JP2001068155A - Stacked polymer electrolyte battery - Google Patents

Stacked polymer electrolyte battery

Info

Publication number
JP2001068155A
JP2001068155A JP23643499A JP23643499A JP2001068155A JP 2001068155 A JP2001068155 A JP 2001068155A JP 23643499 A JP23643499 A JP 23643499A JP 23643499 A JP23643499 A JP 23643499A JP 2001068155 A JP2001068155 A JP 2001068155A
Authority
JP
Japan
Prior art keywords
electrode
polymer electrolyte
negative electrode
positive electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23643499A
Other languages
Japanese (ja)
Other versions
JP2001068155A5 (en
JP4070367B2 (en
Inventor
Osamu Ishida
修 石田
Osamu Watanabe
修 渡辺
Hiroshi Yamamoto
宏 山本
Tetsuo Kawai
徹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP23643499A priority Critical patent/JP4070367B2/en
Publication of JP2001068155A publication Critical patent/JP2001068155A/en
Publication of JP2001068155A5 publication Critical patent/JP2001068155A5/en
Application granted granted Critical
Publication of JP4070367B2 publication Critical patent/JP4070367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stacked polymer electrolyte battery with high safety, capable of preventing emitting smoke.ignition even when the battery is short- circuited being nailed or crushed. SOLUTION: This polymer electrolyte battery is assembled by sealing a stacked electrode group formed by stacking positive electrodes 1 having a positive electrode mix layer 1b formed on at least one side of a positive electrode current collector 1a and negative electrodes 2 having a negative electrode mix layer 2b formed on at least one side of a negative electrode current collector 2a so as to interpose a polymer electrolyte layer between a set of electrodes into an outer case 4 containing a metal foil. The thickness of the electrode current collector of at least one outermost electrode of the stacked electrode group is made 30 μm or more, the electrode mix layer is not formed on the outside of this electrode current collector, a lead part 2c of the electrode having the same polarity and this electrode current collector are connected, and the thickness of the metal foil of the outer case is made 30 μm or more, and an electrode terminal having the other polarity and the metal foil of the outer case are connected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層形ポリマー電
解質電池に関し、さらに詳しくは、特に携帯用電子機
器、電気自動車、ロードレベリングなどの電源として使
用するのに適した積層形ポリマー電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stacked polymer electrolyte battery, and more particularly, to a stacked polymer electrolyte battery suitable for use as a power source for portable electronic devices, electric vehicles, road leveling, and the like.

【0002】[0002]

【従来の技術】ポリマー電解質電池では、電極および電
解質をシート状にすることができ、それによって、A4
版、B5版などの大面積でしかも薄形の電池の作製が可
能になり、各種薄形製品への適用が可能になって、電池
の使用範囲が大きく広がっている。特にポリマー電解質
を用いた電池は、耐漏液性を含めた安全性、貯蔵性が優
れており、しかも薄く、フレキシブルであることから、
機器の形状に合わせた電池を設計できるという、今まで
の電池にない特徴を持っている。
2. Description of the Related Art In a polymer electrolyte battery, the electrodes and the electrolyte can be made into a sheet shape, whereby A4
It is possible to manufacture a large-sized and thin battery such as a plate and a B5 plate, and it is possible to apply the battery to various thin products, thereby widening the range of use of the battery. In particular, batteries using polymer electrolytes have excellent safety and storage properties including leak resistance, and are thin and flexible.
It has the unique features of batteries that can be designed to match the shape of the device.

【0003】このポリマー電解質電池は、通常、アルミ
ニウム箔を芯材にし、内面側に接着層となる熱融着性樹
脂フィルムを配置したラミネートフィルムを外装体に用
い、得ようとする電気容量に応じて、シート状の電極と
シート状のポリマー電解質層とを積層した積層電極群を
外装体で外装することによって、薄いシート形電池に仕
上げられる。
[0003] This polymer electrolyte battery usually uses a laminate film in which an aluminum foil is used as a core material and a heat-fusible resin film serving as an adhesive layer is disposed on the inner surface side as an outer package. Then, a thin sheet-type battery is completed by covering the laminated electrode group, in which the sheet-like electrode and the sheet-like polymer electrolyte layer are laminated, with an outer package.

【0004】この積層形ポリマー電解質電池では、電極
の積層枚数が少なく、電気容量や電気容量密度が低い場
合、すなわち、内在するエネルギーが低い場合には、上
記の優れた安全性が確保される。しかしながら、電極の
積層枚数が多くなって、電気容量や電気容量密度が高く
なると、安全性が充分でなくなり、釘刺しや圧壊などで
電極同士が短絡した場合、大電流が流れ、発熱し、発
煙、発火、破裂などの事故に至る場合のあることが判明
した。
In this laminated polymer electrolyte battery, when the number of laminated electrodes is small and the electric capacity or electric capacity density is low, that is, when the inherent energy is low, the above-mentioned excellent safety is secured. However, when the number of stacked electrodes increases and the electric capacity and electric capacity density increase, the safety is not sufficient.If the electrodes are short-circuited due to nail penetration or crushing, a large current flows, heat is generated, and smoke is generated. It has been found that fire, rupture and other accidents may occur.

【0005】上記のような問題は、短絡時に流れる大電
流を積層電極群の外に流すとともに、熱の放散を速やか
にし、蓄熱を少なくすることによって解決することがで
きる。ところが、積層形ポリマー電解質電池の積層電極
群は、熱伝導の悪いポリマー電解質層を介して正極と負
極が対向し、それらを複数枚重ね、かつ、熱伝導の悪い
熱融着性樹脂フィルムを内面側に配置した外装体で外装
しているため、短絡などの発熱による電池内部での蓄熱
が大きく、内部温度の上昇が大きくなって、発煙、発
火、破裂などの事故に至るものと考えられる。
[0005] The above-mentioned problems can be solved by making a large current flowing at the time of short circuit flow out of the stacked electrode group, rapidly dissipating heat, and reducing heat storage. However, in the laminated electrode group of the laminated polymer electrolyte battery, a positive electrode and a negative electrode face each other via a polymer electrolyte layer having poor heat conductivity, and a plurality of these layers are stacked, and a heat-fusible resin film having poor heat conductivity has an inner surface. It is considered that heat is stored inside the battery due to heat generation such as a short circuit due to the exterior body disposed on the side, and the internal temperature rises greatly, leading to accidents such as smoking, ignition and rupture.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点を解決し、電極の集電体の厚さ、外
装体の金属箔の厚さおよび電池構造などに工夫を凝らす
ことにより、高容量化した場合でも安全性を高め、安全
性の高い積層形ポリマー電解質電池を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and devises the thickness of the current collector of the electrode, the thickness of the metal foil of the outer package, and the battery structure. An object of the present invention is to provide a laminated polymer electrolyte battery having high safety by enhancing stiffness even when the capacity is increased, and having high safety.

【0007】[0007]

【課題を解決するための手段】本発明は、正極集電体の
少なくとも一方の面に正極合剤層を形成してなる正極
と、負極集電体の少なくとも一方の面に負極合剤層を形
成してなる負極とを、それぞれの間にポリマー電解質層
を介在させて積層した積層電極群を、金属箔を含む外装
体で外装する積層形ポリマー電解質電池であって、上記
積層電極群の少なくとも一方の最外層の電極の電極集電
体の厚さを30μm以上とし、その外面側には電極合剤
層を形成せず、その電極集電体と同一極性の電極のリー
ド部とを接続し、かつ、上記外装体の金属箔の厚さを3
0μm以上とし、他方の極性の電極端子と上記外装体の
金属箔とを接続することによって、上記課題を解決した
ものである。
According to the present invention, there is provided a positive electrode having a positive electrode mixture layer formed on at least one surface of a positive electrode current collector, and a negative electrode mixture layer formed on at least one surface of a negative electrode current collector. A negative electrode formed, a laminated electrode group laminated with a polymer electrolyte layer interposed therebetween, a laminated polymer electrolyte battery packaged with a package containing a metal foil, at least of the laminated electrode group The thickness of the electrode current collector of one outermost layer electrode is 30 μm or more, and no electrode mixture layer is formed on the outer surface side, and the electrode current collector is connected to the lead of an electrode of the same polarity. And the thickness of the metal foil of the exterior body is 3
The above-mentioned problem is solved by connecting the electrode terminal of the other polarity to the metal foil of the exterior body to have a thickness of 0 μm or more.

【0008】すなわち、上記のように、積層電極群の少
なくとも一方の最外層の電極の電極集電体の厚さを30
μmとし、その外面側には電極合剤層を形成せず、その
電極集電体と同一極性の電極のリード部とを接続し、か
つ外装体中の金属箔の厚さを30μm以上とし、他方の
極性の電極端子と上記外装体中の金属箔とを接続するこ
とにより、釘刺しや圧壊などによる積層電極群内部での
短絡により先に外部短絡させて、電池電圧を低下させ、
化学反応による発熱を低減させることができる。しか
も、上記外装体中の金属箔が積層電極群の外側に設けら
れていることや上記電極集電体が積層電極群の最外層に
配置していることを利用して、それらの電極集電体や金
属箔により放熱をスムーズに行わせることができる。し
たがって、上記のような構成をとることにより、高容量
化した場合でも、安全性を高めることができ、安全性の
高い積層形ポリマー電解質電池を提供することができ
る。
That is, as described above, the thickness of the electrode current collector of at least one outermost layer electrode of the stacked electrode group is set to 30.
μm, without forming an electrode mixture layer on the outer surface side, connecting the electrode current collector and the lead of an electrode of the same polarity, and making the thickness of the metal foil in the exterior body 30 μm or more, By connecting the electrode terminal of the other polarity and the metal foil in the outer package, an external short circuit first occurs due to a short circuit inside the stacked electrode group due to nail penetration or crushing, thereby lowering the battery voltage,
Heat generation due to a chemical reaction can be reduced. Moreover, by utilizing the fact that the metal foil in the outer package is provided outside the laminated electrode group and that the electrode current collector is disposed on the outermost layer of the laminated electrode group, Heat can be smoothly released by the body and the metal foil. Therefore, by adopting the above-described configuration, safety can be improved even when the capacity is increased, and a stacked polymer electrolyte battery with high safety can be provided.

【0009】[0009]

【発明の実施の形態】本発明において、積層電極群の最
外層となる電極は正負極いずれの電極でもよいが、確実
な短絡回路の形成という点から、より大きな面積を有す
る負極である方が好ましい(通常、積層形ポリマー電池
では、過充電時に生成するリチウムデンドライトを防止
する目的で、負極サイズを正極サイズよりも大きくして
いる)。そして、その電極の集電体の厚さは30μm以
上あることが必要である。上記集電体の厚さが30μm
より薄い場合は、例えば、釘刺しによって生じる短絡が
原因で流れる大きな電流によって、その接触部分が局部
的に発熱、溶融して電気短絡が形成されることにより短
絡が解消され、その用をなさなくなってしまったり、も
うひとつの役目である放熱促進作用が低下して、放熱が
遅くなって、蓄熱が大きくなるため、発煙、発火に至っ
てしまうおそれがある。そして、その電極集電体の材質
としては、特に限定されるものではないが、例えば、
銅、ニッケル、ステンレス鋼などが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the outermost electrode of the laminated electrode group may be either a positive electrode or a negative electrode. However, from the viewpoint of forming a reliable short circuit, a negative electrode having a larger area is preferred. It is preferable (normally, in a laminated polymer battery, the size of the negative electrode is made larger than the size of the positive electrode in order to prevent lithium dendrite generated during overcharge). And the thickness of the current collector of the electrode needs to be 30 μm or more. The thickness of the current collector is 30 μm
If it is thinner, for example, a large current flowing due to a short circuit caused by a nail penetration causes the contact portion to locally generate heat and melt to form an electric short circuit, thereby eliminating the short circuit and eliminating its use. Otherwise, the heat dissipation promoting action, which is another function, is reduced, the heat dissipation is delayed, and the heat storage is increased, which may lead to smoke or ignition. And the material of the electrode current collector is not particularly limited, for example,
Copper, nickel, stainless steel and the like are preferred.

【0010】他方の電極(通常、正極の場合が多い)の
電極端子と接続する外装体中の金属箔も同様で、厚さが
30μm以上であることが必要であり、厚さが30μm
より薄い場合は、上記最外層の電極集電体の場合と同様
の理由により、短絡の確実な形成や放熱が充分でなくな
ってしまう。この外装体中の金属箔は電解質と接するこ
とがないので、その材質は、特に限定されることなく種
々のものを採用し得るが、例えば延展性に富むアルミニ
ウム箔などが特に好ましい。
[0010] The same applies to the metal foil in the outer package connected to the electrode terminal of the other electrode (usually a positive electrode in many cases), and the thickness must be 30 µm or more, and the thickness is 30 µm or more.
If the thickness is thinner, the short circuit is not reliably formed and the heat dissipation is not sufficient for the same reason as in the case of the outermost electrode current collector. Since the metal foil in the outer package does not come into contact with the electrolyte, its material is not particularly limited, and various materials can be adopted. For example, an aluminum foil having excellent spreadability is particularly preferable.

【0011】上記のように積層電極群の最外層の電極集
電体や外装体中の金属箔は厚さが30μm以上であるこ
とが必要であるが、あまりにも厚くなりすぎると電気容
量密度を低下させ、積層形ポリマー電解質電池の特徴を
失わせるおそれがあるので、その厚さは200μm以下
が好ましい。
As described above, the outermost electrode current collector of the laminated electrode group and the metal foil in the outer package need to have a thickness of 30 μm or more. The thickness is preferably 200 μm or less, since the thickness may be lowered to lose the characteristics of the laminated polymer electrolyte battery.

【0012】上記のような積層電極群の最外層の電極の
電極集電体や外装体の金属箔は、必ずしも非多孔質状で
ある必要はなく、パンチングメタル、網状あるいはラス
状メタルなどの多孔質状のものであってもよい。また、
本発明において、積層電極群の最外層の電極の電極集電
体とそれと同一極性の電極のリード部とを接続すると
か、他方の極性の電極端子と外装体中の金属箔とを接続
するというのは、電気的に接続することを意味し、積層
電極群の最外層の電極の電極集電体とそれと同一極性の
電極のリード部とを直接接続したり、他方の極性の電極
端子と外装体中の金属箔とを直接接続する必要はなく、
それらの間にリード体などが介在していてもよいし、ま
た、上記電極集電体も他のものと同様にリード部を設
け、それと同一極性の電極のリード部を接続するように
してもよい。
The electrode current collector of the outermost layer electrode of the above-mentioned laminated electrode group and the metal foil of the exterior body do not necessarily have to be non-porous, but may be made of a porous metal such as a punching metal, a net-like or lath-like metal. It may be textured. Also,
In the present invention, connecting the electrode current collector of the outermost layer electrode of the laminated electrode group and the lead portion of the electrode of the same polarity or connecting the electrode terminal of the other polarity to the metal foil in the exterior body Means directly connecting the electrode current collector of the outermost layer electrode of the stacked electrode group and the lead of the electrode of the same polarity, or connecting the electrode terminal of the other polarity to the external terminal. It is not necessary to connect directly to the metal foil in the body,
A lead body or the like may be interposed between them, or the above-mentioned electrode current collector may be provided with a lead portion like other components, and may be connected to a lead portion of an electrode having the same polarity as the other. Good.

【0013】本発明において、積層電極群の作製にあた
り、正極、負極、ポリマー電解質層はそれぞれ別々に作
製したものを積層してもよいが、あらかじめ正極または
負極の少なくとも一方の電極をポリマー電解質層で包囲
して、電極とポリマー電解質層とを一体化しておくこと
が好ましい。この場合の形態としては、例えば、ポリマ
ー電解質層の支持体となる多孔質シートを袋状にして電
極を包囲した後、その全体にポリマー電解質の前駆体で
あるゲル化成分を含有する電解液を含浸させ、ゲル化し
て、ポリマー電解質を含有した電極と支持体との一体化
物を作製する場合や、ポリマー電解質を含有した電極
を、多孔質シートの支持体を内在した、短冊状のポリマ
ー電解質シートで挟み込むことによって、電極とポリマ
ー電解質層とを一体化する場合などが挙げられる。さら
に、後者の電極を短冊状のポリマー電解質シートで挟み
込むことにより電極をポリマー電解質層で包囲する場
合、1枚の短冊状のポリマー電解質シートをそのほぼ中
央部で折り返してそのポリマー電解質シートの間に電極
を挟み込むことにより電極をポリマー電解質層で包囲す
る場合と、電極を2枚の短冊状のポリマー電解質シート
の間に挟み込むことにより電極をポリマー電解質層で包
囲する場合とがある。
In the present invention, the positive electrode, the negative electrode, and the polymer electrolyte layer may be formed separately from each other when preparing the laminated electrode group. However, at least one of the positive electrode and the negative electrode is previously formed with the polymer electrolyte layer. It is preferable that the electrodes and the polymer electrolyte layer be integrated so as to surround the electrodes. As a form in this case, for example, after surrounding the electrode in a bag-shaped porous sheet serving as a support of the polymer electrolyte layer, the entire electrolyte solution containing a gelling component which is a precursor of the polymer electrolyte, Impregnated and gelled to produce an integral body of polymer electrolyte-containing electrode and support, or a polymer electrolyte-containing electrode, a strip-shaped polymer electrolyte sheet with a porous sheet support built-in For example, a case where the electrode and the polymer electrolyte layer are integrated with each other. Furthermore, when the latter electrode is sandwiched between strip-shaped polymer electrolyte sheets to surround the electrodes with a polymer electrolyte layer, one strip-shaped polymer electrolyte sheet is folded at substantially the center thereof and is interposed between the polymer electrolyte sheets. There are a case where the electrode is surrounded by the polymer electrolyte layer by sandwiching the electrode, and a case where the electrode is surrounded by the polymer electrolyte layer by sandwiching the electrode between two strip-shaped polymer electrolyte sheets.

【0014】上記の場合において、ポリマー電解質の支
持体となる多孔質シートとしては、例えば、不織布や微
孔性フィルムなどが用いられる。上記不織布としては、
例えば、ポリプロピレン、ポリエチレン、ポリエチレン
テレフタレート、ポリブチレンテレフタレートなどの不
織布などが挙げられる。また、微孔性フィルムとして
は、例えば、ポリプロピレン、ポリエチレン、エチレン
−プロピレン共重合体の微孔性フィルムなどが挙げられ
る。
In the above case, for example, a nonwoven fabric or a microporous film is used as the porous sheet serving as a support for the polymer electrolyte. As the above nonwoven fabric,
For example, nonwoven fabrics such as polypropylene, polyethylene, polyethylene terephthalate, and polybutylene terephthalate can be used. Examples of the microporous film include microporous films of polypropylene, polyethylene, and ethylene-propylene copolymer.

【0015】不織布は、空孔率が高く、ゲル化成分を含
有する電解液を含浸させやすいので、好適に使用できる
ことから、不織布を支持体として用いる場合について詳
述すると、この不織布としては、例えば、坪量が12g
/m2 で厚さが30μmという非常に薄い不織布を用い
ることができる。
Since the nonwoven fabric has a high porosity and is easily impregnated with an electrolytic solution containing a gelling component, it can be suitably used. Therefore, the case where the nonwoven fabric is used as a support will be described in detail. , Basis weight is 12g
/ M 2 and a very thin nonwoven fabric having a thickness of 30 μm can be used.

【0016】このような不織布は、薄いために引っ張り
強度をはじめとする機械的強度が低く、単体では取り扱
いにくいが、例えば、袋状にし、その袋状の不織布に電
極を収容することにより電極を包囲して、不織布と電極
とを一体化させることにより電極の強度で不織布の強度
不足を補うことができる。また、袋状にしなくても、短
冊状の不織布をそのほぼ中央部で折り返してその不織布
の間に電極を挟み込むことにより電極を不織布で包囲し
て電極と不織布とを一体化させることや2枚の短冊状の
不織布を重ね合わせその一端をシールしてその不織布の
間に電極を挟み込むことにより電極を支持体で包囲して
電極と不織布とを一体化させることによっても、電極の
強度で不織布の強度不足を補うことができ、電池組立時
の作業性の向上や内部抵抗の減少、負荷特性の向上を達
成できる。また、支持体として微孔性フィルムを用いる
場合も、上記不織布の場合と同様である。
Such a nonwoven fabric has a low mechanical strength such as tensile strength because of its thinness, and is difficult to handle alone. For example, the nonwoven fabric is formed into a bag and the electrodes are accommodated in the bag-shaped nonwoven fabric. By surrounding and integrating the nonwoven fabric and the electrode, the strength of the electrode can compensate for the insufficient strength of the nonwoven fabric. Also, without forming a bag shape, the strip-shaped non-woven fabric is folded almost at the center, and the electrode is sandwiched between the non-woven fabrics to surround the electrode with the non-woven fabric and integrate the electrode and the non-woven fabric. By overlapping the strip-shaped non-woven fabric, sealing one end of the non-woven fabric, sandwiching the electrode between the non-woven fabrics, surrounding the electrode with a support, and integrating the electrode and the non-woven fabric, the strength of the non-woven fabric also increases the strength of the electrode. Insufficient strength can be compensated, and workability during battery assembly can be improved, internal resistance can be reduced, and load characteristics can be improved. The case where a microporous film is used as the support is the same as the case of the nonwoven fabric.

【0017】上記のように、不織布などの多孔質シート
からなる支持体で電極を包囲して電極と支持体とを一体
化し、それにゲル化成分を含有する電解液を含浸させて
ゲル化させることにより、電極とポリマー電解質層との
間が、それぞれ単独でゲル化して電極とポリマー電解質
シートにしてから積層するよりも、界面の接着状態が良
好で、層間に気泡、異物などが介在することが少ないの
で、界面でのイオン移動がスムーズになり、正極と負極
との間の反応性が向上する。また、正極、負極のいずれ
かの一方の電極を支持体で包囲することによって、物理
的セパレートの役割も果たすことができる。
As described above, the electrode is surrounded by a support made of a porous sheet such as a nonwoven fabric, and the electrode and the support are integrated, and the electrode is impregnated with an electrolytic solution containing a gelling component to be gelled. Thereby, the adhesion between the electrodes and the polymer electrolyte layer is better than when the electrodes and the polymer electrolyte sheet are individually gelled to form the electrode and the polymer electrolyte sheet and then laminated, and bubbles, foreign substances, and the like can be interposed between the layers. Since the amount is small, the ion transfer at the interface becomes smooth, and the reactivity between the positive electrode and the negative electrode is improved. In addition, by surrounding one of the positive electrode and the negative electrode with a support, it can also serve as a physical separator.

【0018】そして、正極または負極のいずれかの一方
の電極をポリマー電解質層で包囲して電極とポリマー電
解質層とを一体化させればよいが、その際、正極をポリ
マー電解質層で包囲して正極とポリマー電解質層とを一
体化させると、負極をポリマー電解質層で包囲する場合
より、電池容量を大きくすることができる。すなわち、
通常、デンドライトの発生の防止や安全性の確保から負
極を正極より大きくすることが一般に行われているので
正極をポリマー電解質層で包囲すれば、負極をポリマー
電解質層で包囲するより、ポリマー電解質層の寸法を小
さくでき、その結果、電池容量を大きくすることができ
る。また、負極をポリマー電解質層で包囲して負極とポ
リマー電解質層とを一体化させる場合も、負極とポリマ
ー電解質層との界面状態を均一にすることができるの
で、正極の場合と同様に、反応性の向上に効果がある。
Then, one of the positive electrode and the negative electrode may be surrounded by the polymer electrolyte layer to integrate the electrode and the polymer electrolyte layer. At this time, the positive electrode is surrounded by the polymer electrolyte layer. When the positive electrode and the polymer electrolyte layer are integrated, the battery capacity can be larger than when the negative electrode is surrounded by the polymer electrolyte layer. That is,
Generally, it is common practice to make the negative electrode larger than the positive electrode in order to prevent dendrite generation and ensure safety.If the positive electrode is surrounded by the polymer electrolyte layer, then the negative electrode is surrounded by the polymer electrolyte layer rather than the polymer electrolyte layer. Can be reduced, and as a result, the battery capacity can be increased. Also, when the negative electrode is surrounded by the polymer electrolyte layer and the negative electrode and the polymer electrolyte layer are integrated, the interface state between the negative electrode and the polymer electrolyte layer can be made uniform. It is effective in improving the properties.

【0019】さらに、正極および負極の両電極をポリマ
ー電解質層で包囲すると、そのぶんポリマー電解質層の
厚みは増加するが、両電極ともポリマー電解質層とが一
体化するので、正極、負極のいずれについても分極を減
少させることができ、充放電時の反応をスムーズに進行
させることができるので、負荷特性を大幅に向上させる
ことができる。
Furthermore, if both the positive electrode and the negative electrode are surrounded by the polymer electrolyte layer, the thickness of the polymer electrolyte layer is increased, but both the electrodes are integrated with the polymer electrolyte layer. Also, the polarization can be reduced, and the reaction at the time of charging / discharging can proceed smoothly, so that the load characteristics can be greatly improved.

【0020】本発明において、電極とポリマー電解質層
との一体化とは、電極とポリマー電解質層との間に気泡
や異物などを含まないで、電極とポリマー電解質層とを
密接させることを意味していて、不可分に接着させるこ
となどを意味するものではない。
In the present invention, the integration of the electrode and the polymer electrolyte layer means that the electrode and the polymer electrolyte layer are brought into close contact with each other without bubbles or foreign matter between the electrode and the polymer electrolyte layer. It does not mean that it is inseparably bonded.

【0021】上記不織布などの多孔質シートからなる支
持体を袋状にする場合、その袋状体は、例えば、四角形
状のものとして説明すると、通常、一辺が開口し、他の
三辺がシールされているが、そのシールにあたって、連
続的にシールすることは必ずしも要求されず、不連続に
シールしたものであってもよい。
When the support made of a porous sheet such as the above nonwoven fabric is formed into a bag shape, if the bag shape is described as, for example, a rectangular shape, one side is usually open and the other three sides are sealed. However, the sealing is not always required to be continuously performed, and the sealing may be discontinuously performed.

【0022】電極を袋状の支持体に収容するにあたっ
て、あらかじめ支持体を袋状にしておくことは要求され
ず、電極を短冊状の支持体(例えば、長さが電極の長さ
の2倍以上で、幅が電極の幅より広いサイズの短冊状の
支持体)の長さ方向のほぼ中央部より一方の側に載置
し、他方の幅を折返し(つまり、電極がほぼ中央部で折
り返した支持体間に挟み込まれる状態にし)、その幅方
向の両側部を連続的または不連続的にシールして、電極
が袋状の支持体に収容された状態にすればよい。
When accommodating the electrode in the bag-like support, it is not required that the support is made into a bag-like shape in advance, and the electrode is made into a strip-like support (for example, the length is twice the length of the electrode). As described above, a strip-shaped support having a width larger than the width of the electrode is placed on one side from the substantially central portion in the length direction, and the other width is folded back (that is, the electrode is folded back substantially at the center portion). It is sufficient that the electrodes are housed in a bag-like support by sealing the two sides in the width direction continuously or discontinuously.

【0023】また、2枚の支持体を重ね合わせてその一
端をシールしてその間に電極を挟み込む場合も、あらか
じめシールしておくことは要求されず、電極を1枚の短
冊状の支持体(例えば、長さが電極の長さより長く、幅
が電極の幅より広いサイズの短冊状の支持体)に載置
し、もう1枚の短冊状の支持体をその上にのせ、それら
の支持体の一端を連続的または不連続的にシールして、
電極が支持体の間に挟み込まれた状態にすればよい。
In the case where two supports are overlapped and one end thereof is sealed and an electrode is sandwiched between the two supports, it is not necessary to seal the electrodes in advance. For example, it is placed on a strip-shaped support whose length is longer than the length of the electrode and whose width is wider than the width of the electrode), another strip-shaped support is placed thereon, and the support At one end, continuously or discontinuously,
What is necessary is just to make the electrode sandwiched between the support bodies.

【0024】ポリマー電解質層を構成するための電解液
としては、例えば、ジメチルカーボネート、ジエチルカ
ーボネート、メチルエチルカーボネート、プロピオン酸
メチル、エチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート、γ−ブチロラクトン、エチ
レングリコールサルファイト、1,2−ジメトキシエタ
ン、1,3−ジオキソラン、テトラヒドロフラン、2−
メチル−テトラヒドロフラン、ジエチルエーテルなどの
有機溶媒に、例えば、LiClO4 、LiPF 6 、Li
BF4 、LiAsF6 、LiCF3 SO3 、LiC4
9 SO3 、LiCF3 CO2 、Li2 2 4 (S
3 2 、LiN(CF3 SO2 2 、LiC(CF3
SO2 3 、LiCn 2n+1 SO3 (n≧2)、Li
N(RfOSO2 2 〔ここでRfはフルオロアルキル
基〕などの無機イオン塩を溶解させることによって調製
したものが使用される。この無機イオン塩の電解液中の
濃度としては、0.5〜1.5mol/l、特に0.9
〜1.25mol/lが好ましい。
Electrolyte for forming polymer electrolyte layer
As, for example, dimethyl carbonate, diethyl carbonate
-Carbonate, methyl ethyl carbonate, propionic acid
Methyl, ethylene carbonate, propylene carbonate
G, butylene carbonate, γ-butyrolactone, ethyl
Len glycol sulfite, 1,2-dimethoxy eta
1,3-dioxolan, tetrahydrofuran, 2-
Methyl-tetrahydrofuran, diethyl ether, etc.
In an organic solvent, for example, LiClOFour, LiPF 6, Li
BFFour, LiAsF6, LiCFThreeSOThree, LiCFourF
9SOThree, LiCFThreeCOTwo, LiTwoCTwoFFour(S
OThree)Two, LiN (CFThreeSOTwo)Two, LiC (CFThree
SOTwo)Three, LiCnF2n + 1SOThree(N ≧ 2), Li
N (RfOSOTwo)Two[Where Rf is fluoroalkyl
Prepared by dissolving inorganic ion salts such as
Is used. This inorganic ion salt in the electrolyte
The concentration is 0.5 to 1.5 mol / l, especially 0.9
~ 1.25 mol / l is preferred.

【0025】また、電解液をポリマー電解質に変化させ
るゲル化成分としては、例えば、ポリフッ化ビニリデ
ン、ポリエチレンオキサイド、ポリアクリロニトリル、
フッ化ビニリデン−六フッ化プロピレン共重合体などの
ように直鎖状のポリマーを加熱することにより電解液に
溶解させた後、冷却することによって電解液をゲル化さ
せるポリマーや、活性光線で重合可能な二重結合を一分
子あたり2個以上含みモノマーまたはプレポリマーを主
成分とする架橋性組成物などが挙げられる。
As the gelling component for converting the electrolytic solution into a polymer electrolyte, for example, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile,
After dissolving a linear polymer such as a vinylidene fluoride-propylene hexafluoride copolymer in an electrolytic solution by heating and then cooling it to polymerize the electrolytic solution, or polymerizing with actinic rays Examples include a crosslinkable composition containing two or more possible double bonds per molecule and containing a monomer or a prepolymer as a main component.

【0026】上記活性光線で重合可能なモノマーとして
は、まず、二重結合を一分子あたり2個有するモノマー
(二官能架橋性モノマー)として、例えば、1,3−ブ
タンジオールジアクリレート、1,4−ブタンジオール
ジアクリレート、1,6−ヘキサンジオールジアクリレ
ート、エチレングリコールジアクリレート、ジエチレン
グリコールジアクリレート、トリエチレングリコールジ
アクリレート、テトラエチレングリコールジアクリレー
ト、ポリエチレングリコールジアクリレート、プロピレ
ングリコールジアクリレート、ジプロピレングリコール
ジアクリレート、トリプロピレングリコールジアクリレ
ート、エトキシ化ビスフェノールAジアクリレート、ノ
ボラックジアクリレート、プロポキシ化ネオペンチルグ
リコールジアクリレートなどの二官能アクリレートおよ
び上記アクリレートと同様の二官能メタクリレートなど
が挙げられる。
Examples of the monomer capable of being polymerized by actinic light include monomers having two double bonds per molecule (bifunctional crosslinkable monomers) such as 1,3-butanediol diacrylate and 1,4 -Butanediol diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, propylene glycol diacrylate, dipropylene glycol diacrylate Acrylate, tripropylene glycol diacrylate, ethoxylated bisphenol A diacrylate, novolak diacrylate, propoxylated neopentyl glycol diacrylate Such as difunctional acrylates and the acrylate and similar difunctional methacrylates such as chromatography bets and the like.

【0027】また、活性光線で重合可能な二重結合を一
分子あたり3個有するモノマー(三官能架橋性モノマ
ー)としては、例えば、トリス(2−ヒドロキシエチ
ル)イソシアヌレートトリアクリレート、トリメチロー
ルプロパントリアクリレート、エトキシ化トリメチロー
ルプロパントリアクリレート、ペンタエリスリトールト
リアクリレート、プロポキシ化トリメチロールプロパン
トリアクリレート、プロポキシ化グリセリルトリアクリ
レート、カプロラクトン変性トリメチロールプロパンア
クリレートなどの三官能アクリレートおよび上記アクリ
レートと同様の三官能メタクリレートなどが挙げられ
る。
Examples of monomers having three double bonds polymerizable by actinic rays per molecule (trifunctional crosslinking monomers) include, for example, tris (2-hydroxyethyl) isocyanurate triacrylate, trimethylolpropane triacrylate. Trifunctional acrylates such as acrylate, ethoxylated trimethylolpropane triacrylate, pentaerythritol triacrylate, propoxylated trimethylolpropane triacrylate, propoxylated glyceryl triacrylate, caprolactone-modified trimethylolpropane acrylate, and trifunctional methacrylates similar to the above acrylates Is mentioned.

【0028】そして、活性光線で重合可能な二重結合を
一分子あたり4個以上有するモノマー(四官能以上の架
橋性モノマー)としては、例えば、ペンタエリスリトー
ルテトラアクリレート、ジトリメチロールプロパンテト
ラアクリレート、エトキシ化ペンタエリスリトールテト
ラアクリレート、ジペンタエリスリトールヒドロキシペ
ンタアクリレート、ジペンタエリスリトールヘキサアク
リレートなどの四官能以上のアクリレートおよび上記ア
クリレートと同様の四官能以上のメタクリレートなどが
挙げられる。
Examples of the monomer having four or more double bonds per molecule capable of being polymerized by actinic light (tetrafunctional or more crosslinkable monomer) include, for example, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated Examples include tetrafunctional or higher acrylates such as pentaerythritol tetraacrylate, dipentaerythritol hydroxypentaacrylate, dipentaerythritol hexaacrylate, and tetrafunctional or higher methacrylates similar to the above acrylates.

【0029】また、活性光線で重合可能な二重結合を2
個以上、好ましくは4個以上有するプレポリマーとして
は、例えば、ウレタンアクリレート、エポキシアクリレ
ート、ポリエステルアクリレートのプレポリマーなどが
挙げられ、前記のモノマーに代えて用いることができ
る。
Further, a double bond which can be polymerized by actinic rays
Examples of the prepolymer having at least four, preferably four or more include prepolymers of urethane acrylate, epoxy acrylate, and polyester acrylate, and can be used in place of the above-mentioned monomers.

【0030】本発明において、上記の活性光線で重合可
能な二重結合を一分子あたり2個以上有するモノマーま
たはプレポリマーは、主成分として用いられておればよ
く、例えばゲル硬さなどの物性調整のために一官能モノ
マーなども併用することができる。また、二官能モノマ
ーと六官能モノマーとを混合するというような使い方も
できる。
In the present invention, the monomer or prepolymer having two or more double bonds per molecule capable of being polymerized by actinic light may be used as a main component, for example, for adjusting physical properties such as gel hardness. For this purpose, a monofunctional monomer or the like can be used in combination. Further, a usage such as mixing a bifunctional monomer and a hexafunctional monomer is also possible.

【0031】本発明において、活性光線で重合可能な二
重結合を一分子あたり2個以上有するモノマーまたはプ
レポリマーを主成分とする架橋性組成物とは、上記架橋
性組成物を活性光線で重合可能な二重結合を一分子あた
り2個以上有するモノマーまたはプレポリマーのみで構
成する場合と、一官能モノマーなどと活性光線で重合可
能な二重結合を一分子あたり2個以上有するモノマーま
たはプレポリマーとを併用する場合の両者を含むが、後
者のように活性光線で重合可能な二重結合を一分子あた
り2個以上有するモノマーまたはプレポリマーを一官能
モノマーなどと併用する場合、その架橋性組成物におい
て、活性光線で重合可能な二重結合を一分子あたり2個
以上有するモノマーまたはプレポリマーが50重量%以
上、特に70重量%以上であることが好ましい。また、
架橋性組成物はそれを構成するものがすべて架橋性でな
くてもよく、全体として架橋性であればよく、例えば、
必要に応じて他の成分を添加することもできる。
In the present invention, the term "crosslinkable composition comprising a monomer or a prepolymer having two or more double bonds per molecule which can be polymerized by actinic light" as a main component means that the above-mentioned crosslinkable composition is polymerized by actinic light. Monomers or prepolymers containing only possible monomers or prepolymers having two or more double bonds per molecule, and monomers or prepolymers having two or more double bonds per molecule that can be polymerized with actinic rays with monofunctional monomers In the case where a monomer or a prepolymer having two or more double bonds per molecule capable of being polymerized by actinic rays is used in combination with a monofunctional monomer or the like as in the latter case, the crosslinkable composition Of a monomer or a prepolymer having two or more double bonds per molecule which can be polymerized by actinic light, more than 50% by weight, especially 70% by weight. Or more at a wavelength of 550 nm. Also,
The crosslinkable composition does not have to be all crosslinkable as long as the constituents thereof are not crosslinkable, as long as it is entirely crosslinkable.
Other components can be added as needed.

【0032】そして、必要に応じ、重合開始剤として、
例えば、ベンゾイン類、ベンゾインアルキルエーテル
類、ベンゾフェノン類、ベンゾイルフェニルフォスフィ
ンオキサイド類、アセトフェノン類、チオキサントン
類、アントラキノン類などを使用することができる。さ
らに重合開始剤の増感剤としてアルキルアミン類、アミ
ノエステル類なども使用することができる。
And, if necessary, as a polymerization initiator,
For example, benzoins, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, acetophenones, thioxanthones, anthraquinones, and the like can be used. Further, alkylamines, aminoesters and the like can be used as a sensitizer of the polymerization initiator.

【0033】本発明において、活性光線としては、例え
ば、紫外線(UV)、電子線(EB)、可視光線、遠紫
外線などを使用することができる。
In the present invention, for example, ultraviolet rays (UV), electron beams (EB), visible rays, far ultraviolet rays, etc. can be used as the active rays.

【0034】[0034]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明は実施例に例示のもののみ
に限定されることはない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those illustrated in the embodiments.

【0035】実施例1 まず、この実施例1において用いる正極および負極の作
製、ゲル化成分含有電解液の調製について先に説明す
る。
Example 1 First, the preparation of the positive electrode and the negative electrode used in Example 1 and the preparation of an electrolyte solution containing a gelling component will be described first.

【0036】正極の作製:正極活物質であるLiCoO
2 80重量部、導電助剤であるアセチレンブラック10
重量部、バインダーであるポリフッ化ビニリデン10重
量部とをN−メチルピロリドンを溶剤として均一になる
ように混合し、正極合剤含有ペーストを調製した。この
正極合剤含有ペーストを正極集電体となる厚さ20μm
のアルミニウム箔の両面に塗布し、乾燥した後、カレン
ダー処理を行って、全厚が130μmになるように正極
合剤層の厚みを調整し、正極合剤層形成部分の面積が7
0mm×40mmになるように切断して正極を作製し
た。ただし、上記正極の作製にあたっては、アルミニウ
ム箔の一部に正極合剤含有ペーストを塗布せず、アルミ
ニウム箔の露出部を残し、そのアルミニウム箔の露出部
を正極端子などとの接続のためのリード部とした。この
正極の断面図を図1に模式的に示す。図1に示すよう
に、正極1は正極集電体1aの両面に正極合剤層1bを
形成することによって作製され、そのリード部1cは上
記正極集電体1aを構成するアルミニウム箔の一部に正
極合剤含有ペーストを塗布せず、アルミニウム箔を露出
させることによって構成されている。
Preparation of positive electrode: LiCoO as positive electrode active material
2 80 parts by weight, acetylene black 10 as a conductive additive
The mixture was uniformly mixed with 10 parts by weight of polyvinylidene fluoride as a binder using N-methylpyrrolidone as a solvent to prepare a positive electrode mixture-containing paste. This positive electrode mixture-containing paste is used as a positive electrode current collector with a thickness of 20 μm.
Is applied to both sides of the aluminum foil, dried and then calendered to adjust the thickness of the positive electrode mixture layer so that the total thickness becomes 130 μm.
The positive electrode was manufactured by cutting so as to be 0 mm × 40 mm. However, in producing the above positive electrode, the positive electrode mixture-containing paste was not applied to part of the aluminum foil, leaving an exposed portion of the aluminum foil, and connecting the exposed portion of the aluminum foil to a lead for connection with a positive electrode terminal or the like. Department. FIG. 1 schematically shows a cross-sectional view of this positive electrode. As shown in FIG. 1, the positive electrode 1 is produced by forming a positive electrode mixture layer 1b on both surfaces of a positive electrode current collector 1a, and a lead portion 1c thereof is part of an aluminum foil constituting the positive electrode current collector 1a. It is constituted by exposing the aluminum foil without applying the paste containing the positive electrode mixture to the aluminum foil.

【0037】負極Aの作製:負極活物質である黒鉛90
重量部とポリフッ化ビニリデン10重量部とをN−メチ
ルピロリドンを溶剤として均一になるように混合して負
極合剤含有ペーストを調製し、厚さ10μmの銅箔から
なる負極集電体の両面に塗布し、乾燥した後、カレンダ
ー処理を行って全厚が130μmになるように負極合剤
層の厚みを調整し、負極合剤層形成部分の面積が72m
m×42mmになるように切断して負極Aを作製した。
上記切断は負極端子との接続部分となるリード部を電極
の幅方向に対して中央位置になるようにした。また、上
記正極の場合と同様に、負極Aの作製にあたっても、銅
箔の一部には負極合剤含有ペーストを塗布せず、銅箔の
露出部を残し、その銅箔の露出部を負極端子などとの接
続のためのリード部とした。このようにして作製した負
極Aは、負極合剤層が負極集電体の両面に形成された、
いわゆる両面塗布負極と呼ばれるものである。この負極
Aの断面図を図2に模式的に示す。図2に示すように、
負極Aは負極集電体2aの両面に負極合剤層2bを形成
することによって作製され、そのリード部2cは上記負
極集電体2aを構成する銅箔の一部に負極合剤含有ペー
ストを塗布せず、銅箔を露出させて構成されている。な
お、図示にあたっては、この負極Aおよび後述の負極B
とも同一の参照符号2を付して示す。
Preparation of negative electrode A: graphite 90 as a negative electrode active material
Parts by weight and 10 parts by weight of polyvinylidene fluoride are uniformly mixed with N-methylpyrrolidone as a solvent to prepare a negative electrode mixture-containing paste, and on both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm. After coating and drying, calendering is performed to adjust the thickness of the negative electrode mixture layer so that the total thickness becomes 130 μm, and the area of the negative electrode mixture layer formation portion is 72 m.
The negative electrode A was prepared by cutting to a size of mx 42 mm.
In the above cutting, the lead portion to be connected to the negative electrode terminal was located at the center position in the width direction of the electrode. In the same manner as in the case of the above-mentioned positive electrode, in producing the negative electrode A, the negative electrode mixture-containing paste was not applied to a part of the copper foil, leaving an exposed portion of the copper foil, and exposing the exposed portion of the copper foil to the negative electrode. It is a lead part for connection with terminals. In the negative electrode A thus produced, the negative electrode mixture layer was formed on both surfaces of the negative electrode current collector,
This is a so-called double-sided coated negative electrode. FIG. 2 schematically shows a cross-sectional view of the negative electrode A. As shown in FIG.
The negative electrode A is produced by forming a negative electrode mixture layer 2b on both surfaces of a negative electrode current collector 2a, and its lead portion 2c is provided with a negative electrode mixture-containing paste on a part of the copper foil constituting the negative electrode current collector 2a. The coating is not applied and the copper foil is exposed. In the drawing, the negative electrode A and a negative electrode B described later are used.
Both are denoted by the same reference numeral 2.

【0038】負極Bの作製:上記負極Aの場合と同様の
負極合剤含有ペーストを、厚さ50μmの銅箔からなる
負極集電体の片面に塗布し、乾燥した後、カレンダー処
理を行って全厚が110μmになるように負極合剤層の
厚みを調整し、負極合剤層形成部分の面積が72mm×
42mmになるように切断して負極Bを作製した。ま
た、この負極Bの作製にあたっても、銅箔の一部には負
極合剤含有ペーストを塗布せず、銅箔の露出部を残し、
その銅箔の露出部を負極端子などとの接続のためのリー
ド部とした。このようにして作製した負極Bは、負極合
剤層が負極集電体の片面のみに形成された、いわゆる片
面塗布負極と呼ばれているものである。この負極Bの断
面図を図3に模式的に示す。図3に示すように、この負
極Bは負極集電体2aの片面のみに負極合剤層2bを形
成することによって作製されている。
Preparation of Negative Electrode B: The same negative electrode mixture-containing paste as in the case of the above-described negative electrode A was applied to one surface of a negative electrode current collector made of a copper foil having a thickness of 50 μm, dried, and calendered. The thickness of the negative electrode mixture layer was adjusted so that the total thickness became 110 μm, and the area of the negative electrode mixture layer formation portion was 72 mm ×
Negative electrode B was prepared by cutting to 42 mm. Also, in producing the negative electrode B, the negative electrode mixture-containing paste was not applied to part of the copper foil, leaving an exposed portion of the copper foil,
The exposed portion of the copper foil was used as a lead portion for connection with a negative electrode terminal or the like. The negative electrode B thus produced is a so-called single-sided coated negative electrode in which the negative electrode mixture layer is formed only on one side of the negative electrode current collector. FIG. 3 schematically shows a cross-sectional view of the negative electrode B. As shown in FIG. 3, the negative electrode B is manufactured by forming the negative electrode mixture layer 2b on only one surface of the negative electrode current collector 2a.

【0039】ゲル化成分含有電解液の調製:プロピレン
カーボネートとエチレンカーボネートとの体積比1:1
の混合溶媒にLiPF6 を1.22mol/l溶解させ
ることによって調製した電解液に、開始剤として2,
4,6−トリメチルベンゾイルジフェニルフォスフィン
オキサイド〔商品名:ルシリンTPO、ビーエーエスエ
フジャパン(株)製〕をあらかじめモノマー成分に対し
て2重量%加えて溶解しておき、そこにジペンタエリス
リトールヘキサアクリレートを使用開始10分前に濃度
が6重量%になるように加えて混合し、ゲル化成分を含
有する電解液を調製した。このゲル化成分を含有する電
解液を上記標題のように「ゲル化成分含有電解液」と簡
略化して表現する。
Preparation of electrolyte solution containing gelling component: volume ratio of propylene carbonate to ethylene carbonate 1: 1
In an electrolyte prepared by dissolving 1.22 mol / l of LiPF 6 in a mixed solvent of
4,6-Trimethylbenzoyldiphenylphosphine oxide (trade name: Lucirin TPO, manufactured by BSF Japan Co., Ltd.) was previously added and dissolved at 2% by weight based on the monomer component, and dipentaerythritol hexaacrylate was added thereto. Ten minutes before the start of use, the mixture was added to a concentration of 6% by weight and mixed to prepare an electrolytic solution containing a gelling component. The electrolytic solution containing the gelling component is simply expressed as “gelling component-containing electrolytic solution” as described above.

【0040】上記のように作製した正極をポリマー電解
質層の支持体となる不織布で包んで、正極と支持体とを
一体化しておき、その全体にゲル化成分含有電解液を含
浸させ、ゲル化して、ポリマー電解質含有正極ユニット
を得た。負極は不織布で包むことなく、ゲル化成分含有
電解液を含浸させ、ゲル化して、ポリマー電解質含有負
極を得た。それらの作製方法の詳細を次に示す。
The positive electrode prepared as described above is wrapped with a nonwoven fabric serving as a support for the polymer electrolyte layer, the positive electrode and the support are integrated, and the whole is impregnated with a gelling component-containing electrolyte to form a gel. Thus, a polymer electrolyte-containing positive electrode unit was obtained. The negative electrode was impregnated with a gelling component-containing electrolyte solution without being wrapped with a nonwoven fabric, and gelled to obtain a polymer electrolyte-containing negative electrode. The details of the manufacturing method are described below.

【0041】ポリマー電解質含有正極ユニットの作製:
支持体としては、厚さ30μm、坪量12g/m2 のポ
リブチレンテレフタレート不織布〔NKK社製、MB1
230(商品名)〕を用い、これを長さ×幅が144m
m×42mmの短冊状に切断した。
Preparation of Positive Electrode Unit Containing Polymer Electrolyte:
As a support, a polybutylene terephthalate nonwoven fabric having a thickness of 30 μm and a basis weight of 12 g / m 2 [manufactured by NKK, MB1
230 (trade name)], and the length × width is 144 m
It was cut into a strip of mx 42 mm.

【0042】そして、正極の正極合剤層形成部分とリー
ド部とにまたがるようにして、厚さ50μm、幅3mm
のポリイミドテープをその両面から貼着し、短絡の防止
および端子の強度保持を図った。また、リード部の正極
端子との接続に用いる部分のすべての表面を、熱により
接着面の粘着性が失われる熱剥離テープで被覆した後、
この正極を上記ポリブチレンテレフタレート不織布の長
さ方向の中央部より左側の部分に載置し、右側の部分を
折り返して正極を覆った後、その幅方向の両側部を熱融
着器〔商品名:ポリシーラー、富士イパルス(株)製〕
でシールして支持体としてのポリブチレンテレフタレー
ト不織布を袋状にし、両者を密接させて正極と支持体と
を一体化した。この正極と支持体とを一体化した正極ユ
ニットを前記ゲル化成分含有電解液に減圧下で1分間浸
漬して正極ユニットにゲル化成分含有電解液を含浸させ
た後、ポリエチレン製の袋に入れて密閉した。つぎに、
そのポリエチレン製袋の両面から、フュージョンUVシ
ステムズ・ジャパン(株)製の紫外線照射装置を用い
て、紫外線を1W/cm2 の照度で10秒間照射し、電
解液中のモノマー成分を重合させるとともに、電解液を
ゲル化してゲル状ポリマー電解質とした。このポリマー
電解質層と正極との一体化物を袋から取り出し、そのリ
ード部の正極端子との接続に用いる部分に150℃の熱
風を吹き付けることによって熱剥離テープを該部分から
剥がし、ポリマー電解質保持正極ユニットを得た。
Then, the thickness of the cathode is 50 μm and the width is 3 mm
Was adhered from both sides to prevent short circuit and maintain the strength of the terminal. Also, after covering the entire surface of the portion of the lead portion used for connection with the positive electrode terminal with a heat release tape that loses the adhesiveness of the adhesive surface due to heat,
The positive electrode is placed on the left side of the center of the polybutylene terephthalate nonwoven fabric in the longitudinal direction, and the right side is folded back to cover the positive electrode. : Policyr, Fuji Impulse Co., Ltd.]
To form a bag of polybutylene terephthalate nonwoven fabric as a support, and the two were brought into close contact to integrate the positive electrode and the support. The positive electrode unit in which the positive electrode and the support are integrated is immersed in the gelling component-containing electrolyte for 1 minute under reduced pressure to impregnate the positive electrode unit with the gelling component-containing electrolyte, and then put in a polyethylene bag. And sealed. Next,
UV rays were radiated from both sides of the polyethylene bag at an illuminance of 1 W / cm 2 for 10 seconds using an UV irradiator manufactured by Fusion UV Systems Japan Co., Ltd. to polymerize the monomer component in the electrolytic solution. The electrolyte was gelled to form a gel polymer electrolyte. The integrated body of the polymer electrolyte layer and the positive electrode is taken out of the bag, the hot peeling tape is peeled off from the bag by blowing hot air of 150 ° C. onto a portion of the lead portion used for connection with the positive electrode terminal, and the polymer electrolyte holding positive electrode unit is removed. I got

【0043】ポリマー電解質含有負極Aの作製:上記の
ように作製した負極Aの負極合剤層形成部分とリード部
とにまたがるようにして、厚さ50μm、幅3mmのポ
リイミドテープをその両面から貼着し、短絡の防止およ
び端子の強度保持と図った。また、リード部の負極端子
との接続に用いる部分のすべての表面を、熱により接着
面の粘着性が失われる熱剥離テープで被覆した後、この
負極Aを前記ゲル化成分含有電解液に減圧下で1分間浸
漬して、ゲル化成分含有電解液を含浸させた後、ポリエ
チレン製の袋に入れて密閉した。つぎに、ポリエチレン
製の袋の両面から、フュージョンUVシステムズ・ジャ
パン(株)製の紫外線照射装置を用いて、紫外線を1W
/cm2 の照度で10秒間照射し、電解液中のモノマー
成分を重合させるとともに、電解液をゲル化してゲル状
ポリマー電解質とした。このゲル状ポリマー電解質を保
持させた負極Aを袋から取り出し、そのリード部の負極
端子との接続に用いる部分に150℃の熱風を吹き付け
ることによって熱剥離テープを該部分から剥がし、ポリ
マー電解質含有負極Aを得た。
Preparation of the polymer electrolyte-containing negative electrode A: A polyimide tape having a thickness of 50 μm and a width of 3 mm was attached to both sides of the negative electrode A prepared as described above so as to extend over the negative electrode mixture layer forming portion and the lead portion. To prevent short circuit and maintain the strength of the terminals. After covering the entire surface of the portion of the lead portion used for connection with the negative electrode terminal with a heat release tape that loses the adhesiveness of the adhesive surface due to heat, the negative electrode A was decompressed into the gelled component-containing electrolytic solution. After immersion for 1 minute in the lower part to impregnate the electrolytic solution containing the gelling component, the resultant was put in a polyethylene bag and sealed. Next, ultraviolet light was applied to both sides of the polyethylene bag at a rate of 1 W using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd.
Irradiation was performed for 10 seconds at an illuminance of / cm 2 to polymerize the monomer components in the electrolytic solution and gel the electrolytic solution to obtain a gel polymer electrolyte. The negative electrode A holding the gelled polymer electrolyte is taken out of the bag, and a hot air of 150 ° C. is blown to a portion of the lead portion used for connection with the negative electrode terminal, thereby peeling off the thermal release tape from the portion, and the polymer electrolyte-containing negative electrode. A was obtained.

【0044】ポリマー電解質含有負極Bの作製:上記の
ように作製した負極Bの負極合剤層形成部分とリード部
とにまたがるようにして、厚さ50μm、幅3mmのポ
リイミドテープをその両面から貼着し、短絡の防止およ
び端子の強度保持と図った。また、リード部の負極端子
との接続に用いる部分のすべての表面を、熱により接着
面の粘着性が失われる熱剥離テープで被覆した後、この
負極Bを前記ゲル化成分含有電解液に減圧下で1分間浸
漬して、ゲル化成分含有電解液を含浸させた後、ポリエ
チレン製の袋に入れて密閉した。つぎに、そのポリエチ
レン製袋の外側から上記負極Bの負極合剤層形成部分が
配置する側にフュージョンUVシステムズ・ジャパン
(株)製の紫外線照射装置を用いて、紫外線を1W/c
2 の照度で10秒間照射し、電解液中のモノマー成分
を重合させるとともに、電解液をゲル化してゲル状ポリ
マー電解質とした。このゲル状ポリマー電解質を保持さ
せた負極Bを袋から取り出し、そのリード部の負極端子
との接続部分に用いる部分に150℃の熱風を吹き付け
ることによって熱剥離テープを該部分から剥がし、ポリ
マー電解質含有負極Bを得た。
Preparation of Polymer Electrolyte-Containing Negative Electrode B: A polyimide tape having a thickness of 50 μm and a width of 3 mm was attached to both sides of the negative electrode B prepared as described above so as to straddle the negative electrode mixture layer forming portion and the lead portion. To prevent short circuit and maintain the strength of the terminals. Further, after covering all surfaces of a portion of the lead portion used for connection with the negative electrode terminal with a heat release tape which loses the adhesiveness of the adhesive surface due to heat, the negative electrode B was decompressed into the gelled component-containing electrolytic solution. After immersion for 1 minute in the lower part to impregnate the electrolytic solution containing the gelling component, the resultant was put in a polyethylene bag and sealed. Next, ultraviolet rays were irradiated at 1 W / c from the outside of the polyethylene bag to the side on which the negative electrode mixture layer forming portion of the negative electrode B was arranged by using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd.
Irradiation was performed for 10 seconds at an illuminance of m 2 to polymerize the monomer components in the electrolyte and gel the electrolyte to form a gel polymer electrolyte. The negative electrode B holding the gel polymer electrolyte is taken out of the bag, and a hot air at 150 ° C. is blown to a portion of the lead portion used for a connection portion with the negative electrode terminal, thereby peeling off the thermal release tape from the portion, and containing the polymer electrolyte. A negative electrode B was obtained.

【0045】上記のようにして作製したポリマー電解質
保持正極ユニット5枚と、ポリマー電解質保持負極A4
枚およびポリマー電解質保持負極B2枚を用意し、ポリ
マー電解質保持負極B、ポリマー電解質保持正極ユニッ
ト、ポリマー電解質保持負極A、ポリマー電解質保持正
極ユニット、ポリマー電解質保持負極A、ポリマー電解
質保持正極ユニット、ポリマー電解質保持負極A、ポリ
マー電解質保持正極ユニット、ポリマー電解質保持負極
A、ポリマー電解質保持正極ユニット、ポリマー電解質
保持負極A、ポリマー電解質保持正極ユニット、ポリマ
ー電解質保持負極Bの順に積層して積層電極群を得た。
この時、2枚のポリマー電解質保持負極Bの負極合剤層
形成部分はいずれも積層電極群の内部側を向くようにし
て積層した。つまり、2枚のポリマー電解質保持負極B
の厚さ50μmの銅箔からなる負極集電体をいずれも積
層電極群の最外層に配置するようにした。
The five polymer electrolyte holding positive electrode units prepared as described above and the polymer electrolyte holding negative electrode A4
Sheets and two pieces of the polymer electrolyte holding negative electrode B, a polymer electrolyte holding negative electrode B, a polymer electrolyte holding positive electrode unit, a polymer electrolyte holding negative electrode A, a polymer electrolyte holding positive electrode unit, a polymer electrolyte holding negative electrode A, a polymer electrolyte holding positive electrode unit, a polymer electrolyte The holding negative electrode A, the polymer electrolyte holding positive electrode unit, the polymer electrolyte holding negative electrode A, the polymer electrolyte holding positive electrode unit, the polymer electrolyte holding negative electrode A, the polymer electrolyte holding positive electrode unit, and the polymer electrolyte holding negative electrode B were stacked in this order to obtain a stacked electrode group. .
At this time, the two negative electrode mixture layer forming portions of the polymer electrolyte holding negative electrode B were laminated so that they faced the inside of the laminated electrode group. That is, two polymer electrolyte holding negative electrodes B
Each of the negative electrode current collectors made of copper foil having a thickness of 50 μm was disposed on the outermost layer of the laminated electrode group.

【0046】上記のようにして作製した積層電極群を図
4に示す。図4に示すように、この積層電極群は、5枚
のポリマー電解質保持正極ユニット10と6枚のポリマ
ー電解質保持負極20とで構成され、その積層電極群の
最外層のポリマー電解質保持負極20は上側、下側とも
負極Bに基づくものであり、この負極Bの電極集電体に
は厚さ50μmの銅箔が用いられ、負極合剤層はその片
面にのみ形成され、その負極合剤層はいずれも積層電極
群の内部側に向かって配置し、負極集電体は積層電極群
の外部側に向かって配置している。そして、内側の4枚
のポリマー電解質保持負極20は負極Aに基づくもので
あり、これらの負極Aの負極集電体には厚さ10μmの
銅箔が用いられ、負極合剤層はその両面に形成されてい
る。そして、これら6枚のポリマー電解質保持負極20
の間にはそれぞれポリマー電解質保持正極ユニット10
が配置し、積層電極群は5枚のポリマー電解質保持正極
ユニット10と6枚のポリマー電解質保持負極20(た
だし、そのうちの最外層の2枚は負極Bに基づくもの
で、内側の4枚は負極Aに基づくものである)とで構成
されている。そして、ポリマー電解質保持正極ユニット
10の周囲の白抜き部分はポリマー電解質保持正極ユニ
ット10の作製にあたって正極の周囲に支持体として不
織布を配置したことを示すために図示したものである。
FIG. 4 shows the laminated electrode group manufactured as described above. As shown in FIG. 4, this laminated electrode group is composed of five polymer electrolyte retaining positive electrode units 10 and six polymer electrolyte retaining negative electrodes 20, and the outermost polymer electrolyte retaining negative electrode 20 of the laminated electrode group is Both the upper and lower sides are based on the negative electrode B, and a 50 μm-thick copper foil is used for the electrode current collector of the negative electrode B, and the negative electrode mixture layer is formed only on one surface thereof. Are arranged toward the inside of the stacked electrode group, and the negative electrode current collector is arranged toward the outside of the stacked electrode group. The inner four polymer electrolyte-carrying negative electrodes 20 are based on the negative electrode A, and the negative electrode current collectors of these negative electrodes A are each made of a 10-μm-thick copper foil. Is formed. And, these six polymer electrolyte holding negative electrodes 20
Between the polymer electrolyte holding positive electrode units 10
Are arranged, and the laminated electrode group is composed of five polymer electrolyte-carrying positive electrode units 10 and six polymer electrolyte-carrying negative electrodes 20 (however, two of the outermost layers are based on the negative electrode B, and four inner electrodes are negative electrodes). A based on A). The white portion around the polymer electrolyte holding positive electrode unit 10 is shown to show that a nonwoven fabric is arranged as a support around the positive electrode in the production of the polymer electrolyte holding positive electrode unit 10.

【0047】上記積層電極群を外装する外装体として
は、図5に示すように、保護フィルム4a、金属箔4b
および熱融着性樹脂フィルム4cからなるラミネートフ
ィルムが用いられ、本実施例の外装体4では、保護フィ
ルム4aとして厚さ30μmのナイロンフィルムが用い
られ、金属箔4bとして厚さ50μmのアルミニウム箔
が用いられ、熱融着性樹脂フィルム4cとして厚さ30
μmの変性ポリオレフィンフィルムが用いられて、金属
箔4bのアルミニウム箔は水分やガスを透過させないと
いう本来の役割に加えて、本発明では短絡形成板兼放熱
促進板としての役割も担っている。そして、保護フィル
ム4aのナイロンフィルムは上記アルミニウム箔が外部
から傷や腐食を受けないようにするための保護層として
の役割を果たすものであり、熱融着性樹脂フィルム4c
の変性ポリオレフィンフィルムは熱融着して積層電極群
をシールする役割を担っている。
As shown in FIG. 5, a protective film 4a, a metal foil 4b
A laminate film made of a heat-fusible resin film 4c is used. In the case 4 of the present embodiment, a nylon film having a thickness of 30 μm is used as the protective film 4a, and an aluminum foil having a thickness of 50 μm is used as the metal foil 4b. Used as the heat-fusible resin film 4c with a thickness of 30
A modified polyolefin film having a thickness of μm is used, and the aluminum foil of the metal foil 4b plays a role of a short-circuit forming plate and a heat dissipation promoting plate in the present invention, in addition to the original role of not allowing moisture or gas to pass therethrough. The nylon film of the protective film 4a serves as a protective layer for preventing the aluminum foil from being damaged or corroded from the outside, and the heat-fusible resin film 4c
The modified polyolefin film has a role of sealing the laminated electrode group by heat fusion.

【0048】そして、この外装体4は、上記積層電極群
の外装にあたり2枚用いられ、両者とも同じ構成のもの
であるが、そのうちの1枚は平らなプレート状で、他の
1枚は上記積層電極群を収容しやすくするために鍔付き
の容器状に成形されていて、その2枚の外装体4、4は
互いの変性ポリオレフィンフィルムが内側に向き合うよ
うにしつつ、その間に積層電極群を配置し、周縁部の変
性ポリオレフィンフィルムを加熱して熱融着させること
によりシールする。
The outer package 4 is used two times for the outer package of the above-mentioned laminated electrode group, and both have the same configuration. One of them is a flat plate, and the other is the above-mentioned one. In order to easily accommodate the laminated electrode group, the laminated electrode group is formed in a container shape with a flange, and the two exterior bodies 4, 4 are arranged so that the modified polyolefin films face each other inward while the laminated electrode group is interposed therebetween. It arrange | positions and seals by heating and heat-fusing the modified polyolefin film of a peripheral part.

【0049】そして、上記のように外装体4で外装され
た積層電極群の負極のリード部2cは、図6に示すよう
に並列接続されてまとめられ、ニッケル製の負極端子6
の一方の端部と接続され、負極端子6の他方の端部は外
装体4のシール部分から外部に引き出されている。
The negative electrode leads 2c of the laminated electrode group covered with the package 4 as described above are connected in parallel as shown in FIG.
, And the other end of the negative electrode terminal 6 is drawn out of the sealed portion of the exterior body 4 to the outside.

【0050】一方、正極側でも、図7に示すように、そ
のリード部1cは並列接続され、そのリード部1cと外
装体4のアルミニウム箔とは正極端子5の一方の端部に
接続され、正極端子5の他方の端部は外装体4のシール
部分を通って外部に引き出されている。なお、この正極
端子5も前記負極端子6も同じ方向に引き出されている
が、両者の間には距離があけられていて(つまり、図6
の切断面と図7の切断面の位置が異なっている)、通常
の条件下では正極端子5と負極端子6とが接触して短絡
を起こすようなことはない。
On the other hand, also on the positive electrode side, as shown in FIG. 7, the lead portion 1c is connected in parallel, and the lead portion 1c and the aluminum foil of the package 4 are connected to one end of the positive electrode terminal 5, The other end of the positive electrode terminal 5 is drawn out through the sealing portion of the exterior body 4. Although both the positive electrode terminal 5 and the negative electrode terminal 6 are drawn in the same direction, there is a distance between them (that is, FIG.
The position of the cut surface of FIG. 7 is different from the position of the cut surface of FIG. 7). Under normal conditions, the positive terminal 5 and the negative terminal 6 do not come into contact with each other to cause a short circuit.

【0051】図8は図7のA部(外装体4のシール部分
で正極端子5が引き出されているところ)の要部拡大図
であり、図8に基づき、外装体4の金属箔4b(アルミ
ニウム箔)と正極端子5との接続について説明すると、
正極端子5が配置している外装体4のシール部分を超音
波加熱して外装体4の内層の熱融着樹脂フィルム4cと
しての変性ポリオレフィンフィルムを溶融させて外装体
4の金属箔4b(アルミニウム箔)と正極端子5とを接
続している。
FIG. 8 is an enlarged view of a main part of the portion A (where the positive electrode terminal 5 is drawn out at the sealing portion of the exterior body 4) of FIG. 7, and based on FIG. The connection between the aluminum foil) and the positive electrode terminal 5 will be described.
The sealed portion of the exterior body 4 on which the positive electrode terminal 5 is arranged is ultrasonically heated to melt the modified polyolefin film as the heat-sealing resin film 4c of the inner layer of the exterior body 4, and the metal foil 4b (aluminum) of the exterior body 4 (Foil) and the positive electrode terminal 5.

【0052】比較例1 積層電極群の最外層に配置する負極の負極集電体として
厚さ10μmの銅箔を用い、また、正極端子と外装体中
のアルミニウム箔との接続をしなかった以外は、実施例
1と同様に積層形ポリマー電解質電池を作製した。
COMPARATIVE EXAMPLE 1 A copper foil having a thickness of 10 μm was used as a negative electrode current collector of a negative electrode disposed in the outermost layer of the laminated electrode group, and the connection between the positive electrode terminal and the aluminum foil in the package was not made. Produced a laminated polymer electrolyte battery in the same manner as in Example 1.

【0053】上記実施例1および比較例1の電池の表面
に熱電対を貼り付け、Vブロックの上に載せ、軸部の直
径3mmのステンレス鋼製釘を5mm/秒の速度で積層
電極群に対して直角に突き刺し、電池の最高到達温度を
測定した。その結果を表1に示す。
A thermocouple was attached to the surfaces of the batteries of Example 1 and Comparative Example 1, placed on a V block, and a stainless steel nail having a shaft portion having a diameter of 3 mm was applied to the laminated electrode group at a speed of 5 mm / sec. The battery was pierced at a right angle, and the maximum temperature of the battery was measured. Table 1 shows the results.

【0054】[0054]

【表1】 [Table 1]

【0055】表1に示すように、実施例1の電池は最高
到達温度が135℃であって発煙・発火がなかったが、
比較例1の電池は最高到達温度が200℃以上であっ
て、発熱反応が暴走するとされている150℃よりもか
なり高くなり、また、発煙・発火を起こすものがあっ
た。
As shown in Table 1, the maximum temperature of the battery of Example 1 was 135 ° C. and no smoke or ignition occurred.
The maximum temperature of the battery of Comparative Example 1 was 200 ° C. or higher, which was considerably higher than 150 ° C., at which the exothermic reaction was considered to run away.

【0056】上記実施例では、外装体中の金属箔(アル
ミニウム箔)と正極端子との接続を超音波溶接で行った
が、上記の超音波溶接以外にも、抵抗溶接、かしめ、ネ
ジ止めなどによって行うことができる。ただし、超音波
溶接が特に好ましい。その理由は、外装体のラミネート
フィルムの最内層の熱融着性樹脂フィルム(変性ポリオ
レフィンフィルム)を剥がすという前処理なしでも、超
音波を外装体の外側から照射することによって変性ポリ
オレフィンフィルムが溶融し、外装体のラミネートフィ
ルム中のアルミニウム箔と正極端子との接続ができるか
らである。なお、上記実施例では、超音波溶接に際し
て、超音波発信器としてブランソン社製947M型を用
い、4kg/cm2 の加圧下で、80ジュールのウエル
ドエネルギーをアンプリチュード80%で2秒間印加し
たが、この条件は状況にあわせて種々に変更できる。
In the above embodiment, the connection between the metal foil (aluminum foil) in the exterior body and the positive electrode terminal was made by ultrasonic welding, but other than the above-mentioned ultrasonic welding, resistance welding, caulking, screwing, etc. Can be done by However, ultrasonic welding is particularly preferred. The reason is that even without the pretreatment of peeling off the heat-fusible resin film (modified polyolefin film) as the innermost layer of the laminate film of the exterior body, the modified polyolefin film is melted by irradiating ultrasonic waves from outside the exterior body. This is because the connection between the aluminum foil in the laminate film of the outer package and the positive electrode terminal can be made. In the above-described embodiment, at the time of ultrasonic welding, a 947M model manufactured by Branson Corporation was used as an ultrasonic transmitter, and a weld energy of 80 Joules was applied for 2 seconds at an amplitude of 80% under a pressure of 4 kg / cm 2. This condition can be changed variously according to the situation.

【0057】[0057]

【発明の効果】以上説明したように、本発明では、釘刺
しや圧壊によって短絡した場合でも、発煙・発火を防
ぎ、安全性の高い積層形ポリマー電解質電池を提供する
ことができた。
As described above, according to the present invention, even if a short circuit occurs due to nail penetration or crushing, it is possible to provide a laminated polymer electrolyte battery that prevents smoke and ignition and has high safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の積層形ポリマー電解質電池
に用いる正極を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a positive electrode used in a laminated polymer electrolyte battery according to Example 1 of the present invention.

【図2】本発明の実施例1の積層形ポリマー電解質電池
に用いる負極Aを模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a negative electrode A used in the laminated polymer electrolyte battery of Example 1 of the present invention.

【図3】本発明の実施例1の積層形ポリマー電解質電池
に用いる負極Bを模式的に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing a negative electrode B used in the laminated polymer electrolyte battery of Example 1 of the present invention.

【図4】本発明の実施例1の積層形ポリマー電解質電池
に用いる積層電極群を模式的に示す断面図である。
FIG. 4 is a cross-sectional view schematically illustrating a stacked electrode group used in the stacked polymer electrolyte battery of Example 1 of the present invention.

【図5】本発明の実施例1の積層形ポリマー電解質電池
に用いる外装体を模式的に示す断面図である。
FIG. 5 is a cross-sectional view schematically showing an outer package used for the laminated polymer electrolyte battery of Example 1 of the present invention.

【図6】本発明の実施例1の積層形ポリマー電解質電池
において、負極のリード部と負極端子との接続状態を模
式的に示す断面図である。
FIG. 6 is a cross-sectional view schematically showing a connection state between a lead portion of a negative electrode and a negative electrode terminal in the laminated polymer electrolyte battery of Example 1 of the present invention.

【図7】本発明の実施例1の積層形ポリマー電解質電池
において、正極のリード部と正極端子との接続状態を模
式的に示す断面図である。
FIG. 7 is a cross-sectional view schematically showing a connection state between a lead portion of a positive electrode and a positive electrode terminal in the laminated polymer electrolyte battery of Example 1 of the present invention.

【図8】図7のA部の要部拡大図である。FIG. 8 is an enlarged view of a main part of a portion A in FIG. 7;

【符号の説明】[Explanation of symbols]

1 正極 1a 正極集電体 1b 正極合剤層 2 負極 2a 負極集電体 2b 負極合剤層 2c リード部 3 ポリマー電解質層 4 外装体 4a 保護フィルム 4b 金属箔 4c 熱融着性樹脂フィルム 5 正極端子 6 負極端子 10 ポリマー電解質保持正極ユニット 20 ポリマー電解質保持負極 DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 1b Positive electrode mixture layer 2 Negative electrode 2a Negative electrode collector 2b Negative electrode mixture layer 2c Lead part 3 Polymer electrolyte layer 4 Package 4a Protective film 4b Metal foil 4c Heat-fusible resin film 5 Positive electrode terminal 6 negative electrode terminal 10 polymer electrolyte holding positive electrode unit 20 polymer electrolyte holding negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 宏 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 川合 徹夫 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H022 AA09 CC04 CC08 CC09 CC19 KK04 5H025 AA00 CC01 CC02 CC11 CC18 CC22 CC31 5H029 AJ03 AJ12 AK03 AL07 AM00 AM03 AM04 AM05 AM07 AM16 BJ04 BJ12 CJ22 DJ02 DJ05 DJ07 EJ01 EJ12 HJ04  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Hiroshi Yamamoto, 1-88 Ushitora, Ibaraki City, Osaka Prefecture Inside Hitachi Maxell Co., Ltd. (72) Tetsuo Kawai 1-188, Usutora, Ibaraki City, Osaka Hitachi Maxell F-term (reference) 5H022 AA09 CC04 CC08 CC09 CC19 KK04 5H025 AA00 CC01 CC02 CC11 CC18 CC22 CC31 5H029 AJ03 AJ12 AK03 AL07 AM00 AM03 AM04 AM05 AM07 AM16 BJ04 BJ12 CJ22 DJ02 DJ05 DJ07 EJ01 EJ12 HJ

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体の少なくとも一方の面に正極
合剤層を形成してなる正極と、負極集電体の少なくとも
一方の面に負極合剤層を形成してなる負極とを、それぞ
れの間にポリマー電解質層を介在させて積層した積層電
極群を、金属箔を含む外装体で外装する積層形ポリマー
電解質電池であって、上記積層電極群の少なくとも一方
の最外層の電極の電極集電体の厚さを30μm以上と
し、その外面側には電極合剤層を形成せず、その電極集
電体と同一極性の電極のリード部とを接続し、かつ、上
記外装体中の金属箔の厚さを30μm以上とし、他方の
極性の電極端子と上記外装体中の金属箔とを接続したこ
とを特徴とする積層形ポリマー電解質電池。
A positive electrode having a positive electrode mixture layer formed on at least one surface of a positive electrode current collector, and a negative electrode having a negative electrode mixture layer formed on at least one surface of a negative electrode current collector, A laminated polymer electrolyte battery in which a laminated electrode group laminated with a polymer electrolyte layer interposed therebetween is packaged with a package including a metal foil, wherein the electrode of at least one outermost layer of the laminated electrode group is an electrode. The thickness of the current collector is 30 μm or more, an electrode mixture layer is not formed on the outer surface side, the electrode current collector is connected to a lead of an electrode having the same polarity, and the A laminated polymer electrolyte battery, wherein the thickness of the metal foil is 30 μm or more, and the other polarity electrode terminal is connected to the metal foil in the outer package.
JP23643499A 1999-08-24 1999-08-24 Laminated polymer electrolyte battery and sheet battery manufacturing method Expired - Fee Related JP4070367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23643499A JP4070367B2 (en) 1999-08-24 1999-08-24 Laminated polymer electrolyte battery and sheet battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23643499A JP4070367B2 (en) 1999-08-24 1999-08-24 Laminated polymer electrolyte battery and sheet battery manufacturing method

Publications (3)

Publication Number Publication Date
JP2001068155A true JP2001068155A (en) 2001-03-16
JP2001068155A5 JP2001068155A5 (en) 2005-04-07
JP4070367B2 JP4070367B2 (en) 2008-04-02

Family

ID=17000706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23643499A Expired - Fee Related JP4070367B2 (en) 1999-08-24 1999-08-24 Laminated polymer electrolyte battery and sheet battery manufacturing method

Country Status (1)

Country Link
JP (1) JP4070367B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142149A (en) * 2003-10-14 2005-06-02 Nissan Motor Co Ltd Thin battery
JP2007141511A (en) * 2005-11-15 2007-06-07 Nissan Motor Co Ltd Battery module
CN100446333C (en) * 2003-06-24 2008-12-24 三星Sdi株式会社 Pouched lithium secondary battery
JP2010033777A (en) * 2008-07-25 2010-02-12 Mitsubishi Heavy Ind Ltd Battery pack container, battery pack, and lithium secondary battery
KR101431278B1 (en) 2008-12-19 2014-08-20 주식회사 엘지화학 Secondary battery having enhanced uniformity of temperature distribution
JP2015529954A (en) * 2012-11-13 2015-10-08 エルジー・ケム・リミテッド Electrode assembly having a step structure
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
JP2020119633A (en) * 2019-01-18 2020-08-06 トヨタ自動車株式会社 All-solid battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890844B1 (en) * 2017-11-24 2018-08-22 주식회사 리베스트 An electrode assembly with improved safety in use by structure of outermost electrodes and material of current collectors, and lithium ion battery with the electrode assembly

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446333C (en) * 2003-06-24 2008-12-24 三星Sdi株式会社 Pouched lithium secondary battery
JP2005142149A (en) * 2003-10-14 2005-06-02 Nissan Motor Co Ltd Thin battery
JP2007141511A (en) * 2005-11-15 2007-06-07 Nissan Motor Co Ltd Battery module
JP2010033777A (en) * 2008-07-25 2010-02-12 Mitsubishi Heavy Ind Ltd Battery pack container, battery pack, and lithium secondary battery
KR101431278B1 (en) 2008-12-19 2014-08-20 주식회사 엘지화학 Secondary battery having enhanced uniformity of temperature distribution
JP2015529954A (en) * 2012-11-13 2015-10-08 エルジー・ケム・リミテッド Electrode assembly having a step structure
US10026994B2 (en) 2012-11-13 2018-07-17 Lg Chem, Ltd. Stepped electrode assembly
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
JP2020119633A (en) * 2019-01-18 2020-08-06 トヨタ自動車株式会社 All-solid battery
JP7247595B2 (en) 2019-01-18 2023-03-29 トヨタ自動車株式会社 All-solid battery

Also Published As

Publication number Publication date
JP4070367B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP2001068156A (en) Stacked polymer electrolyte battery
JP4144312B2 (en) Bipolar battery
US5716421A (en) Multilayered gel electrolyte bonded rechargeable electrochemical cell and method of making same
JP4281129B2 (en) Lithium ion secondary battery
JP4365098B2 (en) Lithium polymer secondary battery and manufacturing method thereof
JP2004253168A (en) Bipolar battery
JP2006210002A (en) Electrode for battery
JP4162175B2 (en) Polymer electrolyte battery
JP3474853B2 (en) Manufacturing method of lithium ion secondary battery
JP4132647B2 (en) Thin secondary battery
WO2022001235A1 (en) Separator for electrochemical apparatus, electrochemical apparatus, and electronic apparatus
CA2306360A1 (en) Electrode-separator laminate, method of producing the same, and battery using the same
JP3850977B2 (en) Method for producing polymer solid electrolyte battery
US20010008726A1 (en) Adhesive for battery, battery using the same and method of fabricating a battery using the same
JP3992261B2 (en) Stacked polymer electrolyte battery
JP2000235850A (en) Layered polymer electrolyte battery
JP2001068155A (en) Stacked polymer electrolyte battery
JP2004311108A (en) Total polymer electrolyte battery and manufacturing method
JP2001126678A (en) Laminate polymer electrolyte battery
US6352797B1 (en) Lithium ion battery and method for forming the same
JP3821465B2 (en) Polymer electrolyte battery
JP4292490B2 (en) Laminated pack battery
JP4108918B2 (en) Thin secondary battery
JPH0521086A (en) Electrode and battery using this
JP2001068161A (en) Stacked polymer electrolyte battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees