JP4070367B2 - Laminated polymer electrolyte battery and sheet battery manufacturing method - Google Patents

Laminated polymer electrolyte battery and sheet battery manufacturing method Download PDF

Info

Publication number
JP4070367B2
JP4070367B2 JP23643499A JP23643499A JP4070367B2 JP 4070367 B2 JP4070367 B2 JP 4070367B2 JP 23643499 A JP23643499 A JP 23643499A JP 23643499 A JP23643499 A JP 23643499A JP 4070367 B2 JP4070367 B2 JP 4070367B2
Authority
JP
Japan
Prior art keywords
electrode
polymer electrolyte
negative electrode
laminated
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23643499A
Other languages
Japanese (ja)
Other versions
JP2001068155A (en
JP2001068155A5 (en
Inventor
修 石田
修 渡辺
宏 山本
徹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP23643499A priority Critical patent/JP4070367B2/en
Publication of JP2001068155A publication Critical patent/JP2001068155A/en
Publication of JP2001068155A5 publication Critical patent/JP2001068155A5/en
Application granted granted Critical
Publication of JP4070367B2 publication Critical patent/JP4070367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Primary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シート形電池の一形態である積層形ポリマー電解質電池と、シート形電池の製造方法に関し、さらに詳しくは、特に携帯用電子機器、電気自動車、ロードレベリングなどの電源として使用するのに適した積層形ポリマー電解質電池と、金属箔を芯材とするラミネートフィルム外装体を有するシート形電池の製造方法に関する。
【0002】
【従来の技術】
シート形電池のような薄型の電池は、各種薄型製品への適用が可能であり、特に、ポリマー電解質を用いたシート形電池は、耐漏液性を含めた安全性、貯蔵性が優れているという特徴を有する。しかも、電極および電解質をシート状にすることができるため、A4版、B5版などの大面積でしかも薄形の電池の作製が可能になり、フレキシブルで機器の形状に合わせた電池を設計できるという、今までの電池にない特徴を持っていることから、電池の使用範囲が大きく広がっている。
【0003】
このポリマー電解質電池は、通常、アルミニウム箔を芯材にし、内面側に接着層となる熱融着性樹脂フィルムを配置したラミネートフィルムを外装体に用い、得ようとする電気容量に応じて、シート状の電極とシート状のポリマー電解質層とを積層した積層電極群を外装体で外装することによって、薄いシート形電池に仕上げられる。
【0004】
この積層形ポリマー電解質電池では、電極の積層枚数が少なく、電気容量や電気容量密度が低い場合、すなわち、内在するエネルギーが低い場合には、上記の優れた安全性が確保される。しかしながら、電極の積層枚数が多くなって、電気容量や電気容量密度が高くなると、安全性が充分でなくなり、釘刺しや圧壊などで電極同士が短絡した場合、大電流が流れ、発熱し、発煙、発火、破裂などの事故に至る場合のあることが判明した。
【0005】
上記のような問題は、短絡時に流れる大電流を積層電極群の外に流すとともに、熱の放散を速やかにし、蓄熱を少なくすることによって解決することができる。ところが、積層形ポリマー電解質電池の積層電極群は、熱伝導の悪いポリマー電解質層を介して正極と負極が対向し、それらを複数枚重ね、かつ、熱伝導の悪い熱融着性樹脂フィルムを内面側に配置した外装体で外装しているため、短絡などの発熱による電池内部での蓄熱が大きく、内部温度の上昇が大きくなって、発煙、発火、破裂などの事故に至るものと考えられる。
【0006】
【発明が解決しようとする課題】
本発明は、上記のようなシート形電池における従来技術の問題点を解決し、電極の集電体の厚さ、外装体の金属箔の厚さおよび電池構造などに工夫を凝らすことにより、高容量化した場合でも安全性を高め、安全性の高い積層形ポリマー電解質電池を提供することを目的とする。また、本発明は、前記積層形ポリマー電解質電池に代表される、金属箔を芯材とするラミネートフィルムを外装体とするシート形電池の製造において、前記外装体の金属箔に電極端子を電気的に接続する工程を有する場合に、その接続方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、正極集電体の少なくとも一方の面に正極合剤層を形成してなる正極と、負極集電体の少なくとも一方の面に負極合剤層を形成してなる負極とを、それぞれの間にポリマー電解質層を介在させて積層した積層電極群を金属箔を芯材とするラミネートフィルム外装体で外装する積層形ポリマー電解質電池であって、上記積層電極群の少なくとも一方の最外層の電極の電極集電体の厚さを30μm以上とし、その外面側には電極合剤層を形成せず、その電極集電体と同一極性の電極のリード部とを接続し、かつ、上記外装体の金属箔の厚さを30μm以上とし、他方の極性の電極端子と上記外装体の金属箔とを接続することによって、上記課題を解決したものである。
また、金属箔を芯材とするラミネートフィルムを外装体とするシート形電池の製造において、電極端子と外装体中の金属箔との接続を、超音波溶接により行うことを好適な態様とするものである。
【0008】
すなわち、上記のように、積層電極群の少なくとも一方の最外層の電極の電極集電体の厚さを30μmとし、その外面側には電極合剤層を形成せず、その電極集電体と同一極性の電極のリード部とを接続し、かつ外装体中の金属箔の厚さを30μm以上とし、他方の極性の電極端子と上記外装体中の金属箔とを接続することにより、釘刺しや圧壊などによる積層電極群内部での短絡より先に外部短絡させて、電池電圧を低下させ、化学反応による発熱を低減させることができる。しかも、上記外装体中の金属箔が積層電極群の外側に設けられていることや上記電極集電体が積層電極群の最外層に配置していることを利用して、それらの電極集電体や金属箔により放熱をスムーズに行わせることができる。したがって、上記のような構成をとることにより、高容量化した場合でも、安全性を高めることができ、安全性の高い積層形ポリマー電解質電池を提供することができる。また、電極端子と外装体中の金属箔との接続を、超音波溶接により行うことにより、ラミネートフィルムの最内層の熱融着性樹脂フィルムを剥がすという前処理なしでも、ラミネートフィルム中の金属箔と正極端子との接続ができる。
【0009】
【発明の実施の形態】
本発明において、積層電極群の最外層となる電極は正負極いずれの電極でもよいが、確実な短絡回路の形成という点から、より大きな面積を有する負極である方が好ましい(通常、積層形ポリマー電池では、過充電時に生成するリチウムデンドライトを防止する目的で、負極サイズを正極サイズよりも大きくしている)。そして、その電極の集電体の厚さは30μm以上あることが必要である。上記集電体の厚さが30μmより薄い場合は、例えば、釘刺しによって生じる短絡が原因で流れる大きな電流によって、その接触部分が局部的に発熱、溶融して電気短絡が形成されることにより短絡が解消され、その用をなさなくなってしまったり、もうひとつの役目である放熱促進作用が低下して、放熱が遅くなって、蓄熱が大きくなるため、発煙、発火に至ってしまうおそれがある。そして、その電極集電体の材質としては、特に限定されるものではないが、例えば、銅、ニッケル、ステンレス鋼などが好ましい。
【0010】
他方の電極(通常、正極の場合が多い)の電極端子と接続する外装体中の金属箔も同様で、厚さが30μm以上であることが必要であり、厚さが30μmより薄い場合は、上記最外層の電極集電体の場合と同様の理由により、短絡の確実な形成や放熱が充分でなくなってしまう。この外装体中の金属箔は電解質と接することがないので、その材質は、特に限定されることなく種々のものを採用し得るが、例えば延展性に富むアルミニウム箔などが特に好ましい。
【0011】
上記のように積層電極群の最外層の電極集電体や外装体中の金属箔は厚さが30μm以上であることが必要であるが、あまりにも厚くなりすぎると電気容量密度を低下させ、積層形ポリマー電解質電池の特徴を失わせるおそれがあるので、その厚さは200μm以下が好ましい。
【0012】
上記のような積層電極群の最外層の電極の電極集電体や外装体の金属箔は、必ずしも非多孔質状である必要はなく、パンチングメタル、網状あるいはラス状メタルなどの多孔質状のものであってもよい。また、本発明において、積層電極群の最外層の電極の電極集電体とそれと同一極性の電極のリード部とを接続するとか、他方の極性の電極端子と外装体中の金属箔とを接続するというのは、電気的に接続することを意味し、積層電極群の最外層の電極の電極集電体とそれと同一極性の電極のリード部とを直接接続したり、他方の極性の電極端子と外装体中の金属箔とを直接接続する必要はなく、それらの間にリード体などが介在していてもよいし、また、上記電極集電体も他のものと同様にリード部を設け、それと同一極性の電極のリード部を接続するようにしてもよい。
【0013】
本発明において、積層電極群の作製にあたり、正極、負極、ポリマー電解質層はそれぞれ別々に作製したものを積層してもよいが、あらかじめ正極または負極の少なくとも一方の電極をポリマー電解質層で包囲して、電極とポリマー電解質層とを一体化しておくことが好ましい。この場合の形態としては、例えば、ポリマー電解質層の支持体となる多孔質シートを袋状にして電極を包囲した後、その全体にポリマー電解質の前駆体であるゲル化成分を含有する電解液を含浸させ、ゲル化して、ポリマー電解質を含有した電極と支持体との一体化物を作製する場合や、ポリマー電解質を含有した電極を、多孔質シートの支持体を内在した、短冊状のポリマー電解質シートで挟み込むことによって、電極とポリマー電解質層とを一体化する場合などが挙げられる。さらに、後者の電極を短冊状のポリマー電解質シートで挟み込むことにより電極をポリマー電解質層で包囲する場合、1枚の短冊状のポリマー電解質シートをそのほぼ中央部で折り返してそのポリマー電解質シートの間に電極を挟み込むことにより電極をポリマー電解質層で包囲する場合と、電極を2枚の短冊状のポリマー電解質シートの間に挟み込むことにより電極をポリマー電解質層で包囲する場合とがある。
【0014】
上記の場合において、ポリマー電解質の支持体となる多孔質シートとしては、例えば、不織布や微孔性フィルムなどが用いられる。上記不織布としては、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどの不織布などが挙げられる。また、微孔性フィルムとしては、例えば、ポリプロピレン、ポリエチレン、エチレン−プロピレン共重合体の微孔性フィルムなどが挙げられる。
【0015】
不織布は、空孔率が高く、ゲル化成分を含有する電解液を含浸させやすいので、好適に使用できることから、不織布を支持体として用いる場合について詳述すると、この不織布としては、例えば、坪量が12g/m2 で厚さが30μmという非常に薄い不織布を用いることができる。
【0016】
このような不織布は、薄いために引っ張り強度をはじめとする機械的強度が低く、単体では取り扱いにくいが、例えば、袋状にし、その袋状の不織布に電極を収容することにより電極を包囲して、不織布と電極とを一体化させることにより電極の強度で不織布の強度不足を補うことができる。また、袋状にしなくても、短冊状の不織布をそのほぼ中央部で折り返してその不織布の間に電極を挟み込むことにより電極を不織布で包囲して電極と不織布とを一体化させることや2枚の短冊状の不織布を重ね合わせその一端をシールしてその不織布の間に電極を挟み込むことにより電極を支持体で包囲して電極と不織布とを一体化させることによっても、電極の強度で不織布の強度不足を補うことができ、電池組立時の作業性の向上や内部抵抗の減少、負荷特性の向上を達成できる。また、支持体として微孔性フィルムを用いる場合も、上記不織布の場合と同様である。
【0017】
上記のように、不織布などの多孔質シートからなる支持体で電極を包囲して電極と支持体とを一体化し、それにゲル化成分を含有する電解液を含浸させてゲル化させることにより、電極とポリマー電解質層との間が、それぞれ単独でゲル化して電極とポリマー電解質シートにしてから積層するよりも、界面の接着状態が良好で、層間に気泡、異物などが介在することが少ないので、界面でのイオン移動がスムーズになり、正極と負極との間の反応性が向上する。また、正極、負極のいずれかの一方の電極を支持体で包囲することによって、物理的セパレートの役割も果たすことができる。
【0018】
そして、正極または負極のいずれかの一方の電極をポリマー電解質層で包囲して電極とポリマー電解質層とを一体化させればよいが、その際、正極をポリマー電解質層で包囲して正極とポリマー電解質層とを一体化させると、負極をポリマー電解質層で包囲する場合より、電池容量を大きくすることができる。すなわち、通常、デンドライトの発生の防止や安全性の確保から負極を正極より大きくすることが一般に行われているので正極をポリマー電解質層で包囲すれば、負極をポリマー電解質層で包囲するより、ポリマー電解質層の寸法を小さくでき、その結果、電池容量を大きくすることができる。また、負極をポリマー電解質層で包囲して負極とポリマー電解質層とを一体化させる場合も、負極とポリマー電解質層との界面状態を均一にすることができるので、正極の場合と同様に、反応性の向上に効果がある。
【0019】
さらに、正極および負極の両電極をポリマー電解質層で包囲すると、そのぶんポリマー電解質層の厚みは増加するが、両電極ともポリマー電解質層とが一体化するので、正極、負極のいずれについても分極を減少させることができ、充放電時の反応をスムーズに進行させることができるので、負荷特性を大幅に向上させることができる。
【0020】
本発明において、電極とポリマー電解質層との一体化とは、電極とポリマー電解質層との間に気泡や異物などを含まないで、電極とポリマー電解質層とを密接させることを意味していて、不可分に接着させることなどを意味するものではない。
【0021】
上記不織布などの多孔質シートからなる支持体を袋状にする場合、その袋状体は、例えば、四角形状のものとして説明すると、通常、一辺が開口し、他の三辺がシールされているが、そのシールにあたって、連続的にシールすることは必ずしも要求されず、不連続にシールしたものであってもよい。
【0022】
電極を袋状の支持体に収容するにあたって、あらかじめ支持体を袋状にしておくことは要求されず、電極を短冊状の支持体(例えば、長さが電極の長さの2倍以上で、幅が電極の幅より広いサイズの短冊状の支持体)の長さ方向のほぼ中央部より一方の側に載置し、他方の幅を折返し(つまり、電極がほぼ中央部で折り返した支持体間に挟み込まれる状態にし)、その幅方向の両側部を連続的または不連続的にシールして、電極が袋状の支持体に収容された状態にすればよい。
【0023】
また、2枚の支持体を重ね合わせてその一端をシールしてその間に電極を挟み込む場合も、あらかじめシールしておくことは要求されず、電極を1枚の短冊状の支持体(例えば、長さが電極の長さより長く、幅が電極の幅より広いサイズの短冊状の支持体)に載置し、もう1枚の短冊状の支持体をその上にのせ、それらの支持体の一端を連続的または不連続的にシールして、電極が支持体の間に挟み込まれた状態にすればよい。
【0024】
ポリマー電解質層を構成するための電解液としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイト、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどの有機溶媒に、例えば、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiCF3 SO3 、LiC4 9 SO3 、LiCF3 CO2 、Li2 2 4 (SO3 2 、LiN(CF3 SO2 2 、LiC(CF3 SO2 3 、LiCn 2n+1 SO3 (n≧2)、LiN(RfOSO2 2 〔ここでRfはフルオロアルキル基〕などの無機イオン塩を溶解させることによって調製したものが使用される。この無機イオン塩の電解液中の濃度としては、0.5〜1.5mol/l、特に0.9〜1.25mol/lが好ましい。
【0025】
また、電解液をポリマー電解質に変化させるゲル化成分としては、例えば、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリアクリロニトリル、フッ化ビニリデン−六フッ化プロピレン共重合体などのように直鎖状のポリマーを加熱することにより電解液に溶解させた後、冷却することによって電解液をゲル化させるポリマーや、活性光線で重合可能な二重結合を一分子あたり2個以上含みモノマーまたはプレポリマーを主成分とする架橋性組成物などが挙げられる。
【0026】
上記活性光線で重合可能なモノマーとしては、まず、二重結合を一分子あたり2個有するモノマー(二官能架橋性モノマー)として、例えば、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、エトキシ化ビスフェノールAジアクリレート、ノボラックジアクリレート、プロポキシ化ネオペンチルグリコールジアクリレートなどの二官能アクリレートおよび上記アクリレートと同様の二官能メタクリレートなどが挙げられる。
【0027】
また、活性光線で重合可能な二重結合を一分子あたり3個有するモノマー(三官能架橋性モノマー)としては、例えば、トリス(2−ヒドロキシエチル)イソシアヌレートトリアクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、プロポキシ化グリセリルトリアクリレート、カプロラクトン変性トリメチロールプロパンアクリレートなどの三官能アクリレートおよび上記アクリレートと同様の三官能メタクリレートなどが挙げられる。
【0028】
そして、活性光線で重合可能な二重結合を一分子あたり4個以上有するモノマー(四官能以上の架橋性モノマー)としては、例えば、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートなどの四官能以上のアクリレートおよび上記アクリレートと同様の四官能以上のメタクリレートなどが挙げられる。
【0029】
また、活性光線で重合可能な二重結合を2個以上、好ましくは4個以上有するプレポリマーとしては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレートのプレポリマーなどが挙げられ、前記のモノマーに代えて用いることができる。
【0030】
本発明において、上記の活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーは、主成分として用いられておればよく、例えばゲル硬さなどの物性調整のために一官能モノマーなども併用することができる。また、二官能モノマーと六官能モノマーとを混合するというような使い方もできる。
【0031】
本発明において、活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーを主成分とする架橋性組成物とは、上記架橋性組成物を活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーのみで構成する場合と、一官能モノマーなどと活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーとを併用する場合の両者を含むが、後者のように活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーを一官能モノマーなどと併用する場合、その架橋性組成物において、活性光線で重合可能な二重結合を一分子あたり2個以上有するモノマーまたはプレポリマーが50重量%以上、特に70重量%以上であることが好ましい。また、架橋性組成物はそれを構成するものがすべて架橋性でなくてもよく、全体として架橋性であればよく、例えば、必要に応じて他の成分を添加することもできる。
【0032】
そして、必要に応じ、重合開始剤として、例えば、ベンゾイン類、ベンゾインアルキルエーテル類、ベンゾフェノン類、ベンゾイルフェニルフォスフィンオキサイド類、アセトフェノン類、チオキサントン類、アントラキノン類などを使用することができる。さらに重合開始剤の増感剤としてアルキルアミン類、アミノエステル類なども使用することができる。
【0033】
本発明において、活性光線としては、例えば、紫外線(UV)、電子線(EB)、可視光線、遠紫外線などを使用することができる。
【0034】
【実施例】
つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明は実施例に例示のもののみに限定されることはない。
【0035】
実施例1
まず、この実施例1において用いる正極および負極の作製、ゲル化成分含有電解液の調製について先に説明する。
【0036】
正極の作製:
正極活物質であるLiCoO2 80重量部、導電助剤であるアセチレンブラック10重量部、バインダーであるポリフッ化ビニリデン10重量部とをN−メチルピロリドンを溶剤として均一になるように混合し、正極合剤含有ペーストを調製した。この正極合剤含有ペーストを正極集電体となる厚さ20μmのアルミニウム箔の両面に塗布し、乾燥した後、カレンダー処理を行って、全厚が130μmになるように正極合剤層の厚みを調整し、正極合剤層形成部分の面積が70mm×40mmになるように切断して正極を作製した。ただし、上記正極の作製にあたっては、アルミニウム箔の一部に正極合剤含有ペーストを塗布せず、アルミニウム箔の露出部を残し、そのアルミニウム箔の露出部を正極端子などとの接続のためのリード部とした。この正極の断面図を図1に模式的に示す。図1に示すように、正極1は正極集電体1aの両面に正極合剤層1bを形成することによって作製され、そのリード部1cは上記正極集電体1aを構成するアルミニウム箔の一部に正極合剤含有ペーストを塗布せず、アルミニウム箔を露出させることによって構成されている。
【0037】
負極Aの作製:
負極活物質である黒鉛90重量部とポリフッ化ビニリデン10重量部とをN−メチルピロリドンを溶剤として均一になるように混合して負極合剤含有ペーストを調製し、厚さ10μmの銅箔からなる負極集電体の両面に塗布し、乾燥した後、カレンダー処理を行って全厚が130μmになるように負極合剤層の厚みを調整し、負極合剤層形成部分の面積が72mm×42mmになるように切断して負極Aを作製した。上記切断は負極端子との接続部分となるリード部を電極の幅方向に対して中央位置になるようにした。また、上記正極の場合と同様に、負極Aの作製にあたっても、銅箔の一部には負極合剤含有ペーストを塗布せず、銅箔の露出部を残し、その銅箔の露出部を負極端子などとの接続のためのリード部とした。このようにして作製した負極Aは、負極合剤層が負極集電体の両面に形成された、いわゆる両面塗布負極と呼ばれるものである。この負極Aの断面図を図2に模式的に示す。図2に示すように、負極Aは負極集電体2aの両面に負極合剤層2bを形成することによって作製され、そのリード部2cは上記負極集電体2aを構成する銅箔の一部に負極合剤含有ペーストを塗布せず、銅箔を露出させて構成されている。なお、図示にあたっては、この負極Aおよび後述の負極Bとも同一の参照符号2を付して示す。
【0038】
負極Bの作製:
上記負極Aの場合と同様の負極合剤含有ペーストを、厚さ50μmの銅箔からなる負極集電体の片面に塗布し、乾燥した後、カレンダー処理を行って全厚が110μmになるように負極合剤層の厚みを調整し、負極合剤層形成部分の面積が72mm×42mmになるように切断して負極Bを作製した。また、この負極Bの作製にあたっても、銅箔の一部には負極合剤含有ペーストを塗布せず、銅箔の露出部を残し、その銅箔の露出部を負極端子などとの接続のためのリード部とした。このようにして作製した負極Bは、負極合剤層が負極集電体の片面のみに形成された、いわゆる片面塗布負極と呼ばれているものである。この負極Bの断面図を図3に模式的に示す。図3に示すように、この負極Bは負極集電体2aの片面のみに負極合剤層2bを形成することによって作製されている。
【0039】
ゲル化成分含有電解液の調製:
プロピレンカーボネートとエチレンカーボネートとの体積比1:1の混合溶媒にLiPF6 を1.22mol/l溶解させることによって調製した電解液に、開始剤として2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド〔商品名:ルシリンTPO、ビーエーエスエフジャパン(株)製〕をあらかじめモノマー成分に対して2重量%加えて溶解しておき、そこにジペンタエリスリトールヘキサアクリレートを使用開始10分前に濃度が6重量%になるように加えて混合し、ゲル化成分を含有する電解液を調製した。このゲル化成分を含有する電解液を上記標題のように「ゲル化成分含有電解液」と簡略化して表現する。
【0040】
上記のように作製した正極をポリマー電解質層の支持体となる不織布で包んで、正極と支持体とを一体化しておき、その全体にゲル化成分含有電解液を含浸させ、ゲル化して、ポリマー電解質保持正極ユニットを得た。負極は不織布で包むことなく、ゲル化成分含有電解液を含浸させ、ゲル化して、ポリマー電解質保持負極を得た。それらの作製方法の詳細を次に示す。
【0041】
ポリマー電解質保持正極ユニットの作製:
支持体としては、厚さ30μm、坪量12g/mのポリブチレンテレフタレート不織布〔NKK社製、MB1230(商品名)〕を用い、これを長さ×幅が144mm×42mmの短冊状に切断した。
【0042】
そして、正極の正極合剤層形成部分とリード部とにまたがるようにして、厚さ50μm、幅3mmのポリイミドテープをその両面から貼着し、短絡の防止および端子の強度保持を図った。また、リード部の正極端子との接続に用いる部分のすべての表面を、熱により接着面の粘着性が失われる熱剥離テープで被覆した後、この正極を上記ポリブチレンテレフタレート不織布の長さ方向の中央部より左側の部分に載置し、右側の部分を折り返して正極を覆った後、その幅方向の両側部を熱融着器〔商品名:ポリシーラー、富士イパルス(株)製〕でシールして支持体としてのポリブチレンテレフタレート不織布を袋状にし、両者を密接させて正極と支持体とを一体化した。この正極と支持体とを一体化した正極ユニットを前記ゲル化成分含有電解液に減圧下で1分間浸漬して正極ユニットにゲル化成分含有電解液を含浸させた後、ポリエチレン製の袋に入れて密閉した。つぎに、そのポリエチレン製袋の両面から、フュージョンUVシステムズ・ジャパン(株)製の紫外線照射装置を用いて、紫外線を1W/cm2 の照度で10秒間照射し、電解液中のモノマー成分を重合させるとともに、電解液をゲル化してゲル状ポリマー電解質とした。このポリマー電解質層と正極との一体化物を袋から取り出し、そのリード部の正極端子との接続に用いる部分に150℃の熱風を吹き付けることによって熱剥離テープを該部分から剥がし、ポリマー電解質保持正極ユニットを得た。
【0043】
ポリマー電解質保持負極Aの作製:
上記のように作製した負極Aの負極合剤層形成部分とリード部とにまたがるようにして、厚さ50μm、幅3mmのポリイミドテープをその両面から貼着し、短絡の防止および端子の強度保持と図った。また、リード部の負極端子との接続に用いる部分のすべての表面を、熱により接着面の粘着性が失われる熱剥離テープで被覆した後、この負極Aを前記ゲル化成分含有電解液に減圧下で1分間浸漬して、ゲル化成分含有電解液を含浸させた後、ポリエチレン製の袋に入れて密閉した。つぎに、ポリエチレン製の袋の両面から、フュージョンUVシステムズ・ジャパン(株)製の紫外線照射装置を用いて、紫外線を1W/cm2 の照度で10秒間照射し、電解液中のモノマー成分を重合させるとともに、電解液をゲル化してゲル状ポリマー電解質とした。このゲル状ポリマー電解質を保持させた負極Aを袋から取り出し、そのリード部の負極端子との接続に用いる部分に150℃の熱風を吹き付けることによって熱剥離テープを該部分から剥がし、ポリマー電解質保持負極Aを得た。
【0044】
ポリマー電解質保持負極Bの作製:
上記のように作製した負極Bの負極合剤層形成部分とリード部とにまたがるようにして、厚さ50μm、幅3mmのポリイミドテープをその両面から貼着し、短絡の防止および端子の強度保持と図った。また、リード部の負極端子との接続に用いる部分のすべての表面を、熱により接着面の粘着性が失われる熱剥離テープで被覆した後、この負極Bを前記ゲル化成分含有電解液に減圧下で1分間浸漬して、ゲル化成分含有電解液を含浸させた後、ポリエチレン製の袋に入れて密閉した。つぎに、そのポリエチレン製袋の外側から上記負極Bの負極合剤層形成部分が配置する側にフュージョンUVシステムズ・ジャパン(株)製の紫外線照射装置を用いて、紫外線を1W/cm2 の照度で10秒間照射し、電解液中のモノマー成分を重合させるとともに、電解液をゲル化してゲル状ポリマー電解質とした。このゲル状ポリマー電解質を保持させた負極Bを袋から取り出し、そのリード部の負極端子との接続部分に用いる部分に150℃の熱風を吹き付けることによって熱剥離テープを該部分から剥がし、ポリマー電解質保持負極Bを得た。
【0045】
上記のようにして作製したポリマー電解質保持正極ユニット5枚と、ポリマー電解質保持負極A4枚およびポリマー電解質保持負極B2枚を用意し、ポリマー電解質保持負極B、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極A、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極A、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極A、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極A、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極A、ポリマー電解質保持正極ユニット、ポリマー電解質保持負極Bの順に積層して積層電極群を得た。この時、2枚のポリマー電解質保持負極Bの負極合剤層形成部分はいずれも積層電極群の内部側を向くようにして積層した。つまり、2枚のポリマー電解質保持負極Bの厚さ50μmの銅箔からなる負極集電体をいずれも積層電極群の最外層に配置するようにした。
【0046】
上記のようにして作製した積層電極群を図4に示す。図4に示すように、この積層電極群は、5枚のポリマー電解質保持正極ユニット10と6枚のポリマー電解質保持負極20とで構成され、その積層電極群の最外層のポリマー電解質保持負極20は上側、下側とも負極Bに基づくものであり、この負極Bの電極集電体には厚さ50μmの銅箔が用いられ、負極合剤層はその片面にのみ形成され、その負極合剤層はいずれも積層電極群の内部側に向かって配置し、負極集電体は積層電極群の外部側に向かって配置している。そして、内側の4枚のポリマー電解質保持負極20は負極Aに基づくものであり、これらの負極Aの負極集電体には厚さ10μmの銅箔が用いられ、負極合剤層はその両面に形成されている。そして、これら6枚のポリマー電解質保持負極20の間にはそれぞれポリマー電解質保持正極ユニット10が配置し、積層電極群は5枚のポリマー電解質保持正極ユニット10と6枚のポリマー電解質保持負極20(ただし、そのうちの最外層の2枚は負極Bに基づくもので、内側の4枚は負極Aに基づくものである)とで構成されている。そして、ポリマー電解質保持正極ユニット10の周囲の白抜き部分はポリマー電解質保持正極ユニット10の作製にあたって正極の周囲に支持体として不織布を配置したことを示すために図示したものである。
【0047】
上記積層電極群を外装する外装体としては、図5に示すように、保護フィルム4a、金属箔4bおよび熱融着性樹脂フィルム4cからなるラミネートフィルムが用いられ、本実施例の外装体4では、保護フィルム4aとして厚さ30μmのナイロンフィルムが用いられ、金属箔4bとして厚さ50μmのアルミニウム箔が用いられ、熱融着性樹脂フィルム4cとして厚さ30μmの変性ポリオレフィンフィルムが用いられて、金属箔4bのアルミニウム箔は水分やガスを透過させないという本来の役割に加えて、本発明では短絡形成板兼放熱促進板としての役割も担っている。そして、保護フィルム4aのナイロンフィルムは上記アルミニウム箔が外部から傷や腐食を受けないようにするための保護層としての役割を果たすものであり、熱融着性樹脂フィルム4cの変性ポリオレフィンフィルムは熱融着して積層電極群をシールする役割を担っている。
【0048】
そして、この外装体4は、上記積層電極群の外装にあたり2枚用いられ、両者とも同じ構成のものであるが、そのうちの1枚は平らなプレート状で、他の1枚は上記積層電極群を収容しやすくするために鍔付きの容器状に成形されていて、その2枚の外装体4、4は互いの変性ポリオレフィンフィルムが内側に向き合うようにしつつ、その間に積層電極群を配置し、周縁部の変性ポリオレフィンフィルムを加熱して熱融着させることによりシールする。
【0049】
そして、上記のように外装体4で外装された積層電極群の負極のリード部2cは、図6に示すように並列接続されてまとめられ、ニッケル製の負極端子6の一方の端部と接続され、負極端子6の他方の端部は外装体4のシール部分から外部に引き出されている。
【0050】
一方、正極側でも、図7に示すように、そのリード部1cは並列接続され、そのリード部1cと外装体4のアルミニウム箔とは正極端子5の一方の端部に接続され、正極端子5の他方の端部は外装体4のシール部分を通って外部に引き出されている。なお、この正極端子5も前記負極端子6も同じ方向に引き出されているが、両者の間には距離があけられていて(つまり、図6の切断面と図7の切断面の位置が異なっている)、通常の条件下では正極端子5と負極端子6とが接触して短絡を起こすようなことはない。
【0051】
図8は図7のA部(外装体4のシール部分で正極端子5が引き出されているところ)の要部拡大図であり、図8に基づき、外装体4の金属箔4b(アルミニウム箔)と正極端子5との接続について説明すると、正極端子5が配置している外装体4のシール部分を超音波加熱して外装体4の内層の熱融着樹脂フィルム4cとしての変性ポリオレフィンフィルムを溶融させて外装体4の金属箔4b(アルミニウム箔)と正極端子5とを接続している。
【0052】
比較例1
積層電極群の最外層に配置する負極の負極集電体として厚さ10μmの銅箔を用い、また、正極端子と外装体中のアルミニウム箔との接続をしなかった以外は、実施例1と同様に積層形ポリマー電解質電池を作製した。
【0053】
上記実施例1および比較例1の電池の表面に熱電対を貼り付け、Vブロックの上に載せ、軸部の直径3mmのステンレス鋼製釘を5mm/秒の速度で積層電極群に対して直角に突き刺し、電池の最高到達温度を測定した。その結果を表1に示す。
【0054】
【表1】

Figure 0004070367
【0055】
表1に示すように、実施例1の電池は最高到達温度が135℃であって発煙・発火がなかったが、比較例1の電池は最高到達温度が200℃以上であって、発熱反応が暴走するとされている150℃よりもかなり高くなり、また、発煙・発火を起こすものがあった。
【0056】
上記実施例では、外装体中の金属箔(アルミニウム箔)と正極端子との接続を超音波溶接で行ったが、上記の超音波溶接以外にも、抵抗溶接、かしめ、ネジ止めなどによって行うことができる。ただし、超音波溶接が特に好ましい。その理由は、外装体のラミネートフィルムの最内層の熱融着性樹脂フィルム(変性ポリオレフィンフィルム)を剥がすという前処理なしでも、超音波を外装体の外側から照射することによって変性ポリオレフィンフィルムが溶融し、外装体のラミネートフィルム中のアルミニウム箔と正極端子との接続ができるからである。なお、上記実施例では、超音波溶接に際して、超音波発信器としてブランソン社製947M型を用い、4kg/cm2 の加圧下で、80ジュールのウエルドエネルギーをアンプリチュード80%で2秒間印加したが、この条件は状況にあわせて種々に変更できる。
【0057】
【発明の効果】
以上説明したように、本発明では、釘刺しや圧壊によって短絡した場合でも、発煙・発火を防ぎ、安全性の高い積層形ポリマー電解質電池を提供することができた。
【図面の簡単な説明】
【図1】本発明の実施例1の積層形ポリマー電解質電池に用いる正極を模式的に示す断面図である。
【図2】本発明の実施例1の積層形ポリマー電解質電池に用いる負極Aを模式的に示す断面図である。
【図3】本発明の実施例1の積層形ポリマー電解質電池に用いる負極Bを模式的に示す断面図である。
【図4】本発明の実施例1の積層形ポリマー電解質電池に用いる積層電極群を模式的に示す断面図である。
【図5】本発明の実施例1の積層形ポリマー電解質電池に用いる外装体を模式的に示す断面図である。
【図6】本発明の実施例1の積層形ポリマー電解質電池において、負極のリード部と負極端子との接続状態を模式的に示す断面図である。
【図7】本発明の実施例1の積層形ポリマー電解質電池において、正極のリード部と正極端子との接続状態を模式的に示す断面図である。
【図8】図7のA部の要部拡大図である。
【符号の説明】
1 正極
1a 正極集電体
1b 正極合剤層
2 負極
2a 負極集電体
2b 負極合剤層
2c リード部
3 ポリマー電解質層
4 外装体
4a 保護フィルム
4b 金属箔
4c 熱融着性樹脂フィルム
5 正極端子
6 負極端子
10 ポリマー電解質保持正極ユニット
20 ポリマー電解質保持負極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated polymer electrolyte battery, which is an embodiment of a sheet battery, and a method for manufacturing the sheet battery, and more particularly to use as a power source for portable electronic devices, electric vehicles, road leveling, and the like. The present invention relates to a suitable laminated polymer electrolyte battery and a method for producing a sheet battery having a laminate film outer package having a metal foil as a core material.
[0002]
[Prior art]
A thin battery such as a sheet battery can be applied to various thin products, and in particular, a sheet battery using a polymer electrolyte is excellent in safety and storage properties including leakage resistance. Has characteristics. In addition, since the electrode and the electrolyte can be formed into a sheet shape, it is possible to produce a thin battery having a large area such as A4 plate and B5 plate, and it is possible to design a battery that is flexible and adapted to the shape of the device. Because it has characteristics not found in conventional batteries, the range of use of batteries has greatly expanded.
[0003]
This polymer electrolyte battery is usually a laminated film in which an aluminum foil is used as a core material and a heat-fusible resin film serving as an adhesive layer is arranged on the inner surface side for an exterior body. The laminated electrode group obtained by laminating the electrode in the form of a sheet and the polymer electrolyte layer in the form of a sheet is covered with an outer package to complete a thin sheet battery.
[0004]
In this laminated polymer electrolyte battery, when the number of laminated electrodes is small and the electric capacity and electric capacity density are low, that is, when the inherent energy is low, the above-described excellent safety is ensured. However, as the number of stacked electrodes increases and the capacitance and density increase, safety is not sufficient, and when the electrodes are short-circuited due to nail penetration or crushing, a large current flows, heat is generated, and smoke is emitted. It has been found that there may be accidents such as ignition and rupture.
[0005]
The problems as described above can be solved by flowing a large current flowing at the time of a short circuit outside the stacked electrode group, speeding up heat dissipation, and reducing heat storage. However, in the laminated electrode group of the laminated polymer electrolyte battery, the positive electrode and the negative electrode face each other through the polymer electrolyte layer having poor heat conduction, and a plurality of them are stacked, and the heat-fusible resin film having poor heat conduction is disposed on the inner surface. It is considered that the battery is covered with the outer casing disposed on the side, so that heat storage inside the battery due to heat generation such as a short circuit is large, and the internal temperature increases greatly, leading to accidents such as smoke, ignition, and explosion.
[0006]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art in the sheet type battery as described above, and devise the thickness of the current collector of the electrode, the thickness of the metal foil of the exterior body, the battery structure, etc. An object of the present invention is to provide a laminated polymer electrolyte battery having high safety and high safety even when the capacity is increased. Further, the present invention provides an electrode terminal electrically connected to the metal foil of the exterior body in the manufacture of a sheet-type battery having a laminate film having a metal foil as a core as represented by the laminated polymer electrolyte battery. It is an object of the present invention to provide a connection method when the method includes a step of connecting to the connection.
[0007]
[Means for Solving the Problems]
The present invention comprises a positive electrode formed by forming a positive electrode mixture layer on at least one surface of a positive electrode current collector, and a negative electrode formed by forming a negative electrode mixture layer on at least one surface of the negative electrode current collector, A laminated polymer electrolyte battery in which a laminated electrode group laminated with a polymer electrolyte layer interposed between them is covered with a laminated film outer package having a metal foil as a core material, wherein the outermost layer of at least one of the laminated electrode group The thickness of the electrode current collector is 30 μm or more, no electrode mixture layer is formed on the outer surface thereof, the electrode current collector is connected to the lead portion of the electrode of the same polarity, and the exterior The thickness of the metal foil of the body is set to 30 μm or more, and the above problem is solved by connecting the electrode terminal of the other polarity and the metal foil of the outer package.
Further, in the manufacture of a sheet-type battery having a laminate film having a metal foil as a core as an exterior body, it is preferable that the electrode terminal and the metal foil in the exterior body be connected by ultrasonic welding. It is.
[0008]
That is, as described above, the thickness of the electrode current collector of at least one outermost layer electrode of the laminated electrode group is 30 μm, and no electrode mixture layer is formed on the outer surface side of the electrode current collector. By connecting the lead part of the electrode of the same polarity, the thickness of the metal foil in the exterior body is 30 μm or more, and connecting the electrode terminal of the other polarity and the metal foil in the exterior body, nail penetration It is possible to reduce the battery voltage and reduce the heat generated by the chemical reaction by short-circuiting externally before short-circuiting inside the laminated electrode group due to or collapse. In addition, by utilizing the fact that the metal foil in the outer package is provided outside the laminated electrode group and that the electrode current collector is disposed on the outermost layer of the laminated electrode group, Heat dissipation can be performed smoothly by the body and the metal foil. Therefore, by adopting the configuration as described above, safety can be improved even when the capacity is increased, and a highly safe laminated polymer electrolyte battery can be provided. In addition, the metal foil in the laminate film can be connected to the metal foil in the exterior body by ultrasonic welding without the pretreatment of peeling off the innermost heat-sealable resin film of the laminate film. Can be connected to the positive terminal.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the electrode serving as the outermost layer of the laminated electrode group may be either positive or negative electrode, but is preferably a negative electrode having a larger area from the viewpoint of forming a reliable short circuit (usually a laminated polymer). In the battery, the negative electrode size is made larger than the positive electrode size for the purpose of preventing lithium dendrite generated during overcharge). And the thickness of the collector of the electrode needs to be 30 micrometers or more. When the thickness of the current collector is less than 30 μm, for example, due to a large current flowing due to a short circuit caused by nail penetration, the contact part generates heat and melts locally to form an electrical short circuit. May be eliminated, and the use of that may be reduced, or the heat radiation promoting action, which is another role, may be reduced, heat radiation will be slowed down, and heat storage will increase, leading to smoke and fire. And as a material of the electrode electrical power collector, although it does not specifically limit, For example, copper, nickel, stainless steel, etc. are preferable.
[0010]
Similarly, the metal foil in the exterior body connected to the electrode terminal of the other electrode (usually a positive electrode in many cases) needs to have a thickness of 30 μm or more, and if the thickness is less than 30 μm, For the same reason as in the case of the outermost electrode current collector, reliable formation of a short circuit and heat dissipation are not sufficient. Since the metal foil in the exterior body does not come into contact with the electrolyte, the material thereof is not particularly limited, and various materials can be adopted. For example, an aluminum foil having a high spreadability is particularly preferable.
[0011]
As described above, the outermost electrode current collector of the laminated electrode group and the metal foil in the exterior body need to have a thickness of 30 μm or more, but if the thickness is too thick, the capacitance density is reduced. Since the characteristics of the laminated polymer electrolyte battery may be lost, the thickness is preferably 200 μm or less.
[0012]
The electrode current collector of the outermost electrode of the laminated electrode group as described above and the metal foil of the exterior body do not necessarily need to be non-porous, but are porous such as punching metal, net-like or lath metal. It may be a thing. In the present invention, the electrode current collector of the outermost layer electrode of the laminated electrode group and the lead portion of the electrode having the same polarity are connected, or the electrode terminal of the other polarity is connected to the metal foil in the outer package. This means that the electrodes are electrically connected, and the electrode current collector of the outermost layer electrode of the stacked electrode group and the lead portion of the electrode having the same polarity are directly connected, or the electrode terminal of the other polarity There is no need to directly connect the metal foil in the exterior body, a lead body or the like may be interposed between them, and the electrode current collector is provided with a lead portion in the same manner as the others. The lead portion of the electrode having the same polarity as that may be connected.
[0013]
In the present invention, in the production of the laminated electrode group, the positive electrode, the negative electrode, and the polymer electrolyte layer may be laminated separately, but at least one of the positive electrode and the negative electrode is previously surrounded by the polymer electrolyte layer. The electrode and the polymer electrolyte layer are preferably integrated. As a form in this case, for example, after enclosing the electrode in a bag-like porous sheet serving as a support for the polymer electrolyte layer, an electrolytic solution containing a gel component that is a precursor of the polymer electrolyte is formed on the whole. A strip-shaped polymer electrolyte sheet that is impregnated and gelled to produce an integrated product of a polymer electrolyte-containing electrode and a support, or an electrode that contains a polymer electrolyte, and a porous sheet support. For example, the electrode and the polymer electrolyte layer may be integrated by sandwiching between the electrodes. Furthermore, when the electrode is surrounded by a polymer electrolyte layer by sandwiching the latter electrode with a strip-shaped polymer electrolyte sheet, the single strip-shaped polymer electrolyte sheet is folded back at a substantially central portion between the polymer electrolyte sheets. There are cases where the electrode is surrounded by a polymer electrolyte layer by sandwiching the electrode, and cases where the electrode is surrounded by a polymer electrolyte layer by sandwiching the electrode between two strip-shaped polymer electrolyte sheets.
[0014]
In the above case, as the porous sheet serving as the support for the polymer electrolyte, for example, a nonwoven fabric or a microporous film is used. Examples of the nonwoven fabric include nonwoven fabrics such as polypropylene, polyethylene, polyethylene terephthalate, and polybutylene terephthalate. Examples of the microporous film include polypropylene, polyethylene, and a microporous film of an ethylene-propylene copolymer.
[0015]
Since the nonwoven fabric has a high porosity and is easily impregnated with an electrolytic solution containing a gelling component, it can be suitably used. Therefore, when the nonwoven fabric is used as a support, the nonwoven fabric is, for example, a basis weight. Is 12g / m 2 A very thin nonwoven fabric having a thickness of 30 μm can be used.
[0016]
Such a nonwoven fabric is thin and has low mechanical strength, including tensile strength, and is difficult to handle by itself.For example, it is formed into a bag shape and encloses the electrode by accommodating the electrode in the bag-shaped nonwoven fabric. By integrating the nonwoven fabric and the electrode, the strength of the electrode can compensate for the lack of strength of the nonwoven fabric. Moreover, even if it is not made into a bag shape, a strip-shaped non-woven fabric is folded back at the substantially central portion and the electrode is sandwiched between the non-woven fabric to surround the electrode with the non-woven fabric so that the electrode and the non-woven fabric are integrated. Also, by stacking the strip-shaped non-woven fabric and sealing one end and sandwiching the electrode between the non-woven fabric, the electrode is surrounded by the support and the electrode and the non-woven fabric are integrated. Insufficient strength can be compensated, and workability during battery assembly, reduction of internal resistance, and improvement of load characteristics can be achieved. Moreover, when using a microporous film as a support body, it is the same as that of the said nonwoven fabric.
[0017]
As described above, the electrode is surrounded by a support made of a porous sheet such as a nonwoven fabric, the electrode and the support are integrated, and the electrode is impregnated with an electrolytic solution containing a gelling component to be gelled. And the polymer electrolyte layer are each gelled independently to form an electrode and a polymer electrolyte sheet and then laminated, the interface is in a good adhesion state, and there are less air bubbles, foreign matter, etc. between the layers, Ion movement at the interface becomes smooth, and the reactivity between the positive electrode and the negative electrode is improved. Further, by surrounding one of the positive electrode and the negative electrode with a support, it can also serve as a physical separation.
[0018]
Then, either the positive electrode or the negative electrode may be surrounded by the polymer electrolyte layer to integrate the electrode and the polymer electrolyte layer. At that time, the positive electrode is surrounded by the polymer electrolyte layer, and the positive electrode and the polymer When the electrolyte layer is integrated, the battery capacity can be increased as compared with the case where the negative electrode is surrounded by the polymer electrolyte layer. That is, since the negative electrode is generally made larger than the positive electrode in order to prevent the generation of dendrites and to ensure safety, if the positive electrode is surrounded by the polymer electrolyte layer, the polymer is less than the negative electrode surrounded by the polymer electrolyte layer. The dimension of the electrolyte layer can be reduced, and as a result, the battery capacity can be increased. In addition, when the negative electrode is surrounded by the polymer electrolyte layer and the negative electrode and the polymer electrolyte layer are integrated, the interface state between the negative electrode and the polymer electrolyte layer can be made uniform. It is effective in improving the sex.
[0019]
Further, when both the positive electrode and the negative electrode are surrounded by the polymer electrolyte layer, the thickness of the polymer electrolyte layer increases, but both the electrodes are integrated with the polymer electrolyte layer, so that both the positive electrode and the negative electrode are polarized. Since it can be reduced and the reaction during charging / discharging can proceed smoothly, the load characteristics can be greatly improved.
[0020]
In the present invention, the integration of the electrode and the polymer electrolyte layer means that the electrode and the polymer electrolyte layer are brought into close contact with each other without including bubbles or foreign matters between the electrode and the polymer electrolyte layer. It does not mean that it is inseparably bonded.
[0021]
When the support made of a porous sheet such as the above-mentioned nonwoven fabric is formed into a bag shape, for example, when the bag shape is described as a quadrangular shape, one side is usually open and the other three sides are sealed. However, it is not always required to continuously seal the seal, and it may be discontinuously sealed.
[0022]
When the electrode is accommodated in the bag-shaped support, it is not required to previously form the support in a bag shape, and the electrode is formed into a strip-shaped support (for example, the length is twice or more the length of the electrode, A support in which the width of the strip-shaped support having a width wider than the width of the electrode is placed on one side of the center in the length direction and the other width is folded back (that is, the electrode is folded back at the center. The electrode may be held in a bag-like support by sealing both sides in the width direction continuously or discontinuously.
[0023]
Also, in the case where two supports are overlapped and one end is sealed and the electrode is sandwiched between them, it is not required to seal in advance, and the electrode is not required to be a single strip-shaped support (for example, a long support). Is placed on a strip-shaped support having a length longer than the length of the electrode and a width wider than the width of the electrode), and another strip-shaped support is placed thereon, and one end of the support is Sealing may be performed continuously or discontinuously so that the electrode is sandwiched between the supports.
[0024]
Examples of the electrolyte solution for constituting the polymer electrolyte layer include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, 1, 2 -In an organic solvent such as dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether, for example, LiClO Four , LiPF 6 , LiBF Four , LiAsF 6 , LiCF Three SO Three , LiC Four F 9 SO Three , LiCF Three CO 2 , Li 2 C 2 F Four (SO Three ) 2 , LiN (CF Three SO 2 ) 2 , LiC (CF Three SO 2 ) Three , LiC n F 2n + 1 SO Three (N ≧ 2), LiN (RfOSO 2 ) 2 Those prepared by dissolving an inorganic ion salt such as [wherein Rf is a fluoroalkyl group] are used. The concentration of the inorganic ion salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l, particularly 0.9 to 1.25 mol / l.
[0025]
In addition, as a gelling component for changing the electrolytic solution to a polymer electrolyte, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, vinylidene fluoride-hexafluoropropylene copolymer is heated. After the polymer is dissolved in the electrolytic solution, the polymer is gelled by cooling, or the monomer or prepolymer contains 2 or more double bonds per molecule that can be polymerized with actinic rays as a main component. Examples thereof include a crosslinkable composition.
[0026]
As the monomer that can be polymerized with actinic rays, first, as a monomer having two double bonds per molecule (bifunctional crosslinkable monomer), for example, 1,3-butanediol diacrylate, 1,4-butanediol Diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, propylene glycol diacrylate, dipropylene glycol diacrylate, tri Such as propylene glycol diacrylate, ethoxylated bisphenol A diacrylate, novolac diacrylate, propoxylated neopentyl glycol diacrylate, etc. Such functional acrylate and the acrylate and similar difunctional methacrylate.
[0027]
Moreover, as a monomer (trifunctional crosslinkable monomer) which has three double bonds per molecule polymerizable with actinic rays, for example, tris (2-hydroxyethyl) isocyanurate triacrylate, trimethylolpropane triacrylate, ethoxy Trifunctional acrylates such as trimethylolpropane triacrylate, pentaerythritol triacrylate, propoxylated trimethylolpropane triacrylate, propoxylated glyceryl triacrylate, caprolactone-modified trimethylolpropane acrylate, and trifunctional methacrylates similar to the above acrylates. .
[0028]
Examples of monomers having four or more double bonds per molecule that can be polymerized with actinic rays (tetrafunctional or higher crosslinkable monomers) include pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, and ethoxylated pentaerythritol tetra. Examples thereof include tetrafunctional or higher acrylates such as acrylate, dipentaerythritol hydroxypentaacrylate, dipentaerythritol hexaacrylate, and tetrafunctional or higher methacrylates similar to the above acrylates.
[0029]
Examples of the prepolymer having 2 or more, preferably 4 or more double bonds polymerizable with actinic rays include urethane acrylate, epoxy acrylate, and polyester acrylate prepolymers. Can be used.
[0030]
In the present invention, the monomer or prepolymer having two or more double bonds per molecule that can be polymerized with actinic rays may be used as a main component, for example, for adjusting physical properties such as gel hardness. A monofunctional monomer can also be used in combination. Moreover, the usage which mixes a bifunctional monomer and a hexafunctional monomer is also possible.
[0031]
In the present invention, the crosslinkable composition comprising as a main component a monomer or prepolymer having two or more double bonds per molecule that can be polymerized with actinic rays means that the crosslinkable composition can be polymerized with actinic rays. In combination with a monomer or prepolymer having two or more heavy bonds per molecule, and a monomer or prepolymer having two or more double bonds per molecule that can be polymerized with actinic rays, etc. In the case where a monomer or prepolymer having two or more double bonds per molecule that can be polymerized with actinic rays is used in combination with a monofunctional monomer or the like in the latter case, The monomer or prepolymer having two or more double bonds per molecule that can be polymerized with actinic rays is 50% by weight or more, particularly 70% by weight or more. Door is preferable. In addition, the crosslinkable composition may not be all crosslinkable, and may be crosslinkable as a whole. For example, other components may be added as necessary.
[0032]
If necessary, for example, benzoins, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, acetophenones, thioxanthones, anthraquinones, and the like can be used as polymerization initiators. Furthermore, alkylamines, aminoesters and the like can also be used as sensitizers for the polymerization initiator.
[0033]
In the present invention, for example, ultraviolet rays (UV), electron beams (EB), visible rays, far ultraviolet rays, and the like can be used as the actinic rays.
[0034]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples illustrated in the examples.
[0035]
Example 1
First, the preparation of the positive electrode and the negative electrode used in Example 1 and the preparation of the gelled component-containing electrolyte will be described first.
[0036]
Production of positive electrode:
LiCoO as positive electrode active material 2 80 parts by weight, 10 parts by weight of acetylene black as a conductive assistant, and 10 parts by weight of polyvinylidene fluoride as a binder were mixed uniformly using N-methylpyrrolidone as a solvent to prepare a positive electrode mixture-containing paste. This positive electrode mixture-containing paste is applied to both sides of an aluminum foil with a thickness of 20 μm to be a positive electrode current collector, dried, and then subjected to a calendering process to adjust the thickness of the positive electrode mixture layer so that the total thickness becomes 130 μm. It adjusted and cut | disconnected so that the area of a positive mix layer formation part might be set to 70 mm x 40 mm, and produced the positive electrode. However, in producing the positive electrode, the paste containing the positive electrode mixture is not applied to a part of the aluminum foil, leaving the exposed part of the aluminum foil, and the exposed part of the aluminum foil is connected to the positive electrode terminal or the like. The part. A cross-sectional view of this positive electrode is schematically shown in FIG. As shown in FIG. 1, the positive electrode 1 is produced by forming the positive electrode mixture layer 1b on both surfaces of the positive electrode current collector 1a, and the lead portion 1c is a part of the aluminum foil constituting the positive electrode current collector 1a. The positive electrode mixture-containing paste is not applied to the aluminum foil, and the aluminum foil is exposed.
[0037]
Production of negative electrode A:
A negative electrode mixture-containing paste was prepared by uniformly mixing 90 parts by weight of graphite, which is a negative electrode active material, and 10 parts by weight of polyvinylidene fluoride using N-methylpyrrolidone as a solvent, and consisting of a copper foil having a thickness of 10 μm. After coating on both sides of the negative electrode current collector and drying, calendering is performed to adjust the thickness of the negative electrode mixture layer so that the total thickness is 130 μm, and the area of the negative electrode mixture layer forming portion is 72 mm × 42 mm The negative electrode A was produced by cutting in such a manner. The cutting was performed so that the lead portion, which is a connection portion with the negative electrode terminal, was at the center position in the width direction of the electrode. Similarly to the case of the positive electrode, in preparing the negative electrode A, the negative electrode mixture-containing paste is not applied to a part of the copper foil, leaving the exposed portion of the copper foil, and the exposed portion of the copper foil being the negative electrode. A lead portion for connection to a terminal or the like was used. The negative electrode A thus produced is a so-called double-side coated negative electrode in which a negative electrode mixture layer is formed on both surfaces of a negative electrode current collector. A cross-sectional view of the negative electrode A is schematically shown in FIG. As shown in FIG. 2, the negative electrode A is produced by forming the negative electrode mixture layer 2b on both surfaces of the negative electrode current collector 2a, and the lead portion 2c is a part of the copper foil constituting the negative electrode current collector 2a. The negative electrode mixture-containing paste is not applied to the copper foil, and the copper foil is exposed. In the illustration, the negative electrode A and the later-described negative electrode B are denoted by the same reference numeral 2.
[0038]
Production of negative electrode B:
A negative electrode mixture-containing paste similar to that in the case of the negative electrode A is applied to one side of a negative electrode current collector made of a copper foil having a thickness of 50 μm, dried, and then calendered so that the total thickness becomes 110 μm. The thickness of the negative electrode mixture layer was adjusted, and the negative electrode B was prepared by cutting so that the area of the negative electrode mixture layer forming portion was 72 mm × 42 mm. Also, in preparing this negative electrode B, the negative electrode mixture-containing paste is not applied to a part of the copper foil, leaving the exposed portion of the copper foil, and connecting the exposed portion of the copper foil to the negative electrode terminal or the like The lead part. The negative electrode B produced in this manner is a so-called single-side coated negative electrode in which the negative electrode mixture layer is formed only on one side of the negative electrode current collector. A cross-sectional view of the negative electrode B is schematically shown in FIG. As shown in FIG. 3, this negative electrode B is produced by forming the negative electrode mixture layer 2b only on one surface of the negative electrode current collector 2a.
[0039]
Preparation of gelled component-containing electrolyte:
LiPF in a mixed solvent of propylene carbonate and ethylene carbonate in a volume ratio of 1: 1 6 As an initiator, 2,4,6-trimethylbenzoyldiphenylphosphine oxide [trade name: Lucillin TPO, manufactured by BSF Japan Ltd.] is used as a monomer component in advance in an electrolyte prepared by dissolving 1.22 mol / l. 2% by weight with respect to the solution, and dipentaerythritol hexaacrylate is added and mixed so that the concentration becomes 6% by weight 10 minutes before the start of use, and an electrolytic solution containing a gelling component is added. Prepared. The electrolytic solution containing the gelling component is simply expressed as “gelling component-containing electrolytic solution” as described above.
[0040]
The positive electrode produced as described above is wrapped with a non-woven fabric that serves as a support for the polymer electrolyte layer, the positive electrode and the support are integrated, and the whole is impregnated with a gel component-containing electrolyte, gelled, and polymer An electrolyte holding positive electrode unit was obtained. The negative electrode was impregnated with a gel component-containing electrolyte without being wrapped with a nonwoven fabric and gelled to obtain a polymer electrolyte holding negative electrode. The details of the manufacturing method are as follows.
[0041]
Production of polymer electrolyte holding positive electrode unit:
The support has a thickness of 30 μm and a basis weight of 12 g / m. 2 The polybutylene terephthalate nonwoven fabric [manufactured by NKK, MB1230 (trade name)] was cut into strips having a length × width of 144 mm × 42 mm.
[0042]
Then, a polyimide tape having a thickness of 50 μm and a width of 3 mm was stuck from both sides so as to straddle the positive electrode mixture layer forming portion of the positive electrode and the lead portion, thereby preventing a short circuit and maintaining the strength of the terminal. In addition, after covering all surfaces of the portion used for connection with the positive electrode terminal of the lead portion with a heat release tape that loses the adhesiveness of the adhesive surface due to heat, this positive electrode is covered in the length direction of the polybutylene terephthalate nonwoven fabric. Place it on the left side of the center, fold back the right side, cover the positive electrode, and seal both sides in the width direction with a heat-sealing machine [trade name: Policyler, manufactured by Fuji Impulse Co., Ltd.] Then, the polybutylene terephthalate nonwoven fabric as a support was formed into a bag shape, and both were brought into close contact with each other to integrate the positive electrode and the support. The positive electrode unit in which the positive electrode and the support are integrated is immersed in the gelled component-containing electrolyte under reduced pressure for 1 minute to impregnate the positive electrode unit with the gelled component-containing electrolyte, and then placed in a polyethylene bag. And sealed. Next, from both sides of the polyethylene bag, ultraviolet light is 1 W / cm using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd. 2 Was irradiated for 10 seconds at an illuminance of 1 to polymerize the monomer component in the electrolytic solution, and the electrolytic solution was gelled to obtain a gel polymer electrolyte. The polymer electrolyte layer and the positive electrode integrated body are taken out of the bag, and the thermal peeling tape is peeled off from the portion by blowing hot air at 150 ° C. on the portion used for connection with the positive electrode terminal of the lead portion. Got.
[0043]
Preparation of polymer electrolyte holding negative electrode A:
A polyimide tape having a thickness of 50 μm and a width of 3 mm is adhered from both sides so as to straddle the negative electrode mixture layer forming part and the lead part of the negative electrode A produced as described above, preventing short circuit and maintaining the strength of the terminal. I planned. Moreover, after covering all surfaces of the part used for connection with the negative electrode terminal of a lead part with the heat | fever peeling tape from which the adhesiveness of an adhesive surface is lost by heat | fever, this negative electrode A is pressure-reduced to the said gelatinization component containing electrolyte solution. It was immersed for 1 minute under the impregnation with the gel component-containing electrolyte, and then sealed in a polyethylene bag. Next, from both sides of the polyethylene bag, ultraviolet rays are irradiated at 1 W / cm using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd. 2 Was irradiated for 10 seconds at an illuminance of, to polymerize the monomer component in the electrolytic solution, and the electrolytic solution was gelled to obtain a gel polymer electrolyte. The negative electrode A holding the gel polymer electrolyte is taken out of the bag, and the thermal peeling tape is peeled off from the portion by blowing hot air at 150 ° C. on the portion used for connection with the negative electrode terminal of the lead portion, and the polymer electrolyte holding negative electrode A was obtained.
[0044]
Production of polymer electrolyte holding negative electrode B:
A polyimide tape having a thickness of 50 μm and a width of 3 mm is attached from both sides so as to straddle the negative electrode mixture layer forming portion and the lead portion of the negative electrode B produced as described above, thereby preventing a short circuit and maintaining the strength of the terminal. I planned. Moreover, after covering all surfaces of the part used for connection with the negative electrode terminal of a lead part with the heat | fever peeling tape which loses the adhesiveness of an adhesive surface by heat | fever, this negative electrode B is pressure-reduced to the said gelatinization component containing electrolyte solution. It was immersed for 1 minute under the impregnation with the gelled component-containing electrolyte, and then sealed in a polyethylene bag. Next, from the outside of the polyethylene bag, on the side where the negative electrode mixture layer forming portion of the negative electrode B is arranged, ultraviolet rays are irradiated at 1 W / cm using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd. 2 Was irradiated for 10 seconds at an illuminance of 1 to polymerize the monomer component in the electrolytic solution, and the electrolytic solution was gelled to obtain a gel polymer electrolyte. The negative electrode B holding the gel polymer electrolyte is taken out of the bag, and the thermal peeling tape is peeled off from the portion by blowing hot air at 150 ° C. on the portion used for the connection portion of the lead portion with the negative electrode terminal, thereby holding the polymer electrolyte. A negative electrode B was obtained.
[0045]
Five polymer electrolyte holding positive electrode units, four polymer electrolyte holding negative electrodes A and two polymer electrolyte holding negative electrodes B prepared as described above were prepared, and a polymer electrolyte holding negative electrode B, a polymer electrolyte holding positive electrode unit, and a polymer electrolyte holding negative electrode A were prepared. , Polymer electrolyte holding negative electrode unit, polymer electrolyte holding negative electrode A, polymer electrolyte holding positive electrode unit, polymer electrolyte holding negative electrode A, polymer electrolyte holding positive electrode unit, polymer electrolyte holding negative electrode A, polymer electrolyte holding negative electrode unit, polymer electrolyte holding negative electrode A, polymer The electrolyte holding positive electrode unit and the polymer electrolyte holding negative electrode B were laminated in this order to obtain a laminated electrode group. At this time, the negative electrode mixture layer forming portions of the two polymer electrolyte holding negative electrodes B were laminated so as to face the inner side of the laminated electrode group. That is, the negative electrode current collector made of a copper foil having a thickness of 50 μm of the two polymer electrolyte holding negative electrodes B was arranged in the outermost layer of the laminated electrode group.
[0046]
The laminated electrode group produced as described above is shown in FIG. As shown in FIG. 4, this laminated electrode group is composed of five polymer electrolyte holding positive electrode units 10 and six polymer electrolyte holding negative electrodes 20, and the outermost polymer electrolyte holding negative electrode 20 of the laminated electrode group is Both the upper side and the lower side are based on the negative electrode B. The electrode current collector of the negative electrode B is made of copper foil having a thickness of 50 μm, and the negative electrode mixture layer is formed only on one side thereof. Are arranged toward the inner side of the laminated electrode group, and the negative electrode current collector is arranged toward the outer side of the laminated electrode group. The inner four polymer electrolyte holding negative electrodes 20 are based on the negative electrode A. The negative electrode current collector of these negative electrodes A is made of copper foil having a thickness of 10 μm, and the negative electrode mixture layer is formed on both sides thereof. Is formed. A polymer electrolyte holding positive electrode unit 10 is arranged between each of these six polymer electrolyte holding negative electrodes 20, and a laminated electrode group includes five polymer electrolyte holding positive electrode units 10 and six polymer electrolyte holding negative electrodes 20 (however, The two outermost layers are based on the negative electrode B, and the inner four are based on the negative electrode A). The white portions around the polymer electrolyte holding positive electrode unit 10 are shown in order to show that a non-woven fabric is arranged as a support around the positive electrode in producing the polymer electrolyte holding positive electrode unit 10.
[0047]
As shown in FIG. 5, a laminate film made of a protective film 4a, a metal foil 4b, and a heat-fusible resin film 4c is used as an exterior body for packaging the laminated electrode group. A 30 μm thick nylon film is used as the protective film 4a, a 50 μm thick aluminum foil is used as the metal foil 4b, and a 30 μm thick modified polyolefin film is used as the heat-fusible resin film 4c. In addition to the original role of not allowing moisture and gas to permeate, the aluminum foil of the foil 4b also plays a role as a short-circuit forming plate and a heat radiation promoting plate in the present invention. The nylon film of the protective film 4a serves as a protective layer for preventing the aluminum foil from being scratched or corroded from the outside, and the modified polyolefin film of the heat-fusible resin film 4c is a hot film. It serves to seal the laminated electrode group by fusing.
[0048]
Two of the exterior bodies 4 are used for the exterior of the multilayer electrode group, both of which have the same configuration, one of which is a flat plate and the other one is the multilayer electrode group. Is formed in a container shape with a hook, and the two exterior bodies 4 and 4 are arranged such that the respective modified polyolefin films face each other while arranging the laminated electrode group therebetween, The peripheral modified polyolefin film is sealed by heating and heat-sealing.
[0049]
And the negative electrode lead part 2c of the laminated electrode group covered with the outer package 4 as described above is connected in parallel and connected to one end of the negative electrode terminal 6 made of nickel as shown in FIG. The other end of the negative electrode terminal 6 is drawn out from the seal portion of the exterior body 4.
[0050]
On the other hand, on the positive electrode side, as shown in FIG. 7, the lead portion 1 c is connected in parallel, and the lead portion 1 c and the aluminum foil of the outer package 4 are connected to one end portion of the positive electrode terminal 5. The other end is drawn out through the seal portion of the exterior body 4. The positive electrode terminal 5 and the negative electrode terminal 6 are drawn in the same direction, but are spaced apart from each other (that is, the positions of the cut surface in FIG. 6 and the cut surface in FIG. 7 are different). However, under normal conditions, the positive electrode terminal 5 and the negative electrode terminal 6 do not contact and cause a short circuit.
[0051]
FIG. 8 is an enlarged view of a main part of the portion A in FIG. 7 (where the positive electrode terminal 5 is drawn out at the seal portion of the outer package 4). Based on FIG. 8, the metal foil 4b (aluminum foil) of the outer package 4 is shown. The connection between the positive electrode terminal 5 and the positive electrode terminal 5 will be described. The sealing portion of the outer package 4 where the positive electrode terminal 5 is disposed is heated ultrasonically to melt the modified polyolefin film as the heat-sealing resin film 4c of the inner layer of the outer package 4 Thus, the metal foil 4b (aluminum foil) of the exterior body 4 and the positive electrode terminal 5 are connected.
[0052]
Comparative Example 1
Example 1 except that a copper foil having a thickness of 10 μm was used as the negative electrode current collector of the negative electrode disposed in the outermost layer of the laminated electrode group, and the positive electrode terminal and the aluminum foil in the outer package were not connected. Similarly, a laminated polymer electrolyte battery was produced.
[0053]
A thermocouple was attached to the surface of the battery of Example 1 and Comparative Example 1 above, placed on the V block, and a stainless steel nail having a shaft diameter of 3 mm was perpendicular to the laminated electrode group at a speed of 5 mm / sec. The maximum temperature of the battery was measured. The results are shown in Table 1.
[0054]
[Table 1]
Figure 0004070367
[0055]
As shown in Table 1, the battery of Example 1 had a maximum temperature of 135 ° C. and did not emit smoke or ignite, but the battery of Comparative Example 1 had a maximum temperature of 200 ° C. or higher and had an exothermic reaction. It was much higher than 150 ° C, which is said to run away, and some smoked and ignited.
[0056]
In the above embodiment, the metal foil (aluminum foil) in the exterior body and the positive electrode terminal are connected by ultrasonic welding. However, in addition to the above ultrasonic welding, resistance welding, caulking, screwing, etc. Can do. However, ultrasonic welding is particularly preferable. The reason is that the modified polyolefin film is melted by irradiating ultrasonic waves from the outside of the exterior body without the pretreatment of peeling off the heat-fusible resin film (modified polyolefin film) of the innermost layer of the laminate film of the exterior body. This is because the aluminum foil in the laminate film of the outer package and the positive electrode terminal can be connected. In the above embodiment, a 947M type manufactured by Branson Co., Ltd. was used as an ultrasonic transmitter during ultrasonic welding, and 4 kg / cm. 2 Under the above pressure, 80 Joules of weld energy was applied for 2 seconds at an amplitude of 80%, but this condition can be variously changed according to the situation.
[0057]
【The invention's effect】
As described above, according to the present invention, even when a short circuit is caused by nail penetration or crushing, it is possible to provide a highly safe laminated polymer electrolyte battery that prevents smoke and fire.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a positive electrode used in a laminated polymer electrolyte battery of Example 1 of the present invention.
FIG. 2 is a cross-sectional view schematically showing a negative electrode A used for a laminated polymer electrolyte battery of Example 1 of the present invention.
FIG. 3 is a cross-sectional view schematically showing a negative electrode B used in the laminated polymer electrolyte battery of Example 1 of the present invention.
4 is a cross-sectional view schematically showing a laminated electrode group used in the laminated polymer electrolyte battery of Example 1 of the present invention. FIG.
FIG. 5 is a cross-sectional view schematically showing an outer package used in the laminated polymer electrolyte battery of Example 1 of the present invention.
6 is a cross-sectional view schematically showing a connection state between a negative electrode lead portion and a negative electrode terminal in the laminated polymer electrolyte battery of Example 1 of the present invention. FIG.
7 is a cross-sectional view schematically showing a connection state between a lead portion of a positive electrode and a positive electrode terminal in the laminated polymer electrolyte battery of Example 1 of the present invention. FIG.
FIG. 8 is an enlarged view of a main part of part A in FIG. 7;
[Explanation of symbols]
1 Positive electrode
1a Positive electrode current collector
1b Positive electrode mixture layer
2 Negative electrode
2a Negative electrode current collector
2b Negative electrode mixture layer
2c Lead part
3 Polymer electrolyte layer
4 exterior body
4a Protective film
4b metal foil
4c heat-fusible resin film
5 Positive terminal
6 Negative terminal
10 Polymer electrolyte holding positive electrode unit
20 Polymer electrolyte holding negative electrode

Claims (2)

正極集電体の少なくとも一方の面に正極合剤層を形成してなる正極と、負極集電体の少なくとも一方の面に負極合剤層を形成してなる負極とを、それぞれの間にポリマー電解質層を介在させて積層した積層電極群を、金属箔を芯材とするラミネートフィルム外装体で外装する積層形ポリマー電解質電池であって、上記積層電極群の少なくとも一方の最外層の電極の電極集電体の厚さを30μm以上とし、その外面側には電極合剤層を形成せず、その電極集電体と同一極性の電極のリード部とを接続し、かつ、上記外装体中の金属箔の厚さを30μm以上とし、他方の極性の電極端子と上記外装体中の金属箔とを接続したことを特徴とする積層形ポリマー電解質電池。  A positive electrode formed by forming a positive electrode mixture layer on at least one surface of the positive electrode current collector and a negative electrode formed by forming a negative electrode mixture layer on at least one surface of the negative electrode current collector are polymerized between them. A laminated polymer electrolyte battery in which a laminated electrode group laminated with an electrolyte layer interposed is covered with a laminated film outer package having a metal foil as a core, and the electrode of at least one outermost layer electrode of the laminated electrode group The thickness of the current collector is 30 μm or more, the electrode mixture layer is not formed on the outer surface side, the electrode current collector is connected to the lead portion of the electrode of the same polarity, and A laminated polymer electrolyte battery characterized in that the thickness of the metal foil is 30 μm or more, and the electrode terminal having the other polarity is connected to the metal foil in the outer package. 積層電極群の最外層の電極の電極集電体のみ、厚さを30μm以上としたことを特徴とする請求項1に記載の積層形ポリマー電解質電池。2. The laminated polymer electrolyte battery according to claim 1, wherein only the electrode current collector of the outermost electrode of the laminated electrode group has a thickness of 30 μm or more.
JP23643499A 1999-08-24 1999-08-24 Laminated polymer electrolyte battery and sheet battery manufacturing method Expired - Fee Related JP4070367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23643499A JP4070367B2 (en) 1999-08-24 1999-08-24 Laminated polymer electrolyte battery and sheet battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23643499A JP4070367B2 (en) 1999-08-24 1999-08-24 Laminated polymer electrolyte battery and sheet battery manufacturing method

Publications (3)

Publication Number Publication Date
JP2001068155A JP2001068155A (en) 2001-03-16
JP2001068155A5 JP2001068155A5 (en) 2005-04-07
JP4070367B2 true JP4070367B2 (en) 2008-04-02

Family

ID=17000706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23643499A Expired - Fee Related JP4070367B2 (en) 1999-08-24 1999-08-24 Laminated polymer electrolyte battery and sheet battery manufacturing method

Country Status (1)

Country Link
JP (1) JP4070367B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103393A1 (en) * 2017-11-24 2019-05-31 주식회사 리베스트 Electrode assembly having improved safety of use by means of outermost electrode structure and current collector material, and lithium-ion secondary battery having same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544119B1 (en) * 2003-06-24 2006-01-23 삼성에스디아이 주식회사 Pouched-type lithium secondary battery
JP4899299B2 (en) * 2003-10-14 2012-03-21 日産自動車株式会社 Thin battery
JP5092229B2 (en) * 2005-11-15 2012-12-05 日産自動車株式会社 Battery module
JP5314350B2 (en) * 2008-07-25 2013-10-16 三菱重工業株式会社 Battery pack container and battery pack
KR101431278B1 (en) 2008-12-19 2014-08-20 주식회사 엘지화학 Secondary battery having enhanced uniformity of temperature distribution
KR101483505B1 (en) 2012-11-13 2015-01-21 주식회사 엘지화학 Stepped Electrode Assembly
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
JP7247595B2 (en) * 2019-01-18 2023-03-29 トヨタ自動車株式会社 All-solid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103393A1 (en) * 2017-11-24 2019-05-31 주식회사 리베스트 Electrode assembly having improved safety of use by means of outermost electrode structure and current collector material, and lithium-ion secondary battery having same
WO2019103392A1 (en) * 2017-11-24 2019-05-31 주식회사 리베스트 Electrode assembly having improved safety of use by means of outermost electrode structure and current collector material, and lithium-ion secondary battery having same
US11996512B2 (en) 2017-11-24 2024-05-28 Libest Inc. Electrode assembly having improved safety of use by means of outermost electrode structure and current collector material, and lithium-ion secondary battery having same

Also Published As

Publication number Publication date
JP2001068155A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP2001068156A (en) Stacked polymer electrolyte battery
JP4365098B2 (en) Lithium polymer secondary battery and manufacturing method thereof
JP4162175B2 (en) Polymer electrolyte battery
WO1999031748A1 (en) Lithium ion secondary battery
JPH10308198A (en) Layered film for battery enclosing body
JP4132647B2 (en) Thin secondary battery
JP2000030742A (en) Lithium-ion secondary battery element
US6727021B1 (en) Lithium ion secondary battery
JP4070367B2 (en) Laminated polymer electrolyte battery and sheet battery manufacturing method
JP3992261B2 (en) Stacked polymer electrolyte battery
WO1999031749A1 (en) Manufacture of lithium ion secondary battery
WO2022001235A1 (en) Separator for electrochemical apparatus, electrochemical apparatus, and electronic apparatus
JP2000235850A (en) Layered polymer electrolyte battery
US20010008726A1 (en) Adhesive for battery, battery using the same and method of fabricating a battery using the same
JP2003272595A (en) Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
JP2001273929A (en) Polymer battery and its manufacturing method
JP2001155779A (en) Nonaqueous electrolyte battery
JP2004311108A (en) Total polymer electrolyte battery and manufacturing method
JP3821465B2 (en) Polymer electrolyte battery
JP2009211951A (en) Bipolar secondary battery
JP2001126678A (en) Laminate polymer electrolyte battery
JP4108918B2 (en) Thin secondary battery
JP2000260470A (en) Polymer electrolyte battery
JPH11213965A (en) Outer package body for battery and battery
WO1999026308A1 (en) Bonding agent for cells and cell using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees