JP7247595B2 - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP7247595B2
JP7247595B2 JP2019007147A JP2019007147A JP7247595B2 JP 7247595 B2 JP7247595 B2 JP 7247595B2 JP 2019007147 A JP2019007147 A JP 2019007147A JP 2019007147 A JP2019007147 A JP 2019007147A JP 7247595 B2 JP7247595 B2 JP 7247595B2
Authority
JP
Japan
Prior art keywords
current collector
layer
collector layer
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019007147A
Other languages
Japanese (ja)
Other versions
JP2020119633A (en
Inventor
和仁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019007147A priority Critical patent/JP7247595B2/en
Priority to US16/728,160 priority patent/US11502379B2/en
Priority to CN202010040722.5A priority patent/CN111463437B/en
Publication of JP2020119633A publication Critical patent/JP2020119633A/en
Application granted granted Critical
Publication of JP7247595B2 publication Critical patent/JP7247595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/30Preventing polarity reversal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本開示は、全固体電池に関する。 The present disclosure relates to all-solid-state batteries.

近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。
全固体電池の中でも全固体リチウムイオン電池は、リチウムイオンの移動を伴う電池反応を利用するためエネルギー密度が高いという点、また、正極と負極の間に介在する電解質として、有機溶媒を含む電解液に替えて固体電解質を用いるという点で注目されている。
2. Description of the Related Art In recent years, with the rapid spread of information-related equipment and communication equipment such as personal computers, video cameras, and mobile phones, the development of batteries used as power sources for these devices has been emphasized. In addition, in the automobile industry and the like, development of high-output and high-capacity batteries for electric vehicles or hybrid vehicles is underway.
Among all-solid-state batteries, all-solid-state lithium-ion batteries use a battery reaction that involves the movement of lithium ions, so they have a high energy density. It is attracting attention in terms of using a solid electrolyte instead of .

特許文献1には、アルミ箔からなる正極箔を樹脂で覆うことが記載されている。 Patent Literature 1 describes that a positive electrode foil made of aluminum foil is covered with a resin.

特開2014-238915号公報JP 2014-238915 A

電池ユニットを複数個積層してなる積層型の全固体電池は、一群の集電体層突出部を集束する際に、電極層、及び固体電解質層の内部にクラックが生じ、全固体電池が短絡するおそれがある。
本開示は、上記実情に鑑み、短絡の発生を抑制できる積層型の全固体電池を提供することを目的とする。
In a stacked all-solid-state battery made by stacking a plurality of battery units, cracks occur inside the electrode layer and solid electrolyte layer when a group of current collector layer protrusions are gathered, and the all-solid-state battery short-circuits. There is a risk of
In view of the above circumstances, an object of the present disclosure is to provide a stacked all-solid-state battery that can suppress the occurrence of short circuits.

本開示は、第1の実施形態として、正極集電体層及び正極層を含む正極と、負極集電体層及び負極層を含む負極と、当該正極層及び当該負極層の間に配置される固体電解質層と、を備える電池ユニットを2つ以上積層してなる電池積層体を備える全固体電池であって、
前記負極層の幅が、前記正極層の幅よりも大きく、
前記負極集電体層は、前記電池積層体の何れかの側面において、面方向に突出している負極集電体層突出部を有し、
前記正極集電体層は、前記電池積層体の何れかの側面において、面方向に突出している正極集電体層突出部を有し、
前記電池積層体は、前記負極集電体層突出部を有する側面と隣り合う両側面の当該負極集電体層突出部の側面を含む辺縁部、又は、前記正極集電体層突出部を有する側面と隣り合う両側面の当該正極集電体層突出部の側面を含む辺縁部の少なくともいずれか一方の当該両側面の当該辺縁部に樹脂で構成される側面固定部を有することを特徴とする全固体電池を提供する。
In the present disclosure, as a first embodiment, a positive electrode including a positive electrode current collector layer and a positive electrode layer, a negative electrode including a negative electrode current collector layer and a negative electrode layer, and a positive electrode layer disposed between the positive electrode layer and the negative electrode layer An all-solid-state battery comprising a battery laminate obtained by stacking two or more battery units comprising a solid electrolyte layer,
The width of the negative electrode layer is larger than the width of the positive electrode layer,
The negative electrode current collector layer has a negative electrode current collector layer protruding part that protrudes in the surface direction on either side surface of the battery stack,
The positive electrode current collector layer has a positive electrode current collector layer protruding part that protrudes in the surface direction on either side surface of the battery stack,
The battery stack includes a side surface having the negative electrode current collector layer protrusion and a peripheral portion including the side surface of the negative electrode current collector layer protrusion on both side surfaces adjacent to the side surface, or the positive electrode current collector layer protrusion. At least one of the marginal portions including the side surface of the positive electrode current collector layer protruding portion on both side surfaces adjacent to the side surface having the To provide an all-solid-state battery characterized by:

本開示の第2の実施形態として、全固体電池においては、一群の前記負極集電体層、又は、一群の前記正極集電体層の少なくともいずれか一方の一群の集電体層は、当該一群の集電体層の一群の突出部の内、少なくとも1つの突出部が、当該突出部の所定の領域の少なくとも一部に補強材で補強された集電体層補強部を有していてもよい。 As a second embodiment of the present disclosure, in an all-solid-state battery, at least one of the group of the negative electrode current collector layers and the group of the positive electrode current collector layers is a group of current collector layers, At least one protrusion of the group of protrusions of the group of current collector layers has a current collector layer reinforcing part reinforced with a reinforcing material in at least part of a predetermined region of the protrusion. good too.

本開示の第3の実施形態として、全固体電池においては、一群の前記負極集電体層、又は、一群の前記正極集電体層の少なくともいずれか一方の一群の集電体層は、当該一群の集電体層の一群の突出部の内、前記電池積層体の積層方向において対向する少なくとも2つの突出部が、当該突出部の所定の領域の少なくとも一部に樹脂を含む集電体層接着部を有し、少なくとも2つの当該突出部が当該集電体層接着部を介して当該領域を起点として折り曲げ可能に接着されていてもよい。 As a third embodiment of the present disclosure, in an all-solid-state battery, at least one of the group of the negative electrode current collector layers and the group of the positive electrode current collector layers is a group of current collector layers, Among the group of projections of the group of current collector layers, at least two projections facing each other in the stacking direction of the battery stack contain a resin in at least part of a predetermined region of the projections. An adhesion part may be provided, and at least two of the projections may be adhered via the current collector layer adhesion part so as to be bendable with the region as a starting point.

本開示は、第4の実施形態として、正極集電体層及び正極層を含む正極と、負極集電体層及び負極層を含む負極と、当該正極層及び当該負極層の間に配置される固体電解質層と、を備える電池ユニットを2つ以上積層してなる電池積層体を備える全固体電池であって、
前記負極層の幅が、前記正極層の幅よりも大きく、
前記負極集電体層は、前記電池積層体の何れかの側面において、面方向に突出している負極集電体層突出部を有し、
前記正極集電体層は、前記電池積層体の何れかの側面において、面方向に突出している正極集電体層突出部を有し、
一群の前記負極集電体層、又は、一群の前記正極集電体層の少なくともいずれか一方の一群の集電体層は、当該一群の集電体層の一群の突出部の内、前記電池積層体の積層方向において対向する少なくとも2つの突出部が、当該突出部の所定の領域の少なくとも一部に樹脂を含む集電体層接着部を有し、少なくとも2つの当該突出部が当該集電体層接着部を介して当該領域を起点として折り曲げ可能に接着されていることを特徴とする全固体電池を提供する。
In the present disclosure, as a fourth embodiment, a positive electrode including a positive electrode current collector layer and a positive electrode layer, a negative electrode including a negative electrode current collector layer and a negative electrode layer, and a positive electrode layer disposed between the positive electrode layer and the negative electrode layer An all-solid-state battery comprising a battery laminate obtained by stacking two or more battery units comprising a solid electrolyte layer,
The width of the negative electrode layer is larger than the width of the positive electrode layer,
The negative electrode current collector layer has a negative electrode current collector layer protruding part that protrudes in the surface direction on either side surface of the battery stack,
The positive electrode current collector layer has a positive electrode current collector layer protruding part that protrudes in the surface direction on either side surface of the battery stack,
At least one of the group of the negative electrode current collector layers and the group of the positive electrode current collector layers, the group of current collector layers, of the group of protrusions of the group of current collector layers, the battery At least two projections facing each other in the stacking direction of the laminate have a current collector layer adhesion portion containing a resin in at least a part of a predetermined region of the projections, and the at least two projections are connected to the current collector. Provided is an all-solid-state battery characterized in that it is adhered so as to be bendable starting from the region via a body layer adhesion portion.

本開示は、短絡の発生を抑制できる積層型の全固体電池を提供することができる。 The present disclosure can provide a stacked all-solid-state battery that can suppress the occurrence of short circuits.

本開示の電池ユニットの一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the battery unit of this indication. 本開示の全固体電池の第1の実施形態の一例を示す断面模式図である。1 is a cross-sectional schematic diagram showing an example of a first embodiment of an all-solid-state battery of the present disclosure; FIG. 全固体電池100を積層方向から平面視したときの一例を示す平面模式図である。FIG. 2 is a schematic plan view showing an example when the all-solid-state battery 100 is viewed from the stacking direction. 本開示の全固体電池の第2の実施形態の一例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing an example of a second embodiment of an all-solid-state battery of the present disclosure; 全固体電池200を積層方向から平面視したときの一例を示す平面模式図である。FIG. 2 is a schematic plan view showing an example when the all-solid-state battery 200 is viewed from the stacking direction. 全固体電池200を積層方向から平面視したときの別の一例を示す平面模式図である。FIG. 4 is a schematic plan view showing another example of the all-solid-state battery 200 viewed from the stacking direction. 全固体電池200を積層方向から平面視したときの別の一例を示す平面模式図である。FIG. 4 is a schematic plan view showing another example of the all-solid-state battery 200 viewed from the stacking direction. 本開示の全固体電池の第4の実施形態の一例を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing an example of a fourth embodiment of an all-solid-state battery of the present disclosure; 全固体電池300を積層方向から平面視したときの一例を示す平面模式図である。FIG. 3 is a schematic plan view showing an example of the all-solid-state battery 300 viewed from the stacking direction. 全固体電池300を積層方向から平面視したときの別の一例を示す平面模式図である。FIG. 4 is a schematic plan view showing another example of the all-solid-state battery 300 viewed from the stacking direction.

本開示は、第1の実施形態として、正極集電体層及び正極層を含む正極と、負極集電体層及び負極層を含む負極と、当該正極層及び当該負極層の間に配置される固体電解質層と、を備える電池ユニットを2つ以上積層してなる電池積層体を備える全固体電池であって、
前記負極層の幅が、前記正極層の幅よりも大きく、
前記負極集電体層は、前記電池積層体の何れかの側面において、面方向に突出している負極集電体層突出部を有し、
前記正極集電体層は、前記電池積層体の何れかの側面において、面方向に突出している正極集電体層突出部を有し、
前記電池積層体は、前記負極集電体層突出部を有する側面と隣り合う両側面の当該負極集電体層突出部の側面を含む辺縁部、又は、前記正極集電体層突出部を有する側面と隣り合う両側面の当該正極集電体層突出部の側面を含む辺縁部の少なくともいずれか一方の当該両側面の当該辺縁部に樹脂で構成される側面固定部を有することを特徴とする全固体電池を提供する。
In the present disclosure, as a first embodiment, a positive electrode including a positive electrode current collector layer and a positive electrode layer, a negative electrode including a negative electrode current collector layer and a negative electrode layer, and a positive electrode layer disposed between the positive electrode layer and the negative electrode layer An all-solid-state battery comprising a battery laminate obtained by stacking two or more battery units comprising a solid electrolyte layer,
The width of the negative electrode layer is larger than the width of the positive electrode layer,
The negative electrode current collector layer has a negative electrode current collector layer protruding part that protrudes in the surface direction on either side surface of the battery stack,
The positive electrode current collector layer has a positive electrode current collector layer protruding part that protrudes in the surface direction on either side surface of the battery stack,
The battery stack includes a side surface having the negative electrode current collector layer protrusion and a peripheral portion including the side surface of the negative electrode current collector layer protrusion on both side surfaces adjacent to the side surface, or the positive electrode current collector layer protrusion. At least one of the marginal portions including the side surface of the positive electrode current collector layer protruding portion on both side surfaces adjacent to the side surface having the To provide an all-solid-state battery characterized by:

積層型の全固体電池においては、正極集電体層、及び負極集電体層へ集電端子を取り付けるため、集電体層を集束した状態で集電体層に端子を接合するが、この集束時に集電体層に加わる張力により、集電体層近傍の電極層、固体電解質層にクラックが入り、全固体電池が短絡する虞がある。
また、電池製造時には短絡になっていなくとも車両での使用時の振動等が端子経由で集電体層近傍の部分に負荷が伝わり、全固体電池が短絡することも想定される。
本研究者は、集電体層突出部を含む電池積層体の側面の所定の位置に側面固定部を形成すること、及び/又は、当該集電体層突出部の折れ曲がり部となる位置に集電体層接着部を形成することで電極層、及び固体電解質層に負荷が加わらないように集電体層突出部の曲がり状態を形成することで、全固体電池の短絡の発生の抑制や市場に出回った後の全固体電池の不具合の発生の抑制が可能となることを見出した。
In a laminated all-solid-state battery, in order to attach current collector terminals to the positive electrode current collector layer and the negative electrode current collector layer, the terminals are joined to the current collector layer while the current collector layers are bundled together. The tension applied to the current collector layer during convergence may cause cracks in the electrode layer and the solid electrolyte layer near the current collector layer, resulting in a short circuit in the all-solid-state battery.
In addition, even if the battery is not short-circuited at the time of battery manufacture, it is assumed that vibrations or the like during use in a vehicle will transmit a load to the portion near the current collector layer via the terminals, causing the all-solid-state battery to short-circuit.
The present researcher formed a side fixing portion at a predetermined position on the side surface of the battery stack including the current collector layer protrusion, and/or gathered the current collector layer protrusion at a bent portion. By forming the current layer adhesion part, the curving state of the current collector layer protrusion is formed so that the electrode layer and the solid electrolyte layer are not subjected to a load. We have found that it is possible to suppress the occurrence of defects in all-solid-state batteries after they are on the market.

以下、図面を参照しながら、本開示を実施するための形態について、詳細に説明する。
なお、説明の便宜上、各図において、同一又は相当する部分には同一の参照符号を付し、重複説明は省略する。実施の形態の各構成要素は、全てが必須のものであるとは限らず、一部の構成要素を省略可能な場合もある。ただし、以下の図に示される形態は本開示の例示であり、本開示を限定するものではない。
EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this disclosure is demonstrated in detail, referring drawings.
For convenience of explanation, the same reference numerals are given to the same or corresponding parts in each drawing, and duplicate explanations will be omitted. Not all components of the embodiments are essential, and some components may be omitted. However, the forms shown in the following figures are examples of the present disclosure and do not limit the present disclosure.

図1は、本開示の全固体電池が備える電池ユニットの一例を示す断面模式図である。
図1に示すように、電池ユニット50は、正極集電体層10及び正極層11を含む正極12と、負極集電体層13及び負極層14を含む負極15と、正極層11と負極層14の間に配置される固体電解質層16を備える。
図1に示すように、電池ユニット50は、正極層11の面方向Lの幅が、負極層14の面方向Lの幅よりも小さい。これにより、電荷のキャリアとなるリチウムイオン等の金属イオンのデンドライトの発生を抑制することができる。
FIG. 1 is a cross-sectional schematic diagram showing an example of a battery unit included in an all-solid-state battery of the present disclosure.
As shown in FIG. 1, the battery unit 50 includes a positive electrode 12 including a positive electrode current collector layer 10 and a positive electrode layer 11, a negative electrode 15 including a negative electrode current collector layer 13 and a negative electrode layer 14, a positive electrode layer 11 and a negative electrode layer. It comprises a solid electrolyte layer 16 arranged between 14 .
As shown in FIG. 1 , in the battery unit 50 , the width in the plane direction L of the positive electrode layer 11 is smaller than the width in the plane direction L of the negative electrode layer 14 . This can suppress the generation of dendrites of metal ions such as lithium ions that serve as charge carriers.

[集電体層突出部]
図1に示すように、負極集電体層13は、電池ユニット50の側面において、面方向Lに突出している負極集電体層突出部17を有し、正極集電体層10は、電池ユニット50の負極集電体層突出部17が突出している側面とは反対側の側面において、面方向Lに突出している正極集電体層突出部18を有する。なお、正極集電体層突出部18が突出している側面は、いずれの側面であってもよく、負極集電体層突出部17が突出している側面と同じであってもよいが、その場合は、それぞれの集電体層突出部を集束しやすいように、互いに平面視で重ならない位置に突出していることが好ましい。
[Current collector layer protrusion]
As shown in FIG. 1, the negative electrode current collector layer 13 has a negative electrode current collector layer projecting portion 17 projecting in the surface direction L on the side surface of the battery unit 50, and the positive electrode current collector layer 10 A positive electrode current collector layer projecting portion 18 projecting in the plane direction L is provided on the side surface opposite to the side surface where the negative electrode current collector layer projecting portion 17 of the unit 50 projects. The side surface from which the positive electrode current collector layer protrusion 18 protrudes may be any side surface, and may be the same as the side surface from which the negative electrode current collector layer protrusion 17 protrudes. preferably protrude at positions that do not overlap each other in a plan view so that the current collector layer protruding portions can be easily focused.

(1)第1の実施形態
図2は、本開示の全固体電池の第1の実施形態の一例を示す断面模式図である。
図2に示すように、全固体電池100は、鎖線で囲われた領域で示す電池ユニット50を複数個積層した電池積層体60を有する。隣接する電池ユニット50の正極集電体層10又は負極集電体層13は、それぞれの電池ユニット50が共有している。なお、図2においては、正極集電体層突出部18の記載は省略している。また、図2中の「・・・」で示した部分は電池ユニット50の記載を省略して示している。後述する図4、図8に示す「・・・」も同様である。
図2に示すように、負極集電体層突出部17の先端は、集束部21で集束されている。
なお、全固体電池100が有する電池ユニット50の個数は、少なくとも2つあればよく、例えば、2個以上50個以下とすることができる。後述する他の実施形態の全固体電池が有する電池ユニット50の数も全固体電池100と同様である。
(1) First Embodiment FIG. 2 is a cross-sectional schematic diagram showing an example of the first embodiment of the all-solid-state battery of the present disclosure.
As shown in FIG. 2, the all-solid-state battery 100 has a battery stack 60 in which a plurality of battery units 50 indicated by the area surrounded by the dashed line are stacked. The respective battery units 50 share the positive electrode current collector layer 10 or the negative electrode current collector layer 13 of the adjacent battery units 50 . 2, illustration of the positive electrode current collector layer projecting portion 18 is omitted. 2, the description of the battery unit 50 is omitted from the portion indicated by "...". The same applies to "..." shown in FIGS. 4 and 8, which will be described later.
As shown in FIG. 2 , the tip of the negative electrode current collector layer projecting portion 17 is converged by a converging portion 21 .
The number of battery units 50 included in the all-solid-state battery 100 may be at least two, and may be, for example, two or more and fifty or less. The number of battery units 50 included in the all-solid-state battery of another embodiment described later is also the same as that of the all-solid-state battery 100 .

[側面固定部]
図3は、図2の全固体電池100を積層方向から平面視した平面模式図である。
図3に示すように、全固体電池100の負極集電体層突出部17を有する側面と隣り合う両側面の当該負極集電体層突出部17の側面を含む辺縁部30に樹脂で構成される側面固定部19を有する。鎖線Wは集束時の負極集電体層突出部17の曲がり方(折り曲げ起点)を示している。図3に示す側面固定部19は、辺縁部30として、負極層14の側面の負極集電体層突出部17が配置されている側の縁の位置、固体電解質層16の側面の負極集電体層突出部17が配置されている側の縁の位置、及び負極集電体層突出部17の側面の突出元付近の位置に配置されているが、本開示においては、さらに、正極集電体層10及び正極層11の側面の負極集電体層突出部17が配置されている側の縁の位置にも側面固定部19が配置されていることが、全固体電池の短絡の発生を抑制する観点から好ましい。後述する図5~7に示す側面固定部19についても同様である。
図3に示すように、全固体電池100は、電荷のキャリアとなるリチウムイオン等の金属イオンのデンドライトの発生を抑制する観点から、当該全固体電池100を積層方向から平面視したときに、正極層11が負極層14の内側に積層されていることが好ましい。
側面固定部19を有することにより、正極層11、負極層14、及び固体電解質層16にかかる応力を低減しこれらの割れの発生を抑制することができ、全固体電池100の短絡の発生を抑制することができる。
なお、側面固定部19は、全固体電池100の負極集電体層突出部17を有する側面と隣り合う両側面の当該負極集電体層突出部17の側面を含む辺縁部30、又は、正極集電体層突出部18を有する側面と隣り合う両側面の当該正極集電体層突出部18の側面を含む辺縁部の少なくともいずれか一方の当該両側面の当該辺縁部に有していればよい。
また、全固体電池100の短絡の発生をより抑制する観点から、当該全固体電池100の負極集電体層突出部17を有する側面と隣り合う両側面の当該負極集電体層突出部17の側面を含む辺縁部30、及び、正極集電体層突出部18を有する側面と隣り合う両側面の当該正極集電体層突出部18の側面を含む辺縁部の両方に側面固定部19を有することが好ましい。
[Side fixed part]
FIG. 3 is a schematic plan view of the all-solid-state battery 100 of FIG. 2 viewed from the stacking direction.
As shown in FIG. 3 , the peripheral portion 30 including the side surface of the negative electrode current collector layer protrusion 17 on both side surfaces adjacent to the side surface having the negative electrode current collector layer protrusion 17 of the all-solid-state battery 100 is made of resin. It has a side fixed part 19 that is A chain line W indicates how the negative electrode current collector layer projecting portion 17 bends (bending starting point) at the time of convergence. The side fixing portion 19 shown in FIG. It is arranged at the position of the edge on the side where the current collector layer protrusion 17 is arranged and at the position near the protrusion base of the side surface of the negative electrode current collector layer protrusion 17, but in the present disclosure, the positive electrode collector The fact that the side fixing part 19 is also arranged at the position of the edge of the side surface of the current collector layer 10 and the positive electrode layer 11 on the side where the negative electrode current collector layer protrusion part 17 is arranged prevents the occurrence of a short circuit in the all-solid-state battery. is preferable from the viewpoint of suppressing The same applies to the side fixing portion 19 shown in FIGS. 5 to 7, which will be described later.
As shown in FIG. 3, from the viewpoint of suppressing the generation of dendrites of metal ions such as lithium ions that serve as charge carriers, the all-solid-state battery 100 has a positive electrode when viewed from the stacking direction. Layer 11 is preferably laminated inside negative electrode layer 14 .
By having the side fixing portion 19, the stress applied to the positive electrode layer 11, the negative electrode layer 14, and the solid electrolyte layer 16 can be reduced to suppress the occurrence of cracks in them, and the occurrence of short circuits in the all-solid-state battery 100 can be suppressed. can do.
In addition, the side fixing portion 19 is a peripheral portion 30 including the side surface of the negative electrode current collector layer protrusion 17 on both side surfaces adjacent to the side surface having the negative electrode current collector layer protrusion 17 of the all-solid-state battery 100, or At least one of the side edges including the side surface of the positive electrode current collector layer protrusion 18 adjacent to the side surface having the positive electrode current collector layer protrusion 18 It is good if there is
In addition, from the viewpoint of further suppressing the occurrence of a short circuit in the all-solid-state battery 100, the negative electrode current collector layer protrusion 17 on both sides adjacent to the side surface having the negative electrode current collector layer protrusion 17 of the all-solid-state battery 100 Side fixation portions 19 are provided on both the marginal portion 30 including the side surface and the marginal portion including the side surface of the positive electrode current collector layer projecting portion 18 on both side surfaces adjacent to the side surface having the positive electrode current collector layer projecting portion 18 . It is preferred to have

側面固定部19に用いられる樹脂は、従来公知のホットメルト剤、熱硬化性樹脂、熱可塑性樹脂、及びUV硬化性樹脂等が挙げられる。樹脂の硬度は特に限定されないが5MPa以上あることが好ましい。
側面固定部19は、当該樹脂で構成される薄い板や、当該樹脂の表面に粘着剤が配置されてなる硬いテ-プ等であってもよい。
側面固定部19の配置方法は、特に限定されないが、電池積層体60の形成後に当該側面に樹脂を塗布して当該樹脂を固めるなどする方法が挙げられる。樹脂の塗布方法は特に限定されず、スプレー方、ドクターブレード方等、種々の塗布方法が挙げられる。
なお、側面固定部19の配置される電池積層体60の辺縁部として含まれる具体的な位置は、電池積層体60の積層側面における集電体層突出部を有する側面と隣り合う側面において、負極層14の側面の集電体層突出部が配置されている側の縁の位置、及び固体電解質層16の側面の集電体層突出部が配置されている側の縁の位置と、正極集電体層突出部18又は負極集電体層突出部17の少なくとのいずれか一方の集電体層突出部の側面の突出元付近の位置が含まれていればよく、必要に応じて正極集電体層10及び正極層11の側面の集電体層突出部が配置されている側の縁の位置が含まれていることが好ましい。
また、側面固定部19は、少なくとも上記辺縁部に配置されていれば、電池積層体60が集電体層突出部を有する側面と隣り合う両側面の正極集電体層10、正極層11、負極集電体層13、負極層14、及び固体電解質層16の全体に配置されていてもよいが、全固体電池のエネルギー密度を向上させる観点から、上記辺縁部にのみ側面固定部19を配置することが好ましい。
側面固定部19により、電池積層体60の側面の辺縁部を固定し、集電体層突出部の集束時に集電体層突出部が折り曲げられる位置が集電体層突出部の所定の位置になるように制御し、かつ、集電体層突出部が動かないように拘束することで電極層、固体電解質層の内部に曲げ応力が加わらない構造となり、全固体電池の短絡の発生を抑制することができる。
Examples of the resin used for the side fixing portion 19 include conventionally known hot-melt agents, thermosetting resins, thermoplastic resins, UV-curable resins, and the like. Although the hardness of the resin is not particularly limited, it is preferably 5 MPa or more.
The side fixing portion 19 may be a thin plate made of the resin, or a hard tape having an adhesive applied to the surface of the resin.
A method of arranging the side fixing portion 19 is not particularly limited, but a method of applying a resin to the side surface and hardening the resin after forming the battery stack 60 can be used. The method of applying the resin is not particularly limited, and various methods such as spraying, doctor blade, and the like can be used.
In addition, the specific position included as the peripheral portion of the battery stack 60 where the side fixing portion 19 is arranged is the side adjacent to the side having the current collector layer protrusion on the stacking side of the battery stack 60, The position of the edge of the side surface of the negative electrode layer 14 on which the current collector layer protrusion is arranged, the position of the edge of the side surface of the solid electrolyte layer 16 on which the current collector layer protrusion is arranged, and the positive electrode It suffices if at least one of the current collector layer protrusion 18 or the negative electrode current collector layer protrusion 17 and the position near the protrusion origin of the side surface of the current collector layer protrusion are included. It is preferable that the positions of the edges of the side surfaces of the positive electrode current collector layer 10 and the positive electrode layer 11 on which the current collector layer protrusions are arranged are included.
In addition, if the side fixing portion 19 is arranged at least in the peripheral portion, the positive electrode current collector layer 10 and the positive electrode layer 11 on both side surfaces of the battery stack 60 adjacent to the side surface having the current collector layer projecting portion are fixed. , the negative electrode current collector layer 13, the negative electrode layer 14, and the solid electrolyte layer 16, but from the viewpoint of improving the energy density of the all-solid-state battery, the side fixing portion 19 is provided only at the peripheral portion. is preferably placed.
The edge portion of the side surface of the battery stack 60 is fixed by the side fixing portion 19, and the position where the current collector layer protrusion is bent when the current collector layer protrusion is converged is the predetermined position of the current collector layer protrusion. And by restraining the current collector layer protrusion so that it does not move, it becomes a structure in which bending stress is not applied to the inside of the electrode layer and the solid electrolyte layer, suppressing the occurrence of short circuits in all-solid-state batteries. can do.

(2)第2の実施形態
[集電体層補強部]
図4は、本開示の全固体電池の第2の実施形態の一例を示す断面模式図である。
図4に示す全個体電池200は、図2に示す全固体電池100の構成に加えて、さらに、一群の負極集電体層突出部17が、当該突出部の所定の領域の少なくとも一部に補強材で補強された集電体層補強部22が配置されている。
補強材としては、側面固定部に用いられる材料と同様の材料を用いることができる。
所定の領域とは、集電体層突出部の集束の際の折り曲げ起点となる領域であり、集電体層突出部の面方向の長さに応じて、負極層14や固体電解質層16等に割れが発生しにくい位置となるように適宜調整することができる。
(2) Second Embodiment [Current Collector Layer Reinforcing Part]
FIG. 4 is a cross-sectional schematic diagram showing an example of a second embodiment of the all-solid-state battery of the present disclosure.
In addition to the configuration of the all-solid-state battery 100 shown in FIG. 2, the all-solid-state battery 200 shown in FIG. A current collector layer reinforcing portion 22 reinforced with a reinforcing material is arranged.
As the reinforcing material, the same material as that used for the side fixing portion can be used.
The predetermined region is a region that serves as a bending starting point when the current collector layer protrusions are converged. The position can be adjusted as appropriate so that cracks are less likely to occur.

本開示の第2の実施形態として、全固体電池200においては、一群の負極集電体層13、又は、一群の正極集電体層10の少なくともいずれか一方の一群の集電体層は、当該一群の集電体層の一群の突出部の内、少なくとも1つの突出部が、当該突出部の所定の領域の少なくとも一部に補強材で補強された集電体層補強部22を有していてもよい。
また、一群の集電体層の一群の突出部の内、少なくとも1つの突出部が、当該突出部の所定の領域の少なくとも一部に補強材で補強された集電体層補強部22を有していればよいが、全固体電池200の短絡をより抑制する観点から、全ての突出部が、当該突出部の所定の領域の少なくとも一部に補強材で補強された集電体層補強部22を有していることが好ましい。
さらに、全固体電池200の短絡をより抑制する観点から、一群の負極集電体層突出部17の各突出部が、当該突出部の所定の領域の少なくとも一部に補強材で補強された集電体層補強部22を有し、かつ、一群の正極集電体層突出部18の各突出部が、当該突出部の所定の領域の少なくとも一部に補強材で補強された集電体層補強部22を有していることが好ましい。
As a second embodiment of the present disclosure, in the all-solid-state battery 200, at least one of the group of negative electrode current collector layers 13 or the group of positive electrode current collector layers 10 is a group of current collector layers, Of the group of protrusions of the group of current collector layers, at least one protrusion has a current collector layer reinforcing part 22 reinforced with a reinforcing material in at least part of a predetermined region of the protrusion. may be
In addition, at least one protrusion of the group of protrusions of the group of current collector layers has a current collector layer reinforcing part 22 reinforced with a reinforcing material in at least part of a predetermined region of the protrusion. However, from the viewpoint of further suppressing the short circuit of the all-solid-state battery 200, all the projecting portions are reinforced with a reinforcing material in at least a part of a predetermined region of the projecting portion. 22 is preferred.
Furthermore, from the viewpoint of further suppressing short circuits in the all-solid-state battery 200, each protrusion of the group of negative electrode current collector layer protrusions 17 is a group in which at least part of a predetermined region of the protrusion is reinforced with a reinforcing material. A current collector layer having a current collector layer reinforcing portion 22, and in which each protrusion of a group of positive electrode current collector layer protrusions 18 is reinforced with a reinforcing material in at least part of a predetermined region of the protrusion. It is preferable to have a reinforcing portion 22 .

図5は、全固体電池200を積層方向から平面視した時の一例を示す平面模式図である。
全固体電池200は、突出部の所定の領域の少なくとも一部に補強材で補強された集電体層補強部22を有していればよく、図5に示すように、全固体電池200の短絡の発生をより抑制する観点から、集電体層の集束の際の折り曲げ起点Wに沿って、面方向の中心線からの対象構造となるように折り曲げ起点Wとなる領域の両端及び中央部に少なくとも集電体層補強部22を配置することが好ましい。
図6は、全固体電池200を積層方向から平面視した時の別の一例を示す平面模式図である。
図6に示すように、全固体電池200の短絡をより抑制する観点から、集電体層の集束の際の折り曲げ起点Wに沿って、突出部の折り曲げ起点Wとなる領域のすべてに集電体層補強部22を配置されていることが特に好ましい。
FIG. 5 is a schematic plan view showing an example when the all-solid-state battery 200 is viewed from above in the stacking direction.
The all-solid-state battery 200 only needs to have the current collector layer reinforcing portion 22 reinforced with a reinforcing material in at least a part of the predetermined region of the projecting portion, and as shown in FIG. From the viewpoint of further suppressing the occurrence of a short circuit, along the bending starting point W when converging the current collector layer, both ends and the central part of the area that becomes the bending starting point W so as to have a symmetrical structure from the center line in the plane direction It is preferable to dispose at least the current collector layer reinforcing portion 22 on the .
FIG. 6 is a schematic plan view showing another example when the all-solid-state battery 200 is viewed from above in the stacking direction.
As shown in FIG. 6, from the viewpoint of further suppressing the short circuit of the all-solid-state battery 200, current is collected along the bending starting point W when the current collector layer is converged, in all the regions that become the bending starting points W of the protrusions. It is particularly preferable that the body layer reinforcing portion 22 is arranged.

集電体層は、通常、他の層よりも相対的に厚みが薄く、弾力性が低いことから集電体層突出部の中央付近が内側に少し曲がった形状で集束される。
第1の実施形態の場合は、電池としての機能は満足するが、集電体層突出部の曲がりを考慮して集電体層突出部側に長めに側面固定部19を設ける必要が生じ、電池のエネルギー密度を低下させてしまう。
一方、第2の実施形態の場合は、第1の実施形態の側面固定部19に加えて、集電体層突出部の所定の位置に集電体層補強部22を設けることにより、集束時の集電体層突出部の曲がり量を低減させることができ、全固体電池の短絡の発生をより抑制することができる。また、側面固定部19の使用量を減らすことができ、全固体電池のエネルギー密度を向上させることができる。
Since the current collector layer is usually relatively thinner than other layers and has low elasticity, the center of the current collector layer projecting portion is converged in a shape slightly curved inward.
In the case of the first embodiment, the function as a battery is satisfied. It lowers the energy density of the battery.
On the other hand, in the case of the second embodiment, in addition to the side fixing portion 19 of the first embodiment, a current collector layer reinforcing portion 22 is provided at a predetermined position of the current collector layer protruding portion, thereby The amount of bending of the current collector layer protruding portion can be reduced, and the occurrence of short circuits in the all-solid-state battery can be further suppressed. In addition, the usage amount of the side fixing portion 19 can be reduced, and the energy density of the all-solid-state battery can be improved.

(3)第3の実施形態
[集電体層接着部]
図7を用いて、本開示の全固体電池の第3の実施形態を説明する。
図7は、全固体電池200を積層方向から平面視した時の別の一例を示す平面模式図である。図7は、集電体層補強部22の代わりに集電体層接着部23を設けた場合の一例を示す図である。集電体層接着部23については後述する。
集電体層接着部23により、集束時に集電体層が曲がる位置が集電体層突出部になるように制御し、かつ、側面固定部19により集電体層突出部が動かないように拘束することにより正極層11、負極層14、固体電解質層16の内部に曲げ応力が加わりにくい構造とし、全固体電池の絶縁保証の信頼性を担保することができる。図7に示す全固体電池200は、集電体層突出部の所定の領域に設けた集電体層接着部23で集電体層同士が固定されていることにより、そこを折り曲げ起点Wとして集束される構造である。
第3の実施形態では、第1の実施形態の側面固定部19に加えて、集電体層突出部の所定の位置に集電体層接着部23を設けることにより、集束時の集電体層突出部の曲がり量を低減させることができ、全固体電池の短絡の発生をより抑制することができる。また、側面固定部19の使用量を減らすことができ、全固体電池のエネルギー密度を向上させることができる。
(3) Third Embodiment [Collector Layer Adhesion Portion]
A third embodiment of the all-solid-state battery of the present disclosure will be described with reference to FIG.
FIG. 7 is a schematic plan view showing another example when the all-solid-state battery 200 is viewed from above in the stacking direction. FIG. 7 is a diagram showing an example of a case where a current collector layer bonding portion 23 is provided instead of the current collector layer reinforcing portion 22. As shown in FIG. The current collector layer bonding portion 23 will be described later.
The current collector layer adhesion portion 23 controls the position where the current collector layer bends during focusing so that it becomes the current collector layer protrusion, and the side fixing portion 19 prevents the current collector layer protrusion from moving. By restraining them, a structure in which bending stress is less likely to be applied to the inside of the positive electrode layer 11, the negative electrode layer 14, and the solid electrolyte layer 16 can be obtained, and the reliability of the insulation assurance of the all-solid-state battery can be ensured. In the all-solid-state battery 200 shown in FIG. 7, the current collector layers are fixed to each other by the current collector layer adhesion portion 23 provided in a predetermined region of the current collector layer protrusion portion, so that the current collector layer serves as a bending starting point W. It is a focused structure.
In the third embodiment, in addition to the side fixing portion 19 of the first embodiment, a current collector layer bonding portion 23 is provided at a predetermined position of the current collector layer protruding portion so that the current collector at the time of focusing is It is possible to reduce the amount of bending of the layer projecting portion, and further suppress the occurrence of short circuits in the all-solid-state battery. In addition, the usage amount of the side fixing portion 19 can be reduced, and the energy density of the all-solid-state battery can be improved.

(4)第4の実施形態
図8は、本開示の全固体電池の第4の実施形態の一例を示す断面模式図である。
図8に示す全固体電池300は、側面固定部19を有さない代わりに集電体層接着部23を有すること以外は、図2に示す全固体電池100と同じである。なお、図8においては、負極集電体層突出部17の集束前の状態の電池を示した。また、図8において、実線で囲われた部分は、集電体層突出部の折り曲げ起点となる領域を示す。
本開示の第4の実施形態として、全固体電池300においては、一群の前記負極集電体層13、又は、一群の前記正極集電体層10の少なくともいずれか一方の一群の集電体層は、当該一群の集電体層の一群の突出部の内、前記電池積層体60の積層方向において対向する少なくとも2つの突出部が、当該突出部の所定の領域の少なくとも一部に樹脂を含む集電体層接着部を有し、少なくとも2つの当該突出部が当該集電体層接着部を介して当該領域を起点として折り曲げ可能に接着されていればよい。
本開示の全固体電池300は、少なくとも2つの突出部が集電体層接着部を介して所定の領域を起点として折り曲げ可能に接着されていればよく、例えば、負極集電体層突出部17が5本ある場合、少なくとも2本の負極集電体層突出部17が集電体層接着部23を介して接着されていればよく、積層方向の真ん中の1本だけ接着せずに残りの4本の負極集電体層突出部17は、対向する2本の負極集電体層突出部17同士で互いに接着されていてもよく、5本の負極集電体層突出部17のすべてが接着されていてもよい。
第4の実施形態では、集電体層突出部の所定の位置に集電体層接着部23を設けることにより、集束時の集電体層突出部の曲がり量を低減させることで、集束時の正極層11、負極層14、及び固体電解質層16等の割れを抑制することができ、全固体電池の短絡の発生を抑制することができ、側面固定部を有さない点で、第1~3の実施形態と比較して、全固体電池のエネルギー密度を向上させることができる。
(4) Fourth Embodiment FIG. 8 is a schematic cross-sectional view showing an example of a fourth embodiment of the all-solid-state battery of the present disclosure.
The all-solid-state battery 300 shown in FIG. 8 is the same as the all-solid-state battery 100 shown in FIG. Note that FIG. 8 shows the battery in a state before the negative electrode current collector layer protruding portion 17 is converged. Further, in FIG. 8, the portion surrounded by the solid line indicates the region that becomes the starting point of bending of the current collector layer projecting portion.
As a fourth embodiment of the present disclosure, in the all-solid-state battery 300, at least one of the group of the negative electrode current collector layers 13 and the group of the positive electrode current collector layers 10 is a group of current collector layers. Among the group of protrusions of the group of current collector layers, at least two protrusions facing each other in the stacking direction of the battery stack 60 contain a resin in at least part of a predetermined region of the protrusions. It suffices that it has a collector layer adhesion portion, and at least two of the projecting portions are adhered via the collector layer adhesion portion so as to be bendable with the region as a starting point.
In the all-solid-state battery 300 of the present disclosure, at least two protruding portions may be bonded via the current collector layer bonding portion so as to be bendable starting from a predetermined region. When there are five, at least two negative electrode current collector layer protrusions 17 need only be bonded via the current collector layer bonding part 23, and only one in the middle in the stacking direction is not bonded, and the remaining The four negative electrode current collector layer protrusions 17 may be adhered to each other between the two negative electrode current collector layer protrusions 17 facing each other, and all the five negative electrode current collector layer protrusions 17 may be bonded to each other. It may be glued.
In the fourth embodiment, by providing a current collector layer bonding portion 23 at a predetermined position of the current collector layer protrusion, the amount of bending of the current collector layer protrusion during focusing is reduced. The first The energy density of the all-solid-state battery can be improved compared to the embodiments of 1 to 3.

図9は、全固体電池300を積層方向から平面視した時の一例を示す平面模式図である。
全固体電池300は、集電体層突出部の所定の領域の少なくとも一部に樹脂を含む集電体層接着部23を有していればよい。
集電体層接着部23は、集電体層突出部の集束時の折り曲げ起点となる領域の少なくとも一部に配置されていれば、集電体層突出部の側面に有していてもよい。
図9に示すように、全固体電池の短絡の発生をより抑制する観点から、集電体層の集束の際の折り曲げ起点Wに沿って、面方向の中心線からの対象構造となるように、集電体層突出部の片側表面の折り曲げ起点Wとなる領域の両端及び中央部に少なくとも集電体層接着部23を配置することが好ましい。
図10は、全固体電池300を積層方向から平面視した時の別の一例を示す平面模式図である。
図10に示すように、全固体電池300の短絡をより抑制する観点から、集電体層の集束の際の折り曲げ起点Wに沿って、集電体層突出部の少なくとも片側表面の折り曲げ起点Wとなる領域のすべてに集電体層接着部23が配置されていることが特に好ましい。
FIG. 9 is a schematic plan view showing an example when the all-solid-state battery 300 is viewed from above in the stacking direction.
The all-solid-state battery 300 only needs to have the current collector layer adhesion part 23 containing a resin in at least part of the predetermined region of the current collector layer protrusion.
The current collector layer bonding portion 23 may be provided on the side surface of the current collector layer protrusion as long as it is disposed in at least a part of the region where the current collector layer protrusion starts bending when converging. .
As shown in FIG. 9, from the viewpoint of further suppressing the occurrence of short circuits in the all-solid-state battery, along the bending starting point W when the current collector layers are converged, the structure is symmetrical from the center line in the planar direction. It is preferable to dispose at least the current collector layer bonding portions 23 at both ends and the central portion of the region that serves as the bending starting point W on one side surface of the current collector layer projecting portion.
FIG. 10 is a schematic plan view showing another example when the all-solid-state battery 300 is viewed from above in the stacking direction.
As shown in FIG. 10, from the viewpoint of further suppressing the short circuit of the all-solid-state battery 300, the bending starting point W of at least one side surface of the current collector layer protruding portion along the bending starting point W when the current collector layer is converged It is particularly preferable that the current collector layer bonding portion 23 is arranged in all of the regions where

集電体層接着部23に用いられる接着剤としては、従来公知の接着剤や粘着剤を用いることができ、側面固定部に用いる樹脂等も用いることができる。 As the adhesive used for the current collector layer adhesion portion 23, conventionally known adhesives and pressure-sensitive adhesives can be used, and the resin used for the side fixing portion can also be used.

集電体層接着部23の配置方法は特に限定されないが、作業効率向上の観点から、集電体層突出部の集束前に集電体層突出部に一枚ずつ、ディスペンサー等を用いて接着剤を塗布してもよい。また、接着剤を表面に塗布したテープ等を集電体層突出部の所定の領域に張り付けてもよい。集電体層接着部23は、電池積層体60の作成後に配置してもよいし、電池積層体60の作成前にあらかじめ集電体層突出部の所定の領域に配置しておいてもよい。 The method of arranging the current collector layer adhesive portion 23 is not particularly limited, but from the viewpoint of improving work efficiency, one sheet at a time is attached to the current collector layer protrusions using a dispenser or the like before the current collector layer protrusions are converged. agent may be applied. Alternatively, a tape or the like having an adhesive applied to the surface thereof may be adhered to a predetermined region of the current collector layer projecting portion. The current collector layer adhesion part 23 may be arranged after the battery laminate 60 is produced, or may be arranged in advance in a predetermined region of the current collector layer projecting part before the battery laminate 60 is produced. .

[正極]
正極は、正極層と正極集電体層を有する。
[Positive electrode]
The positive electrode has a positive electrode layer and a positive electrode collector layer.

[正極層]
正極層は、正極活物質を含み、任意成分として、固体電解質、導電材、及び、バインダー等が含まれていてもよい。
[Positive electrode layer]
The positive electrode layer contains a positive electrode active material, and may contain a solid electrolyte, a conductive material, a binder, and the like as optional components.

正極活物質としては、例えば、一般式Li(Mは遷移金属元素であり、x=0.02~2.2、y=1~2、z=1.4~4)で表される正極活物質を挙げることができる。上記一般式において、Mは、Co、Mn、Ni、V、FeおよびSiからなる群から選択される少なくとも一種が挙げられ、Co、NiおよびMnからなる群から選択される少なくとも一種であってよい。このような正極活物質としては、具体的には、LiCoO、LiMnO、LiNiO、LiVO、LiNi1/3Co1/3Mn1/3、LiMn、Li(Ni0.5Mn1.5)O、LiFeSiO、LiMnSiO等を挙げることができる。
また、上記一般式Li以外の正極活物質としては、チタン酸リチウム(例えばLiTi12)、リン酸金属リチウム(LiFePO、LiMnPO、LiCoPO、LiNiPO)、遷移金属酸化物(V、MoO)、TiS、LiCoN、Si、SiO、LiSiO、LiSiO、及びリチウム貯蔵性金属間化合物(例えばMgSn、MgGe、MgSb、CuSb)等を挙げることができる。
正極活物質の形状は特に限定されるものではないが、粒子状であってもよい。
正極活物質の表面には、Liイオン伝導性酸化物を含有するコート層が形成されていても良い。正極活物質と、固体電解質との反応を抑制できるからである。
Liイオン伝導性酸化物としては、例えば、LiNbO、LiTi12、及びLiPO等が挙げられる。
正極層における正極活物質の含有量は、特に限定されないが、例えば10質量%~100質量%の範囲内であってもよい。
正極層に用いられる固体電解質は、後述する固体電解質層に用いられる固体電解質と同様のものが挙げられる。正極層中の固体電解質の含有割合は特に限定されるものではない。
As the positive electrode active material, for example, Li x M y O z (M is a transition metal element, x = 0.02 to 2.2, y = 1 to 2, z = 1.4 to 4). can be mentioned. In the above general formula, M includes at least one selected from the group consisting of Co, Mn, Ni, V, Fe and Si, and may be at least one selected from the group consisting of Co, Ni and Mn. . Specific examples of such positive electrode active materials include LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , Li(Ni 0 .5Mn1.5 ) O4 , Li2FeSiO4 , Li2MnSiO4 and the like .
Examples of positive electrode active materials other than LixMyOz represented by the general formula include lithium titanate ( e.g. , Li4Ti5O12 ), lithium metal phosphate ( LiFePO4 , LiMnPO4 , LiCoPO4 , LiNiPO4 ), transition metal oxides ( V2O5 , MoO3 ), TiS2 , LiCoN , Si , SiO2 , Li2SiO3 , Li4SiO4 , and lithium storage intermetallic compounds (e.g. Mg2Sn , Mg2Ge , Mg 2 Sb, Cu 3 Sb) and the like.
Although the shape of the positive electrode active material is not particularly limited, it may be particulate.
A coat layer containing a Li ion conductive oxide may be formed on the surface of the positive electrode active material. This is because the reaction between the positive electrode active material and the solid electrolyte can be suppressed.
Li ion conductive oxides include, for example, LiNbO 3 , Li 4 Ti 5 O 12 , Li 3 PO 4 and the like.
The content of the positive electrode active material in the positive electrode layer is not particularly limited, but may be, for example, within the range of 10% by mass to 100% by mass.
Examples of the solid electrolyte used for the positive electrode layer include those similar to the solid electrolyte used for the solid electrolyte layer described later. The content ratio of the solid electrolyte in the positive electrode layer is not particularly limited.

導電材としては、公知のものを用いることができ、例えば、炭素材料、及び金属粒子等が挙げられる。炭素材料としては、例えば、アセチレンブラックやファーネスブラック等のカーボンブラック、カーボンナノチューブ、及び、カーボンナノファイバーからなる群より選ばれる少なくとも一種を挙げることができ、中でも、電子伝導性の観点から、カーボンナノチューブ、及び、カーボンナノファイバーからなる群より選ばれる少なくとも一種が好ましい。当該カーボンナノチューブ、及び、カーボンナノファイバーはVGCF(気相法炭素繊維)であってもよい。金属粒子としては、Al、Ni、Cu、Fe、及びSUS等の粒子が挙げられる。
正極層における導電材の含有量は特に限定されるものではない。
As the conductive material, a known material can be used, and examples thereof include carbon materials, metal particles, and the like. Examples of the carbon material include at least one selected from the group consisting of carbon black such as acetylene black and furnace black, carbon nanotubes, and carbon nanofibers. and at least one selected from the group consisting of carbon nanofibers. The carbon nanotube and carbon nanofiber may be VGCF (vapor grown carbon fiber). Metal particles include particles of Al, Ni, Cu, Fe, SUS, and the like.
The content of the conductive material in the positive electrode layer is not particularly limited.

バインダーとしては、例えばブタジエンゴム、水素化ブタジエンゴム、スチレンブタジエンゴム(SBR)、水素化スチレンブタジエンゴム、ニトリルブタジエンゴム、水素化ニトリルブタジエンゴム、及びエチレンプロピレンゴム等のゴム系バインダー、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン-ポリヘキサフルオロプロピレン共重合体(PVDF-HFP)、ポリテトラフルオロエチレン、及びフッ素ゴム等のフッ化物系バインダー、ポリエチレン、ポリプロピレン、及びポリスチレン等のポリオレフィン系の熱可塑性樹脂、ポリイミド、及びポリアミドイミド等のイミド系樹脂、ポリアミド等のアミド系樹脂、ポリメチルアクリレート、及びポリエチルアクリレート等のアクリル系樹脂、ポリメチルメタクリレート、及びポリエチルメタクリラート等のメタクリル系樹脂等が挙げられる。正極層におけるバインダーの含有量は特に限定されるものではない。 Examples of binders include rubber binders such as butadiene rubber, hydrogenated butadiene rubber, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber, nitrile butadiene rubber, hydrogenated nitrile butadiene rubber, and ethylene propylene rubber, polyvinylidene fluoride ( PVdF), polyvinylidene fluoride-polyhexafluoropropylene copolymer (PVDF-HFP), polytetrafluoroethylene, and fluoride-based binders such as fluororubber, polyolefin-based thermoplastic resins such as polyethylene, polypropylene, and polystyrene, imide resins such as polyimide and polyamideimide; amide resins such as polyamide; acrylic resins such as polymethyl acrylate and polyethyl acrylate; and methacrylic resins such as polymethyl methacrylate and polyethyl methacrylate. . The content of the binder in the positive electrode layer is not particularly limited.

正極層は、例えば、正極活物質、及び必要に応じ導電材、バインダー等を溶媒中に投入し、撹拌することにより、正極層用スラリーを作製し、当該スラリーを支持体の一面上に塗布して乾燥させることにより得られる。
溶媒は、例えば酢酸ブチル、酪酸ブチル、ヘプタン、及びN-メチル-2-ピロリドン等が挙げられる。
支持体の一面上に正極層用スラリーを塗布する方法は、特に限定されず、ドクターブレード法、メタルマスク印刷法、静電塗布法、ディップコート法、スプレーコート法、ロールコート法、グラビアコート法、及びスクリーン印刷法等が挙げられる。
また、正極層の形成方法の別の方法として、正極活物質及び必要に応じ他の成分を含む正極合剤の粉末を加圧成形することにより正極層を形成してもよい。
For the positive electrode layer, for example, a positive electrode layer slurry is prepared by putting a positive electrode active material and, if necessary, a conductive material, a binder, etc. into a solvent and stirring the slurry, and the slurry is applied on one surface of the support. It is obtained by drying with
Solvents include, for example, butyl acetate, butyl butyrate, heptane, N-methyl-2-pyrrolidone, and the like.
The method for applying the positive electrode layer slurry onto one surface of the support is not particularly limited, and includes a doctor blade method, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, and a gravure coating method. , and screen printing methods.
As another method of forming the positive electrode layer, the positive electrode layer may be formed by pressure-molding a powder of a positive electrode mixture containing the positive electrode active material and, if necessary, other components.

[正極集電体層]
正極集電体層は、面方向に突出している正極集電体層突出部を有する。また、この正極集電体層突出部には、正極集電タブが電気的に接続されていてもよい。
正極集電体層は、正極層の集電を行う機能を有するものであり、全固体電池の正極集電体として使用可能な公知のものを適宜選択して用いることができ、特に限定はされない。
正極集電体層の材料としては、例えば、SUS、Ni、Cr、Au、Pt、Al、Fe、Ti、Zn等の金属材料を挙げることができる。
正極集電体層の形態は特に限定されるものではなく、箔状、メッシュ状等、種々の形態とすることができる。また、正極集電体層の突出部とそれ以外の部分の厚みや幅は同じであっても異なっていてもよく、全固体電池の大きさ等に応じて適宜設定することができる。また、正極集電体層突出部の長さは特に限定されないが、集束しやすい長さに適宜調整してもよい。
[Positive collector layer]
The positive electrode current collector layer has a positive electrode current collector layer protruding part that protrudes in the surface direction. Further, a positive electrode current collector tab may be electrically connected to the positive electrode current collector layer protruding portion.
The positive electrode current collector layer has a function of collecting current of the positive electrode layer, and can be used by appropriately selecting a known one that can be used as a positive electrode current collector for an all-solid-state battery, and is not particularly limited. .
Examples of materials for the positive electrode current collector layer include metal materials such as SUS, Ni, Cr, Au, Pt, Al, Fe, Ti, and Zn.
The form of the positive electrode current collector layer is not particularly limited, and may be in various forms such as foil-like and mesh-like. The thickness and width of the projecting portion of the positive electrode current collector layer and the other portion may be the same or different, and can be appropriately set according to the size of the all-solid-state battery. Also, the length of the positive electrode current collector layer protrusion is not particularly limited, but may be appropriately adjusted to a length that facilitates convergence.

[コート層]
正極集電体層は、金属を含有する金属箔の表面の少なくとも一部に、Ni、Cr、C(カーボン)等の導電材を含有するコート層を有するものであっても良い。コート層を有することにより、正極集電体層の表面に不動態被膜が形成されて内部抵抗が増大することを抑制できる。
コート層は、少なくとも導電材を含有し、必要に応じて、バインダー等のその他の成分を更に含有していても良い。コート層が含有していても良いバインダーとしては、例えば、正極層が含有していても良いバインダーと同様のものを挙げることができる。また、コート層は、導電材からなるめっき層又は蒸着層であっても良い。
コート層の具体例としては、例えば、導電材としてのC(カーボン)を15質量%含有し、更にバインダーとしてのポリフッ化ビニリデン(PVDF)を85質量%含有し、体積抵抗率が10×10Ωcmのカーボンコート層を挙げることができる。
コート層の厚みは特に限定はされないが、内部抵抗の増大を抑制する点から、好ましくは1μm以上50μm以下であり、例えば10μm程度とすることができる。
コート層は、正極集電体層の表面において、互いに接着する正極集電体層と正極層とが重なり合う領域内に配置されていることが、全固体電池の内部抵抗の増大を抑制しやすい点から好ましい。
[Coating layer]
The positive electrode current collector layer may have a coat layer containing a conductive material such as Ni, Cr, or C (carbon) on at least part of the surface of a metal foil containing metal. By having the coat layer, it is possible to suppress an increase in internal resistance due to the formation of a passive film on the surface of the positive electrode current collector layer.
The coat layer contains at least a conductive material, and if necessary, may further contain other components such as a binder. Examples of the binder that the coat layer may contain include the same binders that the positive electrode layer may contain. Also, the coat layer may be a plated layer or a deposited layer made of a conductive material.
As a specific example of the coating layer, for example, it contains 15% by mass of C (carbon) as a conductive material, further contains 85% by mass of polyvinylidene fluoride (PVDF) as a binder, and has a volume resistivity of 10×10 3 . A carbon coat layer of Ωcm can be mentioned.
Although the thickness of the coat layer is not particularly limited, it is preferably 1 μm or more and 50 μm or less, for example, about 10 μm, from the viewpoint of suppressing an increase in internal resistance.
On the surface of the positive electrode current collector layer, the coat layer is arranged in a region where the positive electrode current collector layer and the positive electrode layer that are adhered to each other overlap, which makes it easy to suppress an increase in the internal resistance of the all-solid-state battery. preferred from

[負極]
負極は、負極層と負極集電体層を有する。
[Negative electrode]
The negative electrode has a negative electrode layer and a negative electrode collector layer.

[負極層]
負極層は、負極活物質を含み、任意成分として、固体電解質、導電材、及びバインダー等が含まれていてもよい。
[Negative electrode layer]
The negative electrode layer contains a negative electrode active material, and may contain a solid electrolyte, a conductive material, a binder, and the like as optional components.

負極活物質としては、従来公知の材料を用いることができ、例えば、Li単体、リチウム合金、炭素、Si単体、Si合金、及びLiTi12(LTO)等が挙げられる。
リチウム合金としては、LiSn、LiSi、LiAl、LiGe、LiSb、LiP、及びLiIn等が挙げられる。
Si合金としては、Li等の金属との合金等が挙げられ、その他、Sn、Ge、及びAlからなる群より選ばれる少なくとも一種の金属との合金であってもよい。
負極活物質の形状については、特に限定されるものではないが、例えば粒子状、薄膜状とすることができる。
負極活物質が粒子である場合の当該粒子の平均粒径(D50)は、例えば1nm以上100μm以下であることが好ましく、10nm以上30μm以下であることがより好ましい。
Conventionally known materials can be used as the negative electrode active material, and examples thereof include Li simple substance, lithium alloys, carbon, Si simple substances, Si alloys, and Li 4 Ti 5 O 12 (LTO).
Lithium alloys include LiSn, LiSi, LiAl, LiGe, LiSb, LiP, and LiIn.
Examples of Si alloys include alloys with metals such as Li, and may be alloys with at least one metal selected from the group consisting of Sn, Ge, and Al.
The shape of the negative electrode active material is not particularly limited, but may be, for example, particulate or thin film.
When the negative electrode active material is particles, the average particle diameter (D50) of the particles is, for example, preferably 1 nm or more and 100 μm or less, more preferably 10 nm or more and 30 μm or less.

負極層に含まれる導電材、バインダー、固体電解質は、上述した正極層に含まれるものと同様のものが挙げられる。 Examples of the conductive material, binder, and solid electrolyte contained in the negative electrode layer are the same as those contained in the positive electrode layer described above.

負極層を形成する方法としては、特に限定されないが、負極活物質及び必要に応じ導電材、バインダー等の他の成分を含む負極合剤の粉末を加圧成形する方法が挙げられる。また、負極層を形成する方法の別の例としては、負極活物質、溶媒及び必要に応じ導電材、バインダー等の他の成分を含む負極層用スラリーを用意し、当該負極層用スラリーを支持体の一面上に塗布し、当該負極層用スラリーを乾燥させる方法等が挙げられる。負極層用スラリーに用いられる溶媒は、正極層用スラリーに用いられる溶媒と同様のものが挙げられる。支持体の一面上に負極用スラリーを塗布する方法は、正極用スラリーを塗布する方法と同様の方法が挙げられる。 The method for forming the negative electrode layer is not particularly limited, but there is a method of pressure-molding a negative electrode mixture powder containing negative electrode active material and, if necessary, other components such as a conductive material and a binder. Further, as another example of the method for forming the negative electrode layer, a negative electrode layer slurry containing a negative electrode active material, a solvent, and optionally other components such as a conductive material and a binder is prepared, and the negative electrode layer slurry is supported. A method of applying the negative electrode layer slurry onto one surface of the body and drying the negative electrode layer slurry may be used. Examples of the solvent used for the negative electrode layer slurry include the same solvents as those used for the positive electrode layer slurry. The method of applying the negative electrode slurry onto one surface of the support includes the same method as the method of applying the positive electrode slurry.

[負極集電体層]
負極集電体層は、面方向に突出している負極集電体層突出部を有する。また、この負極集電体層突出部には、負極集電タブが電気的に接続されていてもよい。
負極集電体層は、負極層の集電を行う機能を有するものであり、全固体電池の負極集電体として使用可能な公知のものを適宜選択して用いることができ、特に限定されない。
負極集電体層の材料としては、例えば、SUS、Cu、Ni、Fe、Ti、Co、Zn等の金属材料を挙げることができる。
負極集電体層の形態は特に限定されるものではなく、上記正極集電体層と同様の形態とすることができる。また、負極集電体層の突出部とそれ以外の部分の厚みや幅は同じであっても異なっていてもよく、全固体電池の大きさ等に応じて適宜設定することができる。また、負極集電体層突出部の長さは特に限定されないが、集束しやすい長さに適宜調整してもよい。
[Negative electrode current collector layer]
The negative electrode current collector layer has a negative electrode current collector layer protruding part that protrudes in the surface direction. Further, a negative electrode collector tab may be electrically connected to the negative electrode collector layer projecting portion.
The negative electrode current collector layer has a function of collecting current for the negative electrode layer, and can be used by appropriately selecting a known one that can be used as a negative electrode current collector for an all-solid-state battery, and is not particularly limited.
Examples of materials for the negative electrode current collector layer include metal materials such as SUS, Cu, Ni, Fe, Ti, Co, and Zn.
The form of the negative electrode current collector layer is not particularly limited, and may be the same form as the positive electrode current collector layer. The thickness and width of the projecting portion of the negative electrode current collector layer and the other portion may be the same or different, and can be appropriately set according to the size of the all-solid-state battery. In addition, the length of the negative electrode current collector layer protrusion is not particularly limited, but may be appropriately adjusted to a length that facilitates convergence.

[固体電解質層]
固体電解質層は、少なくとも固体電解質を含む。
固体電解質は、硫化物系固体電解質、及び酸化物系固体電解質等が挙げられる。
硫化物系固体電解質としては、例えば、LiS-P、LiS-SiS、LiX-LiS-SiS、LiX-LiS-P、LiX-LiO-LiS-P、LiX-LiS-P、LiX-LiPO-P、及びLiPS等が挙げられる。なお、上記「LiS-P」の記載は、LiSおよびPを含む原料組成物を用いてなる材料を意味し、他の記載についても同様である。また、上記LiXの「X」は、ハロゲン元素を示す。上記LiXを含む原料組成物中にLiXは1種又は2種以上含まれていてもよい。LiXが2種以上含まれる場合、2種以上の混合比率は特に限定されるものではない。
硫化物系固体電解質としては、例えば、LiSとPとの質量比(LiS/P)が0.5以上となるように、LiS及びPを混合して作製される硫化物系固体電解質を挙げることができる。また、質量比でLiS:Pが70:30となるようにLiS及びPを混合して作製される硫化物系固体電解質が、イオン伝導性が良好となる点から好ましく用いられる。
硫化物系固体電解質における各元素のモル比は、原料における各元素の含有量を調製することにより制御できる。また、硫化物系固体電解質における各元素のモル比や組成は、例えば、ICP発光分析法で測定することができる。
[Solid electrolyte layer]
The solid electrolyte layer contains at least a solid electrolyte.
Solid electrolytes include sulfide-based solid electrolytes, oxide-based solid electrolytes, and the like.
Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , LiX—Li 2 S—SiS 2 , LiX—Li 2 SP 2 S 5 , LiX—Li 2 O—Li 2 SP 2 S 5 , LiX—Li 2 SP 2 O 5 , LiX—Li 3 PO 4 —P 2 S 5 , Li 3 PS 4 and the like. The above description of "Li 2 SP 2 S 5 " means a material obtained by using a raw material composition containing Li 2 S and P 2 S 5 , and the same applies to other descriptions. "X" in LiX above represents a halogen element. One or more kinds of LiX may be contained in the raw material composition containing LiX. When two or more types of LiX are included, the mixing ratio of the two or more types is not particularly limited.
As the sulfide-based solid electrolyte, for example, Li 2 S and P 2 S 5 are added so that the mass ratio of Li 2 S and P 2 S 5 ( Li 2 S/P 2 S 5 ) is 0.5 or more . and a sulfide-based solid electrolyte prepared by mixing. In addition, a sulfide-based solid electrolyte prepared by mixing Li 2 S and P 2 S 5 so that the mass ratio of Li 2 S:P 2 S 5 is 70:30 has good ion conductivity. It is preferably used from the point.
The molar ratio of each element in the sulfide-based solid electrolyte can be controlled by adjusting the content of each element in the raw material. Also, the molar ratio and composition of each element in the sulfide-based solid electrolyte can be measured, for example, by ICP emission spectrometry.

硫化物系固体電解質は、ガラスであってもよく、結晶であってもよく、結晶性を有するガラスセラミックスであってもよい。
硫化物系固体電解質の結晶状態は、例えば、硫化物系固体電解質に対してCuKα線を使用した粉末X線回折測定を行うことにより確認することができる。
The sulfide-based solid electrolyte may be glass, crystal, or crystalline glass-ceramics.
The crystalline state of the sulfide-based solid electrolyte can be confirmed, for example, by subjecting the sulfide-based solid electrolyte to powder X-ray diffraction measurement using CuKα rays.

ガラスは、原料組成物(例えばLiSおよびPの混合物)を非晶質処理することにより得ることができる。非晶質処理としては、例えば、メカニカルミリングが挙げられる。メカニカルミリングは、乾式メカニカルミリングであっても良く、湿式メカニカルミリングであっても良いが、後者が好ましい。容器等の壁面に原料組成物が固着することを防止できるからである。
メカニカルミリングは、原料組成物を、機械的エネルギーを付与しながら混合する方法であれば特に限定されるものではないが、例えばボールミル、振動ミル、ターボミル、メカノフュージョン、ディスクミル等を挙げることができ、中でもボールミルが好ましく、特に遊星型ボールミルが好ましい。所望のガラスを効率良く得ることができるからである。
Glass can be obtained by subjecting a raw material composition (for example, a mixture of Li 2 S and P 2 S 5 ) to amorphous processing. Examples of amorphous processing include mechanical milling. The mechanical milling may be dry mechanical milling or wet mechanical milling, but the latter is preferred. This is because the raw material composition can be prevented from sticking to the walls of the container or the like.
Mechanical milling is not particularly limited as long as it is a method of mixing the raw material composition while applying mechanical energy. Among them, a ball mill is preferable, and a planetary ball mill is particularly preferable. This is because the desired glass can be efficiently obtained.

ガラスセラミックスは、例えば、ガラスを熱処理することにより得ることができる。
また、結晶は、例えば、ガラスを熱処理すること、又は、原料組成物に対して固相反応処理すること等により得ることができる。
熱処理温度は、ガラスの熱分析測定により観測される結晶化温度(Tc)よりも高い温度であればよく、通常、195℃以上である。一方、熱処理温度の上限は特に限定されない。
ガラスの結晶化温度(Tc)は、示差熱分析(DTA)により測定することができる。
熱処理時間は、所望の結晶化度が得られる時間であれば特に限定されるものではないが、例えば1分間~24時間の範囲内であり、中でも、1分間~10時間の範囲内が挙げられる。
熱処理の方法は特に限定されるものではないが、例えば、焼成炉を用いる方法を挙げることができる。
Glass-ceramics can be obtained, for example, by heat-treating glass.
Also, crystals can be obtained, for example, by heat-treating glass, or subjecting a raw material composition to solid-phase reaction treatment.
The heat treatment temperature may be any temperature higher than the crystallization temperature (Tc) observed by thermal analysis measurement of glass, and is usually 195° C. or higher. On the other hand, the upper limit of the heat treatment temperature is not particularly limited.
The crystallization temperature (Tc) of glass can be measured by differential thermal analysis (DTA).
The heat treatment time is not particularly limited as long as the desired degree of crystallinity is obtained. .
The method of heat treatment is not particularly limited, but for example, a method using a kiln can be mentioned.

酸化物系固体電解質としては、例えばLi6.25LaZrAl0.2512、LiPO、及びLi3+xPO4-x(LiPON)等が挙げられる。 Examples of oxide solid electrolytes include Li 6.25 La 3 Zr 2 Al 0.25 O 12 , Li 3 PO 4 and Li 3+x PO 4-x N x (LiPON).

固体電解質の形状は、取扱い性が良いという観点から粒子状であることが好ましい。
また、固体電解質の粒子の平均粒径(D50)は、特に限定されないが、下限が0.5μm以上であることが好ましく、上限が2μm以下であることが好ましい。
固体電解質は、1種単独で、又は2種以上のものを用いることができる。また、2種以上の固体電解質を用いる場合、2種以上の固体電解質を混合してもよい。
The shape of the solid electrolyte is preferably particulate from the viewpoint of ease of handling.
The average particle diameter (D50) of the particles of the solid electrolyte is not particularly limited, but the lower limit is preferably 0.5 μm or more, and the upper limit is preferably 2 μm or less.
Solid electrolytes can be used singly or in combination of two or more. Moreover, when using 2 or more types of solid electrolytes, you may mix 2 or more types of solid electrolytes.

本開示において、粒子の平均粒径は、特記しない限り、レーザー回折・散乱式粒子径分布測定により測定される体積基準のメディアン径(D50)の値である。また、本開示においてメディアン径(D50)とは、粒径の小さい粒子から順に並べた場合に、粒子の累積体積が全体の体積の半分(50%)となる径(体積平均径)である。 In the present disclosure, unless otherwise specified, the average particle diameter of particles is the volume-based median diameter (D50) measured by laser diffraction/scattering particle size distribution measurement. In the present disclosure, the median diameter (D50) is the diameter (volume average diameter) at which the cumulative volume of particles is half (50%) of the total volume when the particles are arranged in order from the smallest particle size.

固体電解質層中の固体電解質の含有割合は、特に限定されるものではない。 The content ratio of the solid electrolyte in the solid electrolyte layer is not particularly limited.

固体電解質層には、可塑性を発現させる等の観点から、固体電解質同士を結着させるバインダーを含有させることもできる。そのようなバインダーとしては、上述した正極層に含有させることが可能なバインダー等を例示することができる。ただし、電池の高出力化を図り易くするために、固体電解質の過度の凝集を防止し且つ均一に分散された固体電解質を有する固体電解質層を形成可能にする等の観点から、固体電解質層に含有させるバインダーは5.0質量%以下とすることが好ましい。 The solid electrolyte layer may contain a binder that binds the solid electrolytes together from the viewpoint of exhibiting plasticity. As such a binder, the binder etc. which can be contained in the positive electrode layer mentioned above can be illustrated. However, in order to make it easier to increase the output of the battery, from the viewpoint of preventing excessive aggregation of the solid electrolyte and making it possible to form a solid electrolyte layer having a uniformly dispersed solid electrolyte, the solid electrolyte layer The content of the binder to be contained is preferably 5.0% by mass or less.

固体電解質層の厚みは、電池の構成によって適宜調整され、特に限定されるものではなく、通常0.1μm以上1mm以下である。
固体電解質層の形成方法は、例えば、固体電解質、及び必要に応じ他の成分を含む固体電解質層の材料の粉末を加圧成形することにより固体電解質層を形成してもよい。
The thickness of the solid electrolyte layer is appropriately adjusted depending on the configuration of the battery and is not particularly limited, and is usually 0.1 μm or more and 1 mm or less.
The solid electrolyte layer may be formed by, for example, pressing powder of the solid electrolyte layer material containing the solid electrolyte and, if necessary, other components.

全固体電池は、必要に応じ、正極、負極、及び、固体電解質層を収容する外装体を備える。
外装体の形状としては、特に限定されないが、ラミネート型等を挙げることができる。
外装体の材質は、電解質に安定なものであれば特に限定されないが、ポリプロピレン、ポリエチレン、及び、アクリル樹脂等の樹脂、並びにエンボス加工したアルミラミネート等が挙げられる。
The all-solid-state battery optionally includes a positive electrode, a negative electrode, and an outer casing housing a solid electrolyte layer.
The shape of the exterior body is not particularly limited, but a laminate type or the like can be mentioned.
The material of the exterior body is not particularly limited as long as it is stable in the electrolyte, and examples thereof include polypropylene, polyethylene, resins such as acrylic resins, and embossed aluminum laminates.

全固体電池としては、負極の反応として金属リチウムの析出-溶解反応を利用した全固体リチウム電池、負極の反応としてリチウムの負極活物質へのインターカレーションを利用した全固体リチウムイオン電池、全固体ナトリウム電池、全固体マグネシウム電池及び全固体カルシウム電池等を挙げることができ、全固体リチウムイオン電池であってもよい。また、全固体電池は、一次電池であってもよく二次電池であってもよい。
全固体電池の形状としては、例えば、コイン型、ラミネート型、円筒型、及び角型等を挙げることができる。
All-solid-state batteries include all-solid-state lithium batteries that use the deposition-dissolution reaction of metallic lithium as the negative electrode reaction, all-solid-state lithium-ion batteries that use intercalation of lithium into the negative electrode active material as the negative electrode reaction, and all-solid-state batteries. Examples include a sodium battery, an all-solid magnesium battery, an all-solid calcium battery, and the like, and an all-solid lithium ion battery may also be used. Moreover, the all-solid-state battery may be a primary battery or a secondary battery.
Examples of the shape of the all-solid-state battery include coin type, laminate type, cylindrical type, rectangular type, and the like.

[全固体電池の製造方法]
本開示の全固体電池の製造方法は、前述した本開示の全固体電池を得ることができる方法であれば特に限定されず、例えば以下の方法で製造することができる。
まず、シート状の正極およびシート状の負極の間にシート状の固体電解質層を配置し電池ユニットとする。そして、複数の電池ユニットを積層し、電池積層体とする。
第1の実施形態の場合は、その後、電池積層体の積層方向の上下から2枚の平板で電池積層体を挟み、面圧(0.05~2MPaが好ましい)を加えた状態で電池積層体の側面の所定の位置に樹脂を充填し、樹脂を硬化させ、電池積層体の側面の所定の位置に側面固定部を配置する。
第2の実施形態、又は、第3の実施形態の場合は、電池積層体を作成後、側面固定部を配置する前に、集電体層突出部の所定の領域にディスペンサーやテープ貼付け装置などを用いて集電体層補強部又は集電体層接着部を形成する。
第4の実施形態の場合は、電池積層体を作成後、側面固定部を配置せずに、集電体層突出部の所定の領域にディスペンサーやテープ貼付け装置などを用いて集電体層接着部を形成する。
側面固定部の形成後、又は、集電体層接着部の形成後、正極集電体層突出部および負極集電体層突出部をそれぞれ集束する。外部に通ずる正極端子までの間を、集電用リードなどを用いて正極集電体層突出部と正極端子とを接続し、かつ、負極端子までの間を、集電用リードなどを用いて負極集電体層突出部と負極端子とを接続し、全固体電池としてもよい。
全固体電池を封入することができるエンボス加工したアルミラミネートを全固体電池の積層方向の上下に用意し、全固体電池を外装体としてのアルミラミネート内部に挿入した後、外周4辺をヒートシールにより封止してもよい。外装体の内部を減圧するかどうかはどちらでもよく、設計の際に適宜調整してもよい。
[Method for manufacturing all-solid-state battery]
The method for manufacturing the all-solid-state battery of the present disclosure is not particularly limited as long as it is a method capable of obtaining the all-solid-state battery of the present disclosure described above, and can be manufactured, for example, by the following method.
First, a sheet-like solid electrolyte layer is arranged between a sheet-like positive electrode and a sheet-like negative electrode to form a battery unit. Then, a plurality of battery units are stacked to form a battery stack.
In the case of the first embodiment, after that, the battery stack is sandwiched between two flat plates from above and below in the stacking direction of the battery stack, and a surface pressure (preferably 0.05 to 2 MPa) is applied to the battery stack. A predetermined position on the side surface of the battery stack is filled with a resin, the resin is cured, and the side fixing portion is arranged at a predetermined position on the side surface of the battery stack.
In the case of the second embodiment or the third embodiment, after the battery stack is formed, a dispenser, a tape sticking device, or the like is applied to a predetermined region of the current collector layer projecting portion before arranging the side fixing portion. is used to form a current collector layer reinforcing portion or a current collector layer adhesion portion.
In the case of the fourth embodiment, after the battery laminate is produced, the current collector layer is adhered to a predetermined region of the current collector layer protrusion using a dispenser or a tape sticking device without arranging the side fixing portion. form a part.
After forming the side fixing portion or forming the current collector layer adhesion portion, the positive electrode current collector layer projecting portion and the negative electrode current collector layer projecting portion are respectively bundled. A current collecting lead or the like is used to connect the positive electrode current collector layer projecting portion and the positive electrode terminal to the positive electrode terminal leading to the outside, and a current collecting lead or the like is used to connect to the negative electrode terminal. An all-solid battery may be formed by connecting the negative electrode current collector layer projecting portion and the negative electrode terminal.
Embossed aluminum laminate that can enclose the all-solid-state battery is prepared on the top and bottom of the all-solid-state battery in the stacking direction. It may be sealed. It does not matter whether the inside of the exterior body is depressurized or not, and it may be adjusted as appropriate during design.

本開示の全固体電池の使用時に当該全固体電池に付与される圧力は、例えば1MPa以上45MPa以下とすることができ、当該全固体電池の非使用時に当該全固体電池に付与される圧力は、例えば0MPa以上1MPa以下とすることができる。 The pressure applied to the all-solid-state battery when the all-solid-state battery of the present disclosure is used can be, for example, 1 MPa or more and 45 MPa or less, and the pressure applied to the all-solid-state battery when the all-solid-state battery is not in use is For example, it can be 0 MPa or more and 1 MPa or less.

全固体電池の加圧の方法としては、例えば、機械加圧、及びガス加圧等が挙げられる。
機械加圧としては、例えば、モーターを駆動し、ボールネジを介して全固体電池の積層方向に加圧する方法、及びモーターを駆動して油圧を介して全固体電池の積層方向に加圧する方法等が挙げられる。機械加圧では、全固体電池を所定圧力まで加圧又は降圧した後、メカニカルストッパーで機械の稼動部を固定することにより、モーターの駆動に伴うエネルギー消費を必要最低限に抑制することができる。
ガス加圧としては、例えば、予め搭載したガスボンベから加圧ガスを介して全固体電池を加圧する方法等が挙げられる。
Methods for pressurizing an all-solid-state battery include, for example, mechanical pressurization and gas pressurization.
Examples of mechanical pressurization include a method of driving a motor to apply pressure in the stacking direction of the all-solid-state battery via a ball screw, and a method of driving a motor to apply pressure in the stacking direction of the all-solid-state battery via hydraulic pressure. mentioned. In the mechanical pressurization, after pressurizing or depressurizing the all-solid-state battery to a predetermined pressure, by fixing the moving part of the machine with a mechanical stopper, the energy consumption associated with driving the motor can be minimized.
Gas pressurization includes, for example, a method of pressurizing the all-solid-state battery via a pressurized gas from a pre-mounted gas cylinder.

本開示の全固体電池は、例えば、車両が搭載する電源、又は、携帯用電子機器等の駆動用電源等として用いられるが、これらの用途に限定されるものではない。
本開示の全固体電池が適用される車両は、電池を搭載しエンジンを搭載しない電気自動車に限定されず、電池とエンジンの双方を搭載するハイブリッド車等も包含する。
The all-solid-state battery of the present disclosure is used, for example, as a power source mounted on a vehicle or a power source for driving portable electronic devices, etc., but is not limited to these uses.
Vehicles to which the all-solid-state battery of the present disclosure is applied are not limited to electric vehicles that are equipped with a battery and no engine, and include hybrid vehicles that are equipped with both a battery and an engine.

10 正極集電体層
11 正極層
12 正極
13 負極集電体層
14 負極層
15 負極
16 固体電解質層
17 負極集電体層突出部
18 正極集電体層突出部
19 側面固定部
21 集束部
22 集電体層補強部
23 集電体層接着部
30 辺縁部
50 電池ユニット
60 電池積層体
100 全固体電池
200 全固体電池
300 全固体電池
L 面方向
W 集電体層突出部の折り曲げ起点
10 Positive electrode current collector layer 11 Positive electrode layer 12 Positive electrode 13 Negative electrode current collector layer 14 Negative electrode layer 15 Negative electrode 16 Solid electrolyte layer 17 Negative electrode current collector layer protrusion 18 Positive electrode current collector layer protrusion 19 Side fixing part 21 Converging part 22 Current collector layer reinforcing portion 23 Current collector layer bonding portion 30 Edge portion 50 Battery unit 60 Battery laminate 100 All-solid battery 200 All-solid battery 300 All-solid battery L Planar direction W Bending starting point of current collector layer protrusion

Claims (7)

正極集電体層及び正極層を含む正極と、負極集電体層及び負極層を含む負極と、当該正極層及び当該負極層の間に配置される固体電解質層と、を備える電池ユニットを2つ以上積層してなる電池積層体を備える全固体電池であって、
前記負極層の幅が、前記正極層の幅よりも大きく、
前記負極集電体層は、前記電池積層体の何れかの側面において、面方向に突出している負極集電体層突出部を有し、
前記正極集電体層は、前記電池積層体の何れかの側面において、面方向に突出している正極集電体層突出部を有し、
前記電池積層体は、前記負極集電体層突出部を有する側面と隣り合う両側面の当該負極集電体層突出部の側面を含む辺縁部、又は、前記正極集電体層突出部を有する側面と隣り合う両側面の当該正極集電体層突出部の側面を含む辺縁部の少なくともいずれか一方の当該両側面の当該辺縁部に樹脂で構成される側面固定部を有し、
前記側面固定部が、前記負極集電体層突出部を有する側面と隣り合う両側面の当該負極集電体層突出部の側面を含む辺縁部に有する場合、当該辺縁部として、前記負極層の側面の前記負極集電体層突出部が配置されている側の縁の位置、前記固体電解質層の側面の前記負極集電体層突出部が配置されている側の縁の位置、及び前記負極集電体層突出部の側面の突出元付近の位置に配置され、
前記側面固定部が、前記正極集電体層突出部を有する側面と隣り合う両側面の当該正極集電体層突出部の側面を含む辺縁部に有する場合、当該辺縁部として、前記正極層の側面の前記正極集電体層突出部が配置されている側の縁の位置、前記固体電解質層の側面の前記正極集電体層突出部が配置されている側の縁の位置、及び前記正極集電体層突出部の側面の突出元付近の位置に配置され
一群の前記負極集電体層、又は、一群の前記正極集電体層の少なくともいずれか一方の一群の集電体層は、当該一群の集電体層の一群の突出部の内、少なくとも1つの突出部が、当該突出部の所定の領域の少なくとも一部に補強材で補強された集電体層補強部を有することを特徴とする全固体電池。
2 a battery unit comprising a positive electrode including a positive electrode current collector layer and a positive electrode layer, a negative electrode including a negative electrode current collector layer and a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer An all-solid-state battery comprising a battery stack formed by stacking one or more,
The width of the negative electrode layer is larger than the width of the positive electrode layer,
The negative electrode current collector layer has a negative electrode current collector layer protruding part that protrudes in the surface direction on either side surface of the battery stack,
The positive electrode current collector layer has a positive electrode current collector layer protruding part that protrudes in the surface direction on either side surface of the battery stack,
The battery stack includes a side surface having the negative electrode current collector layer protrusion and a peripheral portion including the side surface of the negative electrode current collector layer protrusion on both side surfaces adjacent to the side surface, or the positive electrode current collector layer protrusion. a side fixing portion made of a resin on at least one of the marginal portions including the side surface of the positive electrode current collector layer protruding portion on both side surfaces adjacent to the side surface having the side surface fixing portion,
When the side fixing portion is provided in a peripheral portion including the side surface of the negative electrode current collector layer projecting portion on both side surfaces adjacent to the side surface having the negative electrode current collector layer projecting portion, the negative electrode the position of the edge of the side surface of the layer on which the negative electrode current collector layer protrusion is arranged, the position of the edge of the side surface of the solid electrolyte layer on which the negative electrode current collector layer protrusion is arranged, and arranged at a position near the protruding base of the side surface of the negative electrode current collector layer protruding portion,
When the side fixing portion is provided in a peripheral portion including the side surface of the positive electrode current collector layer projecting portion on both side surfaces adjacent to the side surface having the positive electrode current collector layer projecting portion, the peripheral portion includes the positive electrode the position of the edge of the side surface of the layer on which the positive electrode current collector layer protrusion is arranged, the position of the edge of the side surface of the solid electrolyte layer on which the positive electrode current collector layer protrusion is arranged, and arranged at a position near the protruding base of the side surface of the positive electrode current collector layer protruding portion ,
At least one of the group of the negative electrode current collector layers and the group of the positive electrode current collector layers includes at least one of the group of projecting portions of the group of current collector layers. 1. An all-solid-state battery, wherein each projection has a current-collector-layer reinforcing portion reinforced with a reinforcing material in at least a part of a predetermined region of the projection.
一群の前記負極集電体層、又は、一群の前記正極集電体層の少なくともいずれか一方の一群の集電体層は、当該一群の集電体層の一群の突出部の内、前記電池積層体の積層方向において対向する少なくとも2つの突出部が、当該突出部の所定の領域の少なくとも一部に樹脂を含む集電体層接着部を有し、少なくとも2つの当該突出部が当該集電体層接着部を介して当該領域を起点として折り曲げ可能に接着されている、請求項1に記載の全固体電池。 At least one of the group of the negative electrode current collector layers and the group of the positive electrode current collector layers, the group of current collector layers, of the group of protrusions of the group of current collector layers, the battery At least two projections facing each other in the stacking direction of the laminate have a current collector layer adhesion portion containing a resin in at least a part of a predetermined region of the projections, and the at least two projections are connected to the current collector. 2. The all-solid-state battery according to claim 1, wherein said solid-state battery is adhered so as to be bendable starting from said region via said body layer adhesion portion. 正極集電体層及び正極層を含む正極と、負極集電体層及び負極層を含む負極と、当該正極層及び当該負極層の間に配置される固体電解質層と、を備える電池ユニットを2つ以上積層してなる電池積層体を備える全固体電池であって、
前記負極層の幅が、前記正極層の幅よりも大きく、
前記負極集電体層は、前記電池積層体の何れかの側面において、面方向に突出している負極集電体層突出部を有し、
前記正極集電体層は、前記電池積層体の何れかの側面において、面方向に突出している正極集電体層突出部を有し、
一群の前記負極集電体層、又は、一群の前記正極集電体層の少なくともいずれか一方の一群の集電体層は、当該一群の集電体層の一群の突出部の内、前記電池積層体の積層方向において対向する少なくとも2つの突出部が、当該突出部の所定の領域の少なくとも一部に樹脂を含む集電体層接着部を有し、少なくとも2つの当該突出部が当該集電体層接着部を介して当該領域を起点として折り曲げ可能に接着されていることを特徴とする全固体電池。
2 a battery unit comprising a positive electrode including a positive electrode current collector layer and a positive electrode layer, a negative electrode including a negative electrode current collector layer and a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer An all-solid-state battery comprising a battery stack formed by stacking one or more,
The width of the negative electrode layer is larger than the width of the positive electrode layer,
The negative electrode current collector layer has a negative electrode current collector layer protruding part that protrudes in the surface direction on either side surface of the battery stack,
The positive electrode current collector layer has a positive electrode current collector layer protruding part that protrudes in the surface direction on either side surface of the battery stack,
At least one of the group of the negative electrode current collector layers and the group of the positive electrode current collector layers, the group of current collector layers, of the group of protrusions of the group of current collector layers, the battery At least two projections facing each other in the stacking direction of the laminate have a current collector layer adhesion portion containing a resin in at least a part of a predetermined region of the projections, and the at least two projections are connected to the current collector. An all-solid-state battery, characterized in that the solid-state battery is adhered so as to be bendable with the region as a starting point via a body layer adhesion portion.
前記側面固定部が、前記負極集電体層突出部を有する側面と隣り合う両側面の当該負極集電体層突出部の側面を含む辺縁部に有する場合、当該辺縁部として、さらに、前記正極集電体層及び前記正極層の側面の前記負極集電体層突出部が配置されている側の縁の位置に配置され、
前記側面固定部が、前記正極集電体層突出部を有する側面と隣り合う両側面の当該正極集電体層突出部の側面を含む辺縁部に有する場合、当該辺縁部として、さらに、前記負極集電体層及び前記負極層の側面の前記正極集電体層突出部が配置されている側の縁の位置に配置されている、請求項1に記載の全固体電池。
When the side fixing portion is provided in a peripheral portion including the side surface of the negative electrode current collector layer projecting portion on both side surfaces adjacent to the side surface having the negative electrode current collector layer projecting portion, the peripheral portion further includes: arranged at the position of the edge of the side surface of the positive electrode current collector layer and the positive electrode layer on the side where the negative electrode current collector layer protrusion is arranged;
When the side fixing portion is provided in a peripheral portion including the side surface of the positive electrode current collector layer protrusion on both side surfaces adjacent to the side surface having the positive electrode current collector layer protrusion, the peripheral portion further includes: 2. The all-solid-state battery according to claim 1, wherein said negative electrode current collector layer and said negative electrode current collector layer are arranged at a position of an edge of a side surface of said negative electrode layer on a side where said positive electrode current collector layer protrusion is arranged.
前記集電体層補強部は、前記集電体層の集束の際の折り曲げ起点Wに沿って、面方向の中心線からの対象構造となるように、前記突出部の折り曲げ起点Wとなる領域の両端及び中央部に少なくとも配置される、請求項に記載の全固体電池。 The current collector layer reinforcing portion is a region that serves as the bending starting point W of the projecting portion along the bending starting point W at the time of convergence of the current collector layer so as to have a symmetrical structure from the center line in the plane direction. 2. The all-solid-state battery according to claim 1 , arranged at least at both ends and the center of the. 前記集電体層補強部は、前記集電体層の集束の際の折り曲げ起点Wに沿って、前記突出部の折り曲げ起点Wとなる領域のすべてに配置される、請求項に記載の全固体電池。 2. The overall structure according to claim 1 , wherein the current collector layer reinforcing portion is arranged along the bending starting point W when the current collector layer is converged, in all of the regions serving as the bending starting points W of the protrusions. solid state battery. 前記固体電解質層は、硫化物系固体電解質、又は、酸化物系固体電解質を含む、請求項1~のいずれか一項に記載の全固体電池。 The all-solid-state battery according to any one of claims 1 to 6 , wherein the solid electrolyte layer includes a sulfide-based solid electrolyte or an oxide-based solid electrolyte.
JP2019007147A 2019-01-18 2019-01-18 All-solid battery Active JP7247595B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019007147A JP7247595B2 (en) 2019-01-18 2019-01-18 All-solid battery
US16/728,160 US11502379B2 (en) 2019-01-18 2019-12-27 All-solid-state battery laminate
CN202010040722.5A CN111463437B (en) 2019-01-18 2020-01-15 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007147A JP7247595B2 (en) 2019-01-18 2019-01-18 All-solid battery

Publications (2)

Publication Number Publication Date
JP2020119633A JP2020119633A (en) 2020-08-06
JP7247595B2 true JP7247595B2 (en) 2023-03-29

Family

ID=71610133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007147A Active JP7247595B2 (en) 2019-01-18 2019-01-18 All-solid battery

Country Status (3)

Country Link
US (1) US11502379B2 (en)
JP (1) JP7247595B2 (en)
CN (1) CN111463437B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020043A (en) * 2016-07-21 2018-02-08 株式会社三洋物産 Game machine
KR20200134688A (en) * 2019-05-23 2020-12-02 현대자동차주식회사 High energy density all-solid state battery and process for preparing thereof
JP7150672B2 (en) * 2019-07-19 2022-10-11 本田技研工業株式会社 Secondary battery and manufacturing method thereof
JP2020168495A (en) * 2020-07-13 2020-10-15 株式会社三洋物産 Game machine
JP2020168494A (en) * 2020-07-13 2020-10-15 株式会社三洋物産 Game machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082495A (en) 1998-09-04 2000-03-21 Sony Corp Solid electrolyte battery
JP2001068155A (en) 1999-08-24 2001-03-16 Hitachi Maxell Ltd Stacked polymer electrolyte battery
JP2017168270A (en) 2016-03-15 2017-09-21 日産自動車株式会社 Lithium ion secondary battery
JP2017220447A (en) 2016-06-01 2017-12-14 トヨタ自動車株式会社 Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
JP2018018600A (en) 2016-07-25 2018-02-01 トヨタ自動車株式会社 Laminate battery and method for manufacturing the same
JP2018147749A (en) 2017-03-06 2018-09-20 株式会社村田製作所 Secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540570B2 (en) * 2008-09-26 2014-07-02 日産自動車株式会社 Bipolar secondary battery, manufacturing method of bipolar secondary battery, bipolar electrode, manufacturing method of bipolar electrode, assembled battery
WO2012164642A1 (en) * 2011-05-27 2012-12-06 トヨタ自動車株式会社 Bipolar all-solid-state battery
JP2014238915A (en) 2011-09-30 2014-12-18 三洋電機株式会社 Laminated battery and manufacturing method therefor
CN103219521B (en) * 2012-01-20 2015-07-08 北京好风光储能技术有限公司 Bipolarity current collector and preparation method
JP6772855B2 (en) * 2017-01-20 2020-10-21 トヨタ自動車株式会社 All solid state battery
JP7065323B2 (en) * 2017-02-09 2022-05-12 パナソニックIpマネジメント株式会社 All-solid-state battery and its manufacturing method
JP6673249B2 (en) * 2017-02-14 2020-03-25 トヨタ自動車株式会社 Manufacturing method of laminated all solid state battery
JP6834933B2 (en) * 2017-12-20 2021-02-24 トヨタ自動車株式会社 All-solid-state battery and its manufacturing method
CN108334256A (en) 2018-02-27 2018-07-27 维沃移动通信有限公司 A kind of message control method and mobile terminal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082495A (en) 1998-09-04 2000-03-21 Sony Corp Solid electrolyte battery
JP2001068155A (en) 1999-08-24 2001-03-16 Hitachi Maxell Ltd Stacked polymer electrolyte battery
JP2017168270A (en) 2016-03-15 2017-09-21 日産自動車株式会社 Lithium ion secondary battery
JP2017220447A (en) 2016-06-01 2017-12-14 トヨタ自動車株式会社 Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
JP2018018600A (en) 2016-07-25 2018-02-01 トヨタ自動車株式会社 Laminate battery and method for manufacturing the same
JP2018147749A (en) 2017-03-06 2018-09-20 株式会社村田製作所 Secondary battery

Also Published As

Publication number Publication date
US20200235367A1 (en) 2020-07-23
CN111463437A (en) 2020-07-28
CN111463437B (en) 2023-09-12
US11502379B2 (en) 2022-11-15
JP2020119633A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP7247595B2 (en) All-solid battery
JP7207248B2 (en) All-solid battery
JP2004179053A (en) Bipolar battery, method of manufacturing bipolar battery, battery pack, and vehicle
CN111384451B (en) Laminate body
JP2020087783A (en) Negative electrode
JP7167752B2 (en) All-solid battery
JP7107880B2 (en) Negative electrode mixture layer
JP7135916B2 (en) laminate
JP7398231B2 (en) All-solid-state battery system
JP2020129517A (en) Laminate
JP2021089814A (en) All-solid battery
JP7433004B2 (en) all solid state battery
JP2020053154A (en) Negative electrode mixture material
JP7484851B2 (en) All-solid-state battery
JP7484850B2 (en) All-solid-state battery
JP7259677B2 (en) All-solid battery
US20230238537A1 (en) Electrode, all-solid-state battery, and method for producing all-solid-state battery
US20230113174A1 (en) Solid-state battery
JP7507401B2 (en) Electrode, battery, and method for manufacturing electrode
JP7476788B2 (en) Battery Module
JP7386060B2 (en) All solid state battery
US20230238515A1 (en) Positive electrode
WO2021229680A1 (en) Battery and method for producing same
JP2023079373A (en) composition
JP2023074022A (en) Manufacturing method of all-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R151 Written notification of patent or utility model registration

Ref document number: 7247595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151