems can be solved by flowing a large current that flows at the time of a short circuit out of the stacked electrode group, and at the same time, speeding up heat dissipation and reducing heat storage. However, in the conventional laminated electrode group of laminated polymer electrolyte batteries, a positive electrode and a negative electrode are opposed to each other through a polymer electrolyte layer having poor heat conductivity, and a plurality of them are laminated, and a heat-fusible resin film having poor heat conduction Since the battery is covered with an outer casing placed on the inner surface side, heat storage inside the battery due to heat generation such as a short circuit is large, and the internal temperature rises greatly, leading to accidents such as smoke, ignition, and explosion. It is done.
[0006]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art in the sheet battery as described above, and improves the safety even when the capacity is increased by devising the battery structure, and the highly safe laminated polymer electrolyte battery. The purpose is to provide.
[0007]
[Means for Solving the Problems]
The present invention comprises a positive electrode formed by forming a positive electrode mixture layer on at least one surface of a positive electrode current collector, and a negative electrode formed by forming a negative electrode mixture layer on at least one surface of the negative electrode current collector, A laminated polymer electrolyte battery in which a laminated electrode group laminated with a polymer electrolyte layer interposed between them is packaged with a laminated film outer package having a metal foil as a core material, on at least one outer side of the outer package, (1) A short-circuiting and heat dissipation promoting member made of a single metal plate is provided, and the short-circuiting and heat dissipation promoting member is electrically connected to the electrode terminal of either the positive electrode or the negative electrode, Connect the electrode terminal and the metal foil in the exterior body, or (2) Provide a short-circuit forming and heat-dissipation promoting member comprising a short-circuit forming and heat-dissipating promotion unit in which two metal plates are arranged via an insulating plate , Short circuit formation and heat dissipation promotion part By connecting the two metal plates of different polarity of the electrodes of the electrode terminal and electrically, respectively, is obtained by solving the above problems.
[0008]
In other words, the short-circuit forming and heat-dissipation promoting member can be externally short-circuited prior to short-circuiting inside the laminated electrode group due to nail penetration or crushing, thereby reducing battery voltage and reducing heat generation due to chemical reaction. And since the said short circuit formation and heat dissipation promotion member is provided in the outer side of the laminated electrode group, heat dissipation can be performed smoothly by the short circuit formation and heat dissipation promotion member. Therefore, by providing this short-circuit forming and heat dissipation promoting member, safety can be improved even when the capacity is increased, and a highly safe laminated polymer electrolyte battery can be provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the short-circuit forming and heat radiation promoting member is roughly classified into the following two. One of them is that a plastic film on the surface of the exterior body is used as an insulator, and a short-circuit forming and heat dissipation promoting unit is formed between one metal plate provided outside the exterior body and a metal foil constituting the exterior body. The function is expressed. At this time, the metal plate provided on the outside of the exterior body and the metal foil constituting the exterior body are connected to the electrode terminals of the electrodes of different polarities, and the inside of the laminated electrode group by nail penetration or crushing between them An external short circuit is performed prior to the short circuit to lower the battery voltage and reduce heat generation due to a chemical reaction. And since they are arrange | positioned on the outer side of a laminated electrode group, heat dissipation is performed smoothly. Moreover, in order to make insulation of the exterior body surface perfect, you may take means, such as providing a separate insulation board between the said metal plate and the exterior body surface, or bonding and fixing each. And in order to form a short circuit formation and heat radiation acceleration | stimulation unit, the metal foil which comprises an external metal plate and an exterior body has a preferable thing of
[0010]
As another form of the short-circuit formation / heat dissipation promotion member, a short-circuit formation / heat dissipation promotion unit in which two metal plates are arranged on the outside of the exterior body via an insulating plate is installed. At that time, the two metal plates of the short-circuit forming and heat radiation promoting unit are connected to electrode terminals of different polarities, and the external short circuit is performed before the short circuit inside the laminated electrode group by nail penetration or crushing between them. Thus, the battery voltage is lowered and heat generation due to a chemical reaction is reduced. And since these metal plates are arrange | positioned on the outer side of the laminated electrode group, heat dissipation is also performed smoothly. And the metal plate of the said short circuit formation and heat dissipation acceleration | stimulation member has a thickness of 30 micrometers or more in order to form a more complete short circuit. However, if the metal plate is too thick, the capacitance density is lowered, and the characteristics of the laminated polymer electrolyte battery may be lost. Therefore, the thickness is preferably 30 μm or more and 200 μm or less as described above. . And the form does not necessarily need to be non-porous, and may be porous such as punching metal, net-like or lath-like metal, and the material is not particularly limited. However, those connected to the positive terminal are preferably aluminum or stainless steel, and those connected to the negative terminal are preferably copper, nickel, stainless steel or the like.
[0011]
The insulating plate may be made of any material as long as the two metal plates can be electrically isolated, but as in the case of the metal plate, leakage of the electrolyte from the polymer electrolyte layer due to high-temperature storage or pressurization. In consideration of the case, for example, organic solvent-resistant polyethylene, polypropylene, fluorine-based resin, polyimide, polyester, polyphenylene sulfide, and the like are preferable. And as a form, any of a sheet | seat, a film, a woven fabric, a nonwoven fabric, a net | network, punching, lath shape etc. may be sufficient. The thickness is preferably as thin as possible if electrical insulation is possible. However, in consideration of the reliability and productivity of insulation, the thickness is preferably 2 μm or more and 200 μm or less.
[0012]
Furthermore, considering the ease of making a short circuit forming and heat radiation promotion unit, which will be described later, and the portability of the completed unit, the three members of the two metal plates and the insulating plate are integrated and integrated with the battery. It is preferable. Therefore, you may use what attached the adhesive agent to the surface of a metal plate or an insulating board, or prepare an adhesive sheet separately and may integrate the three parties.
[0013]
In the present invention, when preparing the laminated electrode group, the positive electrode, the negative electrode, and the polymer electrolyte layer may be laminated separately, but at least one of the positive electrode and the negative electrode is previously surrounded by the polymer electrolyte layer. Thus, it is preferable to integrate the electrode and the polymer electrolyte layer. As a form in this case, for example, a porous sheet serving as a support of the polymer electrolyte layer is formed in a bag shape to surround the electrode, and then the whole is made into an electrolytic solution containing a gelling component that is a precursor of the polymer electrolyte. Impregnation and gelation to produce an integrated product of an electrode containing a polymer electrolyte and a support, or an electrode containing a polymer electrolyte is a strip-shaped polymer electrolyte sheet with a porous sheet support. For example, the electrode and the polymer electrolyte layer may be integrated by sandwiching. Furthermore, when the electrode is surrounded by a polymer electrolyte layer by sandwiching the latter electrode with a strip-shaped polymer electrolyte sheet, the single strip-shaped polymer electrolyte sheet is folded back at a substantially central portion between the polymer electrolyte sheets. There are cases where the electrode is surrounded by a polymer electrolyte layer by sandwiching the electrode, and cases where the electrode is surrounded by a polymer electrolyte layer by sandwiching the electrode between two strip-shaped polymer electrolyte sheets.
[0014]
In the above case, as the porous sheet serving as the support for the polymer electrolyte, for example, a nonwoven fabric or a microporous film is used. Examples of the nonwoven fabric include nonwoven fabrics such as polypropylene, polyethylene, polyethylene terephthalate, and polybutylene terephthalate. Examples of the microporous film include polypropylene, polyethylene, and a microporous film of an ethylene-propylene copolymer.
[0015]
Since the nonwoven fabric has a high porosity and is easily impregnated with an electrolytic solution containing a gelling component, it can be suitably used. Therefore, when the nonwoven fabric is used as a support, the nonwoven fabric is, for example, a basis weight. Is 12g / m 2 A very thin nonwoven fabric having a thickness of 30 μm can be used.
[0016]
Such a nonwoven fabric is thin and has low mechanical strength, including tensile strength, and is difficult to handle by itself.For example, it is formed into a bag shape and encloses the electrode by accommodating the electrode in the bag-shaped nonwoven fabric. By integrating the nonwoven fabric and the electrode, the strength of the electrode can compensate for the lack of strength of the nonwoven fabric. Moreover, even if it is not made into a bag shape, a strip-shaped non-woven fabric is folded back at the substantially central portion and the electrode is sandwiched between the non-woven fabric to surround the electrode with the non-woven fabric so that the electrode and the non-woven fabric are integrated. Also, by stacking the strip-shaped non-woven fabric and sealing one end and sandwiching the electrode between the non-woven fabric, the electrode is surrounded by the support and the electrode and the non-woven fabric are integrated. Insufficient strength can be compensated, and workability during battery assembly, reduction of internal resistance, and improvement of load characteristics can be achieved. Moreover, when using a microporous film as a support body, it is the same as that of the said nonwoven fabric.
[0017]
As described above, the electrode is surrounded by a support made of a porous sheet such as a nonwoven fabric, the electrode and the support are integrated, and the electrode is impregnated with an electrolytic solution containing a gelling component to be gelled. And the polymer electrolyte layer are each gelled independently to form an electrode and a polymer electrolyte sheet and then laminated, the interface is in a good adhesion state, and there are less air bubbles, foreign matter, etc. between the layers, Ion migration at the interface becomes smooth, and the reactivity between the positive electrode and the negative electrode is improved. Further, by surrounding one of the positive electrode and the negative electrode with a support, it can also serve as a physical separation.
[0018]
Then, either the positive electrode or the negative electrode may be surrounded by the polymer electrolyte layer to integrate the electrode and the polymer electrolyte layer. At that time, the positive electrode is surrounded by the polymer electrolyte layer, and the positive electrode and the polymer When the electrolyte layer is integrated, the battery capacity can be increased as compared with the case where the negative electrode is surrounded by the polymer electrolyte layer. That is, since the negative electrode is generally made larger than the positive electrode in order to prevent the generation of dendrites and to ensure safety, if the positive electrode is surrounded by the polymer electrolyte layer, the polymer is less than the negative electrode surrounded by the polymer electrolyte layer. The dimension of the electrolyte layer can be reduced, and as a result, the battery capacity can be increased. In addition, when the negative electrode is surrounded by the polymer electrolyte layer and the negative electrode and the polymer electrolyte layer are integrated, the interface state between the negative electrode and the polymer electrolyte layer can be made uniform. It is effective in improving the sex.
[0019]
Furthermore, if both the positive electrode and the negative electrode are surrounded by a polymer electrolyte layer, the thickness of the polymer electrolyte layer will increase, but both electrodes are integrated with the polymer electrolyte layer, so the polarization of both the positive electrode and the negative electrode is reduced. Since the reaction during charging and discharging can proceed smoothly, the load characteristics can be greatly improved.
[0020]
In the present invention, the integration of the electrode and the polymer electrolyte layer means that the electrode and the polymer electrolyte layer are brought into close contact with each other without including bubbles or foreign matters between the electrode and the polymer electrolyte layer. It does not mean that it is inseparably bonded.
[0021]
When the support made of a porous sheet such as the above-mentioned nonwoven fabric is formed into a bag shape, for example, when the bag shape is described as a quadrangular shape, one side is usually open and the other three sides are sealed. However, it is not always required to continuously seal the seal, and it may be discontinuously sealed.
[0022]
When the electrode is accommodated in the bag-shaped support, it is not required to previously form the support in a bag shape, and the electrode is formed into a strip-shaped support (for example, the length is twice or more the length of the electrode, A support in which the width of the strip-shaped support having a width wider than the width of the electrode is placed on one side of the center in the length direction and the other width is folded back (that is, the electrode is folded back at the center. The electrode may be held in a bag-like support by sealing both sides in the width direction continuously or discontinuously.
[0023]
Also, in the case where two supports are overlapped and one end is sealed and the electrode is sandwiched between them, it is not required to seal in advance, and the electrode is not required to be a single strip-shaped support (for example, a long support). Is placed on a strip-shaped support having a length longer than the length of the electrode and a width wider than the width of the electrode), and another strip-shaped support is placed thereon, and one end of the support is Sealing may be performed continuously or discontinuously so that the electrode is sandwiched between the supports.
[0024]
Examples of the electrolyte solution for constituting the polymer electrolyte layer include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, 1, 2 -In an organic solvent such as dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether, for example, LiClO Four , LiPF 6 , LiBF Four , LiAsF 6 , LiCF Three SO Three , LiC Four F 9 SO Three , LiCF Three CO 2 , Li 2 C 2 F Four (SO Three ) 2 , LiN (CF Three SO 2 ) 2 , LiC (CF Three SO 2 ) Three , LiC n F 2n + 1 SO Three (N ≧ 2), LiN (RfOSO 2 ) 2 Those prepared by dissolving an inorganic ion salt such as [wherein Rf is a fluoroalkyl group] are used. The concentration of the inorganic ion salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l, particularly 0.9 to 1.25 mol / l.
[0025]
In addition, as a gelling component for changing the electrolytic solution to a polymer electrolyte, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, vinylidene fluoride-hexafluoropropylene copolymer is heated. After the polymer is dissolved in the electrolytic solution, the polymer is gelled by cooling, or the monomer or prepolymer contains 2 or more double bonds per molecule that can be polymerized with actinic rays as a main component. Examples thereof include a crosslinkable composition.
[0026]
As the monomer that can be polymerized with actinic rays, first, as a monomer having two double bonds per molecule (bifunctional crosslinkable monomer), for example, 1,3-butanediol diacrylate, 1,4-butanediol Diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, propylene glycol diacrylate, dipropylene glycol diacrylate, tri Such as propylene glycol diacrylate, ethoxylated bisphenol A diacrylate, novolac diacrylate, propoxylated neopentyl glycol diacrylate, etc. Such functional acrylate and the acrylate and similar difunctional methacrylate.
[0027]
Moreover, as a monomer (trifunctional crosslinkable monomer) having three double bonds per molecule that can be polymerized with actinic rays, for example, tris (2-hydroxyethyl) isocyanurate triacrylate, trimethylolpropane triacrylate, ethoxy Trifunctional acrylates such as trimethylolpropane triacrylate, pentaerythritol triacrylate, propoxylated trimethylolpropane triacrylate, propoxylated glyceryl triacrylate, caprolactone-modified trimethylolpropane acrylate, and trifunctional methacrylates similar to the above acrylates. .
[0028]
Examples of monomers having four or more double bonds per molecule that can be polymerized with actinic rays (tetrafunctional or higher crosslinkable monomers) include pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, and ethoxylated pentaerythritol tetra. Examples thereof include tetrafunctional or higher acrylates such as acrylate, dipentaerythritol hydroxypentaacrylate, dipentaerythritol hexaacrylate, and tetrafunctional or higher methacrylates similar to the above acrylates.
[0029]
Examples of the prepolymer having 2 or more, preferably 4 or more double bonds polymerizable with actinic rays include urethane acrylate, epoxy acrylate, and polyester acrylate prepolymers. Can be used.
[0030]
In the present invention, the monomer or prepolymer having two or more double bonds per molecule that can be polymerized with actinic rays may be used as a main component, for example, for adjusting physical properties such as gel hardness. A monofunctional monomer can also be used in combination. Moreover, the usage which mixes a bifunctional monomer and a hexafunctional monomer can also be performed.
[0031]
In the present invention, the crosslinkable composition comprising as a main component a monomer or prepolymer having two or more double bonds per molecule that can be polymerized with actinic rays means that the above crosslinkable composition can be polymerized with actinic rays. In combination with a monomer or prepolymer having two or more heavy bonds per molecule, and a monomer or prepolymer having two or more double bonds per molecule that can be polymerized with actinic rays, etc. In the case where a monomer or prepolymer having two or more double bonds per molecule that can be polymerized with actinic rays is used in combination with a monofunctional monomer or the like, in the crosslinkable composition, The monomer or prepolymer having two or more double bonds per molecule that can be polymerized with actinic rays is 50% by weight or more, particularly 70% by weight or more. Door is preferable. Further, the crosslinkable composition may not be all crosslinkable, and may be crosslinkable as a whole. For example, other components may be added as necessary.
[0032]
If necessary, for example, benzoins, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, acetophenones, thioxanthones, anthraquinones, and the like can be used as polymerization initiators. Furthermore, alkylamines, aminoesters and the like can also be used as sensitizers for the polymerization initiator.
[0033]
In the present invention, for example, ultraviolet rays (UV), electron beams (EB), visible rays, far ultraviolet rays, and the like can be used as the actinic rays.
[0034]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples illustrated in the examples.
[0035]
Example 1
First, the preparation of the positive electrode and the negative electrode used in Example 1 and the preparation of the gelled component-containing electrolyte will be described first.
[0036]
Production of positive electrode:
LiCoO as positive electrode active material 2 80 parts by weight, 10 parts by weight of acetylene black as a conductive assistant, and 10 parts by weight of polyvinylidene fluoride as a binder were mixed uniformly using N-methylpyrrolidone as a solvent to prepare a positive electrode mixture-containing paste. This positive electrode mixture-containing paste is applied to both sides of an aluminum foil with a thickness of 20 μm to be a positive electrode current collector, dried, and then subjected to a calendering process to adjust the thickness of the positive electrode mixture layer so that the total thickness becomes 130 μm. It adjusted and cut | disconnected so that the area of a positive mix layer formation part might be set to 70 mm x 40 mm, and produced the positive electrode. However, in producing the positive electrode, the paste containing the positive electrode mixture is not applied to a part of the aluminum foil, leaving the exposed part of the aluminum foil, and the exposed part of the aluminum foil is connected to the positive electrode terminal or the like. The part. A cross-sectional view of this positive electrode is schematically shown in FIG. As shown in FIG. 1, the positive electrode 1 is produced by forming the positive
[0037]
Production of negative electrode A:
A negative electrode mixture-containing paste was prepared by uniformly mixing 90 parts by weight of graphite, which is a negative electrode active material, and 10 parts by weight of polyvinylidene fluoride using N-methylpyrrolidone as a solvent, and consisting of a copper foil having a thickness of 10 μm. After coating on both sides of the negative electrode current collector and drying, calendering is performed to adjust the thickness of the negative electrode mixture layer so that the total thickness is 130 μm, and the area of the negative electrode mixture layer forming portion is 72 mm × 42 mm The negative electrode A was produced by cutting in such a manner. The cutting was performed so that the lead portion, which is a connection portion with the negative electrode terminal, was at the center position in the width direction of the electrode. Similarly to the case of the positive electrode, in preparing the negative electrode A, the negative electrode mixture-containing paste is not applied to a part of the copper foil, the exposed portion of the copper foil is left, and the exposed portion of the copper foil is used as the negative electrode terminal. Lead part for connection with the above. The negative electrode A thus produced is a so-called double-side coated negative electrode in which a negative electrode mixture layer is formed on both surfaces of a negative electrode current collector. A cross-sectional view of the negative electrode A is schematically shown in FIG. As shown in FIG. 2, the negative electrode A is produced by forming the negative
[0038]
Production of negative electrode B:
A negative electrode mixture-containing paste similar to that in the case of the negative electrode A was applied to one side of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried, and then subjected to a calendar treatment so that the total thickness became 70 μm. The thickness of the mixture layer was adjusted, and the negative electrode B was prepared by cutting so that the area of the negative electrode mixture layer forming portion was 72 mm × 42 mm. Also in the production of the negative electrode B, the negative electrode mixture-containing paste is not applied to a part of the copper foil, the exposed part of the copper foil is left, and the exposed part of the copper foil is connected to a negative electrode terminal or the like. It was. The negative electrode B thus produced is a so-called single-side coated negative electrode in which the negative electrode mixture layer is formed only on one side of the negative electrode current collector. A cross-sectional view of the negative electrode B is schematically shown in FIG. As shown in FIG. 3, the negative electrode B is produced by forming the negative
[0039]
Preparation of gelled component-containing electrolyte:
LiPF in a mixed solvent of propylene carbonate and ethylene carbonate in a volume ratio of 1: 1 6 As an initiator, 2,4,6-trimethylbenzoyldiphenylphosphine oxide [trade name: Lucillin TPO, manufactured by BSF Japan Ltd.] is used as a monomer component in advance in an electrolyte prepared by dissolving 1.22 mol / l. 2% by weight with respect to the solution, and dipentaerythritol hexaacrylate is added and mixed so that the concentration becomes 6% by
[0040]
The positive electrode produced as described above is wrapped with a non-woven fabric that serves as a support for the polymer electrolyte layer, the positive electrode and the support are integrated, and the whole is impregnated with a gel component-containing electrolyte, gelled, and polymer An electrolyte-containing positive electrode unit was obtained. The negative electrode was impregnated with a gel component-containing electrolyte without being wrapped with a nonwoven fabric and gelled to obtain a polymer electrolyte-containing negative electrode. The details of the manufacturing method are as follows.
[0041]
Production of polymer electrolyte-containing positive electrode unit:
The support has a thickness of 30 μm and a basis weight of 12 g / m. 2 The polybutylene terephthalate nonwoven fabric [manufactured by NKK, MB1230 (trade name)] was cut into strips having a length × width of 144 mm × 42 mm.
[0042]
Then, a polyimide tape having a thickness of 50 μm and a width of 3 mm was stuck from both sides so as to straddle the positive electrode mixture layer forming portion of the positive electrode and the lead portion, thereby preventing short circuit and maintaining the strength of the terminal. In addition, after covering all surfaces of the portion used for connection with the positive electrode terminal of the lead portion with a heat release tape that loses the adhesiveness of the adhesive surface due to heat, this positive electrode is covered in the length direction of the polybutylene terephthalate nonwoven fabric. Place it on the left side of the center, fold back the right side, cover the positive electrode, and seal both sides in the width direction with a heat-sealing machine [trade name: Policyler, manufactured by Fuji Impulse Co., Ltd.] Then, the polybutylene terephthalate nonwoven fabric as a support was formed into a bag shape, and both were brought into close contact with each other to integrate the positive electrode and the support. The positive electrode unit in which the positive electrode and the support are integrated is immersed in the gelled component-containing electrolyte under reduced pressure for 1 minute to impregnate the positive electrode unit with the gelled component-containing electrolyte, and then placed in a polyethylene bag. And sealed. Next, from both sides of the polyethylene bag, ultraviolet light is 1 W / cm using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd. 2 Was irradiated for 10 seconds at an illuminance of 1 to polymerize the monomer component in the electrolytic solution, and the electrolytic solution was gelled to obtain a gel polymer electrolyte. The polymer electrolyte layer and the positive electrode integrated body are taken out of the bag, and the thermal peeling tape is peeled off from the portion by blowing hot air at 150 ° C. on the portion used for connection with the positive electrode terminal of the lead portion. Got.
[0043]
Preparation of polymer electrolyte-containing negative electrode A:
A polyimide tape having a thickness of 50 μm and a width of 3 mm is adhered from both sides so as to straddle the negative electrode mixture layer forming part and the lead part of the negative electrode A produced as described above, preventing short circuit and maintaining the strength of the terminal. I planned. Moreover, after covering all surfaces of the part used for connection with the negative electrode terminal of a lead part with the heat | fever peeling tape from which the adhesiveness of an adhesive surface is lost with heat, this negative electrode A is pressure-reduced to the said gelling component containing electrolyte solution. It was immersed for 1 minute under the impregnation with the gel component-containing electrolyte, and then sealed in a polyethylene bag. Next, from both sides of the polyethylene bag, ultraviolet rays are irradiated at 1 W / cm using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd. 2 Was irradiated for 10 seconds at an illuminance of 1 to polymerize the monomer component in the electrolytic solution, and the electrolytic solution was gelled to obtain a gel polymer electrolyte. The negative electrode A holding the gel polymer electrolyte is taken out of the bag, and the thermal peeling tape is peeled off from the portion by blowing hot air at 150 ° C. on the portion used for connection with the negative electrode terminal of the lead portion, and the negative electrode containing the polymer electrolyte A was obtained.
[0044]
Preparation of polymer electrolyte-containing negative electrode B:
A polyimide tape having a thickness of 50 μm and a width of 3 mm is adhered from both sides so as to straddle the negative electrode mixture layer forming portion and the lead portion of the negative electrode B produced as described above, thereby preventing a short circuit and maintaining the strength of the terminal. I planned. Further, after covering all surfaces of the portion used for connection with the negative electrode terminal of the lead portion with a heat release tape that loses the adhesiveness of the adhesive surface due to heat, the negative electrode B is decompressed to the gelled component-containing electrolyte. It was immersed for 1 minute under the impregnation with the gel component-containing electrolyte, and then sealed in a polyethylene bag. Next, from the outside of the polyethylene bag, ultraviolet light is 1 W / cm using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd. on the side where the negative electrode mixture layer forming portion of the negative electrode B is disposed. 2 Was irradiated for 10 seconds at an illuminance of 1 to polymerize the monomer component in the electrolytic solution, and the electrolytic solution was gelled to obtain a gel polymer electrolyte. The negative electrode B holding the gel polymer electrolyte is taken out of the bag, and the thermal peeling tape is peeled off from the portion by blowing hot air at 150 ° C. on the portion used for connection with the negative electrode terminal of the lead portion, and the negative electrode containing the polymer electrolyte B was obtained.
[0045]
Next, five polymer electrolyte holding positive electrode units, four polymer electrolyte holding negative electrodes A, and two polymer electrolyte holding negative electrodes B prepared as described above were prepared, and a polymer electrolyte holding negative electrode B, a polymer electrolyte holding positive electrode unit, and a polymer were prepared. Electrolyte holding negative electrode A, polymer electrolyte holding positive electrode unit, polymer electrolyte holding negative electrode A, polymer electrolyte holding positive electrode unit, polymer electrolyte holding negative electrode A, polymer electrolyte holding positive electrode unit, polymer electrolyte holding negative electrode A, polymer electrolyte holding positive electrode unit, polymer electrolyte holding The negative electrode B was laminated in this order to obtain a laminated electrode group. At this time, the negative electrode mixture layer forming portions of the two polymer electrolyte holding negative electrodes B were laminated so as to face the inner side of the laminated electrode group. That is, the negative electrode collector which consists of a copper foil with a thickness of 10 μm of the two polymer electrolyte holding negative electrodes B was disposed so as to face the outer surface side of the laminated electrode group.
[0046]
Referring to this laminated electrode group and FIG. 4, the lowermost side of the laminated electrode group has a polymer electrolyte holding negative electrode 20 (this polymer electrolyte holding
[0047]
As shown in FIG. 5, the exterior body used for the exterior of the laminated electrode group comprises a three-layer laminate film of a
[0048]
FIG. 6 schematically shows a connection state between the lead portion of the positive electrode and the positive electrode terminal when the laminated electrode group is packaged with the outer package. As shown in FIG. 6, the
[0049]
Then, after the laminated electrode group is packaged with the exterior body, ultrasonic irradiation is performed from the surface of the exterior body of A portion (the
[0050]
Apart from this, a stainless steel plate with a thickness of 50 μm punched in the same shape as the negative electrode current collector as a metal plate constituting the short circuit forming and heat dissipation promoting member (however, in order to connect with the negative electrode terminal as the external lead of the negative electrode, Two lead adhesive sheets with a thickness of 30 μm punched to 72 mm × 42 mm were prepared, and the laminated electrode group was pasted on the top and bottom surfaces of the exterior body after exterior packaging. After the application, the stainless steel plate was attached to the free surface of the double-sided adhesive sheet. FIG. 8 shows an arrangement place (however, only on the upper surface side) of a stainless steel plate as a metal plate constituting the short-circuit formation and heat
[0051]
Example 2
The same procedure as in Example 1 was carried out until the laminated electrode group was packaged with an exterior body, but the multilayer polymer battery was assembled without connecting the positive electrode terminal as the external lead of the positive electrode and the aluminum foil in the laminate film of the exterior body. It was.
[0052]
Separately from the above battery, a stainless steel plate having a thickness of 50 μm punched in the same shape as the positive electrode current collector (however, the lead portion was made longer for connection to the positive electrode terminal as the external lead of the positive electrode), and the negative electrode current collector 50 μm thick stainless steel plate punched in the same shape as the electric body (however, the lead portion was made longer for connection with the negative electrode terminal as the external lead of the negative electrode), and 30 μm thick punched to 72 mm × 42 mm A polyphenylene sulfide film is prepared and arranged so that the two stainless steel plates face each other through the polyphenylene sulfide film to form a short-circuit formation and heat dissipation promotion unit, which is arranged outside the battery (that is, outside the exterior body). ) And fixed to the battery with a polyester adhesive tape having a width of 6 mm and a thickness of 50 μm, and then the above short circuit formation and heat dissipation promotion unit The lead part of the stainless steel plate punched in the same shape as the positive electrode current collector and the positive electrode terminal as the external lead of the positive electrode were connected by ultrasonic welding, and the stainless steel plate punched in the same shape as the negative electrode and the external lead of the negative electrode The negative electrode terminal was connected by ultrasonic welding. In addition, the arrangement | positioning location of the short circuit formation and heat radiation promotion unit comprised with the said polyphenyl sulfide film and two stainless steel plates is the same as that of the case of the short circuit formation and heat radiation promotion member of Example 1, and short circuit formation and heat dissipation. The promotion unit was disposed so as to overlap the stacked electrode group and the positive electrode terminal and the negative electrode terminal connected thereto. FIG. 10 shows the positional relationship between the two stainless steel plates and the polyphenylene sulfide film of the short-circuit formation and heat dissipation promotion unit. As shown in FIG. 10, the short-circuit formation and heat dissipation promotion unit includes an insulating plate (polyphenylene sulfide film in this embodiment) 31 and two metal plates (stainless steel plate in this embodiment) 32 arranged via the insulating
[0053]
Comparative Example 1
A laminated polymer electrolyte battery was produced in the same manner as in Example 1 except that the short-circuit formation and heat dissipation promoting member as in Examples 1 and 2 was not provided.
[0054]
A thermocouple is attached to the surface of the batteries of Examples 1 and 2 and Comparative Example 1, and is placed on the V block, and a stainless steel nail with a shaft diameter of 3 mm is applied to the laminated electrode group at a speed of 5 mm / second. The battery was pierced at a right angle to measure the maximum battery temperature. The results are shown in Table 1.
[0055]
[Table 1]
[0056]
As shown in Table 1, the battery of Example 1 has a maximum temperature of 135 ° C. and no smoke or ignition, and the battery of Example 2 also has a maximum temperature of 121 ° C. and has no smoke or ignition. It was. On the other hand, the battery of Comparative Example 1 in which the short circuit forming and heat dissipation promoting member is not provided has a maximum temperature of 200 ° C. or higher, which is considerably higher than 150 ° C. where the exothermic reaction is considered to run away. Some smoked and ignited.
[0057]
【The invention's effect】
As described above, according to the present invention, even when a short circuit is caused by nail penetration or crushing, it is possible to provide a highly safe laminated polymer electrolyte battery that prevents smoke and fire.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a positive electrode used in a laminated polymer electrolyte battery of Example 1 of the present invention.
FIG. 2 is a cross-sectional view schematically showing a negative electrode A used for a laminated polymer electrolyte battery of Example 1 of the present invention.
FIG. 3 is a cross-sectional view schematically showing a negative electrode B used in the laminated polymer electrolyte battery of Example 1 of the present invention.
4 is a cross-sectional view schematically showing a laminated electrode group used in the laminated polymer electrolyte battery of Example 1 of the present invention. FIG.
FIG. 5 is a cross-sectional view schematically showing an outer package used in the laminated polymer electrolyte battery of Example 1 of the present invention.
6 is a cross-sectional view schematically showing a connection state between a lead portion of a positive electrode and a positive electrode terminal in the laminated polymer electrolyte battery of Example 1 of the present invention. FIG.
7 is an enlarged view of a main part of part A in FIG. 6;
FIG. 8 is a plan view schematically showing an arrangement place of a short-circuit forming and heat dissipation promoting member in the laminated polymer electrolyte battery of Example 1 of the present invention.
FIG. 9 shows the negative electrode lead portion and the short-circuit formation and heat dissipation promotion in a state where the metal plate constituting the short-circuit formation and heat-dissipation promoting member is arranged outside the exterior body in the laminated polymer electrolyte battery of Example 1 of the present invention. It is sectional drawing which shows typically the connection state of the lead part of the metal plate which comprises a member, and a negative electrode terminal.
FIG. 10 schematically shows the positional relationship of constituent members of a short-circuit forming and heat dissipation promoting unit as a short-circuit forming and heat dissipation promoting member disposed outside the exterior body in the laminated polymer electrolyte battery of Example 2 of the present invention. In the figure, (a) is a plan view thereof, and (b) is an enlarged view of a main part of the sectional view taken along line XX.
[Explanation of symbols]
1 Positive electrode
1a Positive electrode current collector
1b Positive electrode mixture layer
1c Lead part
2 Negative electrode
2a Negative electrode current collector
2b Negative electrode mixture layer
3 Polymer electrolyte layer
4 exterior body
4a Protective film
4b metal foil
4c heat-fusible resin film
4d seal part
5 Positive terminal
6 Negative terminal
10 Polymer electrolyte holding positive electrode unit
20 Polymer electrolyte holding negative electrode
30 Short-circuit formation and heat dissipation promotion member
30a Lead part
31 Insulation plate
32 metal plate
32a Lead part
33 Metal plate
33a Lead part
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23644699A JP3992261B2 (en) | 1999-08-24 | 1999-08-24 | Stacked polymer electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23644699A JP3992261B2 (en) | 1999-08-24 | 1999-08-24 | Stacked polymer electrolyte battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001068157A JP2001068157A (en) | 2001-03-16 |
JP2001068157A5 JP2001068157A5 (en) | 2005-04-07 |
JP3992261B2 true JP3992261B2 (en) | 2007-10-17 |
Family
ID=17000879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23644699A Expired - Fee Related JP3992261B2 (en) | 1999-08-24 | 1999-08-24 | Stacked polymer electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3992261B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101640282A (en) * | 2008-07-30 | 2010-02-03 | Nec东金株式会社 | Stacked secondary battery |
KR101905991B1 (en) * | 2016-10-26 | 2018-10-08 | 현대자동차주식회사 | Pouch type battery cell with enhanced safety against piercing |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4617704B2 (en) * | 2004-04-16 | 2011-01-26 | 日産自動車株式会社 | Bipolar battery, battery pack, and vehicle equipped with these |
JP2006107995A (en) * | 2004-10-07 | 2006-04-20 | Aoi Electronics Co Ltd | Large capacity secondary battery excellent in heat dissipation and safety |
KR100866767B1 (en) * | 2006-07-10 | 2008-11-04 | 주식회사 엘지화학 | Safety Kit for Secondary Battery |
KR100919691B1 (en) * | 2009-06-24 | 2009-10-06 | 에너테크인터내셔널 주식회사 | Unit cell for secondary battery having conductive sheet layer and lithium ion secondary battery having the same |
JP2012028089A (en) * | 2010-07-21 | 2012-02-09 | Sanyo Electric Co Ltd | Nonaqueous secondary battery and nonaqueous secondary battery pack |
JP6554261B2 (en) * | 2012-12-05 | 2019-07-31 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | Non-aqueous electrolyte secondary battery pack |
JP6766736B2 (en) * | 2017-04-05 | 2020-10-14 | トヨタ自動車株式会社 | All solid state battery |
JP6939035B2 (en) * | 2017-04-07 | 2021-09-22 | トヨタ自動車株式会社 | All solid state battery |
JP6669122B2 (en) | 2017-04-07 | 2020-03-18 | トヨタ自動車株式会社 | Stacked battery |
JP6575557B2 (en) | 2017-04-07 | 2019-09-18 | トヨタ自動車株式会社 | All-solid battery and method for producing all-solid battery |
-
1999
- 1999-08-24 JP JP23644699A patent/JP3992261B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101640282A (en) * | 2008-07-30 | 2010-02-03 | Nec东金株式会社 | Stacked secondary battery |
CN101640282B (en) * | 2008-07-30 | 2013-12-25 | Nec能源元器件株式会社 | Stacked secondary battery |
KR101905991B1 (en) * | 2016-10-26 | 2018-10-08 | 현대자동차주식회사 | Pouch type battery cell with enhanced safety against piercing |
Also Published As
Publication number | Publication date |
---|---|
JP2001068157A (en) | 2001-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001068156A (en) | Stacked polymer electrolyte battery | |
JP3615491B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
JP4162175B2 (en) | Polymer electrolyte battery | |
JP3992261B2 (en) | Stacked polymer electrolyte battery | |
WO1999031748A1 (en) | Lithium ion secondary battery | |
JP2011100623A (en) | Laminated battery | |
WO1999031749A1 (en) | Manufacture of lithium ion secondary battery | |
WO2022001235A1 (en) | Separator for electrochemical apparatus, electrochemical apparatus, and electronic apparatus | |
JP2000235850A (en) | Layered polymer electrolyte battery | |
JP2001273929A (en) | Polymer battery and its manufacturing method | |
JP3552354B2 (en) | Battery and manufacturing method thereof | |
JP4070367B2 (en) | Laminated polymer electrolyte battery and sheet battery manufacturing method | |
JP2003272595A (en) | Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device | |
JP3821465B2 (en) | Polymer electrolyte battery | |
JP2001155779A (en) | Nonaqueous electrolyte battery | |
KR101154883B1 (en) | Method for Production of Electrode Assembly with Improved Electrolyte Wetting Property | |
JP2001126678A (en) | Laminate polymer electrolyte battery | |
JP4108918B2 (en) | Thin secondary battery | |
JP2000353504A (en) | Laminate pack battery | |
JP2007122881A (en) | Bipolar battery, battery pack, and vehicle mounting those batteries | |
JPH11154534A (en) | Lithium ion secondary battery element | |
WO1999026308A1 (en) | Bonding agent for cells and cell using the same | |
JP2001068161A (en) | Stacked polymer electrolyte battery | |
JP2000260470A (en) | Polymer electrolyte battery | |
WO1999048164A1 (en) | Secondary battery and method for forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040520 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070502 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070723 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110803 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |