JP2001068154A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001068154A
JP2001068154A JP2000175265A JP2000175265A JP2001068154A JP 2001068154 A JP2001068154 A JP 2001068154A JP 2000175265 A JP2000175265 A JP 2000175265A JP 2000175265 A JP2000175265 A JP 2000175265A JP 2001068154 A JP2001068154 A JP 2001068154A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
additive
mixed
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000175265A
Other languages
Japanese (ja)
Other versions
JP4020571B2 (en
Inventor
Akira Ichihashi
明 市橋
Ryuji Oshita
竜司 大下
Shin Fujitani
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000175265A priority Critical patent/JP4020571B2/en
Publication of JP2001068154A publication Critical patent/JP2001068154A/en
Application granted granted Critical
Publication of JP4020571B2 publication Critical patent/JP4020571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery with high storage characteristics in charged state by preventing decomposition of an electrolyte by a positive electrode active material or a negative electrode active material even if the battery is stored in charged state. SOLUTION: At least one of an imide base lithium salt represented by LiN (CmF2m+1SO2)(CnF2n+1SO2) and a methide base lithium salt represented by LiC (CpF2p+1SO2)CqF2q+1SO2)(CrF2r+1SO2) is used as a solute of an electrolyte of a lithium secondary battery. An additive comprising a fluoride, a phosphorus compound, or both of them is added to the electrolyte. By adding the additive comprising the fluoride, the phosphorus compound or both of them to the electrolyte, decomposition of the electrolyte can be prevented even if a battery is stored in charged state, and the charged storage characteristics are enhanced. In the above formulas, m, n, p, q, and r are an integer of 1-4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオンの挿
入・脱離が可能な正極と、リチウムイオンの挿入・脱離
が可能な負極と、電解質とを備えたリチウム二次電池に
係り、特に、溶質としてリチウム塩を溶解した電解質の
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery comprising a positive electrode capable of inserting and removing lithium ions, a negative electrode capable of inserting and removing lithium ions, and an electrolyte. The present invention relates to improvement of an electrolyte in which a lithium salt is dissolved as a solute.

【0002】[0002]

【従来の技術】近年、小型軽量でかつ高容量で充放電可
能な電池としてリチウム二次電池が実用化されるように
なり、小型ビデオカメラ、携帯電話、ノートパソコン等
の携帯用電子・通信機器等に用いられるようになった。
この種のリチウム二次電池は、負極活物質としてリチウ
ムイオンを吸蔵・脱離し得るカーボン系材料あるいはリ
チウム金属もしくはリチウム合金を用い、正極活物質と
して、LiCoO2,LiNiO2,LiMn24,Li
FeO2等のリチウム含有遷移金属酸化物を用い、有機
溶媒に溶質としてリチウム塩を溶解した電解質を用いて
構成される電池である。
2. Description of the Related Art In recent years, lithium secondary batteries have come into practical use as small, lightweight, high-capacity, chargeable / dischargeable batteries, and portable electronic and communication equipment such as small video cameras, mobile phones, and notebook computers. And so on.
This type of lithium secondary battery uses a carbon-based material or lithium metal or lithium alloy capable of inserting and extracting lithium ions as a negative electrode active material, and uses LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and Li as positive electrode active materials.
The battery comprises a lithium-containing transition metal oxide such as FeO 2 and an electrolyte in which a lithium salt is dissolved as a solute in an organic solvent.

【0003】このようなリチウム二次電池に用いられる
電解質の溶媒として、エチレンカーボネート(EC)、
プロピレンカーボネート(PC)、ビニレンカーボネー
ト(VC)、ブチレンカーボネート(BC)、ジエチル
カーボネート(DEC)、ジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)、1,2−
ジエトキシエタン(DEE)、1,2−ジメトキシエタ
ン(DME)、エトキシメトキシエタン(EME)等の
単体、あるいは二成分以上の混合溶媒が使用されてい
る。また、この溶媒に溶解される溶質としては、LiP
6、LiBF4、LiCF3SO3、LiAsF6、Li
N(CF3SO22、LiC(CF3SO2 3、LiCF
3(CF23SO3等が使用されている。
[0003] Used in such lithium secondary batteries
Ethylene carbonate (EC) as a solvent for the electrolyte,
Propylene carbonate (PC), vinylene carbonate
(VC), butylene carbonate (BC), diethyl
Carbonate (DEC), dimethyl carbonate (DM
C), methyl ethyl carbonate (MEC), 1,2-
Diethoxyethane (DEE), 1,2-dimethoxyethane
(DME), ethoxymethoxyethane (EME), etc.
Single or mixed solvent of two or more components
You. The solute dissolved in this solvent is LiP
F6, LiBFFour, LiCFThreeSOThree, LiAsF6, Li
N (CFThreeSOTwo)Two, LiC (CFThreeSOTwo) Three, LiCF
Three(CFTwo)ThreeSOThreeEtc. are used.

【0004】[0004]

【発明が解決しようとする課題】ところで、この種のリ
チウム二次電池にあっては、高電圧に起因して負極と電
解質とが反応して、電解質、特に溶媒が分解されて劣化
し、サイクル特性、充電保存特性が悪いという問題が生
じた。このため、例えば、特開平7−85888号公報
において、エチレンカーボネートおよびプロピレンカー
ボネートから選ばれる少なくとも1種以上の溶媒を10
〜80体積%と、ジエトキシエタン、鎖状カーボネート
およびアセトニトリルから選ばれる少なくとも1種以上
の溶媒を20〜90体積%とを混合した混合溶媒に溶質
としてLi(Cn2n+1Y)2N(Xはハロゲン、nは1
〜4の整数、YはCO基またはSO2基を示す)で表さ
れるイミド系リチウム塩を0.1〜3モル/リットル溶
解した組成を有する電解質を用いることが提案された。
これによりサイクル特性は改善された。
However, in this type of lithium secondary battery, the negative electrode and the electrolyte react with each other due to the high voltage, and the electrolyte, particularly the solvent, is decomposed and degraded. There was a problem that the characteristics and charge storage characteristics were poor. For this reason, for example, in JP-A-7-85888, at least one solvent selected from ethylene carbonate and propylene carbonate is used in 10
And 80 vol%, diethoxyethane, linear carbonate and a solute of at least one or more kinds of the solvent a mixed solvent obtained by mixing 20 to 90 vol% selected from acetonitrile Li (C n X 2n + 1 Y) 2 N (X is halogen, n is 1
It has been proposed to use an electrolyte having a composition obtained by dissolving 0.1 to 3 mol / l of an imide-based lithium salt represented by the following formula: Y represents a CO group or an SO 2 group.
This improved the cycle characteristics.

【0005】しかしながら、イミド系リチウム塩を電解
質の溶質として添加しても、この電解質は直接正極およ
び負極に接しているため、正極活物質あるいは負極活物
質により電解質の溶媒が分解されて、充電保存特性が悪
いという問題が生じた。そこで、本発明は上記課題を解
消するためになされたものであって、充電状態で保存し
ても電解質が正極活物質あるいは負極活物質により分解
されないようにして、充電保存特性に優れたリチウム二
次電池を提供することにある。
However, even if an imide-based lithium salt is added as a solute for the electrolyte, the electrolyte is in direct contact with the positive electrode and the negative electrode, so that the solvent of the electrolyte is decomposed by the positive electrode active material or the negative electrode active material, and the battery is charged. There was a problem that the characteristics were poor. Accordingly, the present invention has been made to solve the above-mentioned problems, and has been made in order to prevent the electrolyte from being decomposed by the positive electrode active material or the negative electrode active material even when stored in a charged state, and to provide a lithium secondary battery having excellent charge storage characteristics. Another object is to provide a battery.

【0006】[0006]

【課題を解決するための手段およびその作用・効果】上
記課題を解決するために、本発明のリチウム二次電池に
おいては、LiN(Cm2m+1SO2)(Cn2n+1
2)(ただし、mおよびnは各々独立した1〜4の整
数)で表されるイミド系リチウム塩あるいはLiC(C
p2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2
(ただし、p、qおよびrは各々独立した1〜4の整
数)で表されるメチド系リチウム塩の少なくとも一方が
電解質の溶質として用いられ、この電解質にフッ化物あ
るいはリン化合物からなる添加剤の少なくとも一方が添
加されている。
To solve SUMMARY, operation, and effects thereof for solving the above problems, in the lithium secondary battery of the present invention, LiN (C m F 2m + 1 SO 2) (C n F 2n + 1 S
O 2 ) (where m and n are each independently an integer of 1 to 4) or an imide-based lithium salt represented by LiC (C
p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2)
(Where p, q and r are each independently an integer of 1 to 4), at least one of the methide-based lithium salts is used as a solute of the electrolyte, and the electrolyte contains an additive comprising a fluoride or a phosphorus compound. At least one is added.

【0007】このようなイミド系リチウム塩あるいはメ
チド系リチウム塩の少なくとも一方が溶質として用いら
れた電解質に、フッ化物あるいはリン化合物からなる添
加剤の少なくとも一方が添加されていると、添加剤が正
極あるいは負極の表面に保護膜を形成するため、この保
護膜により電解質が直接、正極あるいは負極と接触する
ことが防止できるようになる。この結果、リチウム二次
電池を充電状態で保存しても電解質が分解されるのを防
止でき、充電保存特性が向上する。
[0007] When at least one of an additive comprising a fluoride or a phosphorus compound is added to an electrolyte in which at least one of the imide-based lithium salt or the methide-based lithium salt is used as a solute, the additive becomes a positive electrode. Alternatively, since a protective film is formed on the surface of the negative electrode, the protective film can prevent the electrolyte from directly contacting the positive electrode or the negative electrode. As a result, even if the lithium secondary battery is stored in a charged state, the decomposition of the electrolyte can be prevented, and the charge storage characteristics are improved.

【0008】また、添加剤として用いられるフッ化物と
しては、AgF、CoF2、CoF3、CuF、Cu
2、FeF2、FeF3、LiF、MnF2、MnF3
SnF2、SnF4、TiF3、TiF4およびZrF4
ら選択された少なくとも1種を用いるのが好ましく、リ
ン化合物としては、LiPO3およびLi3PO4から選
択された少なくとも1種を用いるのが好ましい。そし
て、より好ましくは、AgF、CoF2、CoF3、Cu
F、CuF2、FeF2、FeF3、LiF、MnF2、M
nF3、SnF2、SnF4、TiF3、TiF4およびZ
rF4から選択された少なくとも1種と、LiPO3およ
びLi3PO4から選択された少なくとも1種との混合添
加物とするのがよい。
The fluoride used as an additive includes AgF, CoF 2 , CoF 3 , CuF and CuF.
F 2 , FeF 2 , FeF 3 , LiF, MnF 2 , MnF 3 ,
SnF 2, SnF 4, TiF 3 , TiF 4 and it is preferable to use at least one selected from ZrF 4, as the phosphorus compound, to use at least one selected from LiPO 3 and Li 3 PO 4 preferable. And, more preferably, AgF, CoF 2 , CoF 3 , Cu
F, CuF 2 , FeF 2 , FeF 3 , LiF, MnF 2 , M
nF 3 , SnF 2 , SnF 4 , TiF 3 , TiF 4 and Z
It is preferable to use a mixed additive of at least one selected from rF 4 and at least one selected from LiPO 3 and Li 3 PO 4 .

【0009】そして、添加剤の添加量が多くなると正極
あるいは負極の表面に形成される保護膜が厚くなって充
電保存特性が低下し、添加剤の添加量が少なくなると正
極あるいは負極の表面に充分な保護膜が形成されなくな
るため、これらの添加剤の添加量は電解質に対して0.
001〜10質量%とすることが望ましく、好ましくは
0.01〜5質量%とするのがよい。さらに、ポリマー
でゲル化された電解質に上記の如き添加剤を添加する
と、充電保存特性向上効果が発揮されるため、このよう
な添加剤はポリマーでゲル化された電解質に用いるのが
好ましい。
When the amount of the additive increases, the thickness of the protective film formed on the surface of the positive electrode or the negative electrode increases, and the charge storage characteristics deteriorate. On the other hand, when the amount of the additive decreases, the surface of the positive electrode or the negative electrode decreases. Since an appropriate protective film is not formed, the amount of these additives to be added is 0.1 to the electrolyte.
The content is desirably 001 to 10% by mass, preferably 0.01 to 5% by mass. Further, when the above-mentioned additives are added to the polymer gelled electrolyte, the effect of improving the charge storage characteristics is exhibited. Therefore, such additives are preferably used for the polymer gelled electrolyte.

【0010】[0010]

【発明の実施の形態】以下に、本発明のリチウム二次電
池の実施の形態を説明する。 1.電解質(電解液)の調製 (1)実施例1 まず、エチレンカーボネート(EC:以下、単にECと
いう)とジエチルカーボネート(DEC:以下、単にD
ECという)とを体積比で40:60となるように混合
した混合溶媒に、イミド系リチウム塩としてLiN(C
3SO2 2を1.0モル/リットル溶解して電解液
(電解質)を調製した。この電解液に添加剤としてフッ
化リチウム(LiF)を電解液に対して1質量%だけ添
加し、混合して実施例1の電解液aを調製した。なお、
溶質として用いられたイミド系リチウム塩であるLiN
(CF3SO22は、LiN(Cm2m+1SO2)(Cn
2n+1SO2)と表された場合のm=1,n=1に相当
し、以下では(m,n)=(1,1)と表す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the lithium secondary battery according to the present invention will be described below. 1. Preparation of Electrolyte (Electrolyte) (1) Example 1 First, ethylene carbonate (EC: hereinafter simply referred to as EC) and diethyl carbonate (DEC: hereinafter simply D)
EC) is mixed with LiN (C) as an imide-based lithium salt in a mixed solvent in which the volume ratio is 40:60.
F 3 SO 2 ) 2 was dissolved at 1.0 mol / liter to prepare an electrolytic solution (electrolyte). Lithium fluoride (LiF) was added as an additive to the electrolytic solution in an amount of 1% by mass based on the electrolytic solution, and mixed to prepare an electrolytic solution a of Example 1. In addition,
LiN, an imide-based lithium salt used as a solute
(CF 3 SO 2 ) 2 is LiN (C m F 2m + 1 SO 2 ) (C n F
2n + 1 SO 2 ), where m = 1 and n = 1, and hereinafter represented as (m, n) = (1, 1).

【0011】(2)実施例2 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、イミド系リチウム塩としてLiN(C
25SO22を1.0モル/リットル溶解して電解液を
調製した。この電解液に添加剤としてフッ化リチウム
(LiF)を電解液に対して1質量%だけ添加し、混合
して実施例2の電解液bを調製した。なお、溶質として
用いられたイミド系リチウム塩であるLiN(C25
22は、LiN(Cm2m+1SO2)(Cn2n+1
2)と表された場合の(m,n)=(2,2)に相当
する。
(2) Example 2 In a mixed solvent of EC and DEC mixed at a volume ratio of 40:60, LiN (C
2 F 5 SO 2 ) 2 was dissolved in 1.0 mol / liter to prepare an electrolytic solution. Lithium fluoride (LiF) was added as an additive to the electrolyte at only 1% by mass with respect to the electrolyte, and mixed to prepare an electrolyte b of Example 2. Note that LiN (C 2 F 5 S), which is an imide-based lithium salt used as a solute, was used.
O 2 ) 2 is LiN (C m F 2m + 1 SO 2 ) (C n F 2n + 1 S
(M 2) = (2, 2) when expressed as O 2 ).

【0012】(3)実施例3 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、イミド系リチウム塩としてLiN(C
3SO2)(C49SO2)を1.0モル/リットル溶
解して電解液を調製した。この電解液に添加剤としてフ
ッ化リチウム(LiF)を電解液に対して1質量%だけ
添加し、混合して実施例3の電解液cを調製した。な
お、溶質として用いられたイミド系リチウム塩であるL
iN(CF 3SO2)(C49SO2)は、LiN(Cm
2m+1SO2)(Cn2n+1SO2)と表された場合の
(m,n)=(1,4)に相当する。
(3) Example 3 EC and DEC are mixed in a volume ratio of 40:60.
In the mixed solvent thus obtained, LiN (C
FThreeSOTwo) (CFourF9SOTwo) Is dissolved at 1.0 mol / liter.
Then, an electrolytic solution was prepared. Fluorine as an additive to this electrolyte
Lithium nitride (LiF) in only 1% by weight of electrolyte
The mixture was added and mixed to prepare an electrolyte solution c of Example 3. What
L, which is an imide-based lithium salt used as a solute,
iN (CF ThreeSOTwo) (CFourF9SOTwo) Is LiN (CmF
2m + 1SOTwo) (CnF2n + 1SOTwo)
(M, n) = (1, 4).

【0013】(4)実施例4 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、イミド系リチウム塩としてLiN(C
3SO22を1.0モル/リットル溶解して電解液を
調製した。この電解液に添加剤としてリン酸三リチウム
(Li3PO4)を電解液に対して1質量%だけ添加し、
混合して実施例4の電解液dを調製した。
(4) Example 4 In a mixed solvent of EC and DEC mixed at a volume ratio of 40:60, LiN (C
F 3 SO 2 ) 2 was dissolved in 1.0 mol / liter to prepare an electrolytic solution. Trilithium phosphate (Li 3 PO 4 ) was added as an additive to the electrolyte by 1% by mass with respect to the electrolyte,
The electrolyte solution d of Example 4 was prepared by mixing.

【0014】(5)実施例5 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、イミド系リチウム塩としてLiN(C
25SO22を1.0モル/リットル溶解して電解液を
調製した。この電解液に添加剤としてリン酸三リチウム
(Li3PO4)を電解液に対して1質量%だけ添加し、
混合して実施例5の電解液eを調製した。
(5) Example 5 In a mixed solvent of EC and DEC mixed at a volume ratio of 40:60, LiN (C
2 F 5 SO 2 ) 2 was dissolved in 1.0 mol / liter to prepare an electrolytic solution. Trilithium phosphate (Li 3 PO 4 ) was added as an additive to the electrolyte by 1% by mass with respect to the electrolyte,
The electrolyte solution e of Example 5 was prepared by mixing.

【0015】(6)実施例6 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、イミド系リチウム塩としてLiN(C
3SO2)(C49SO2)を1.0モル/リットル溶
解して電解液を調製した。この電解液に添加剤としてリ
ン酸三リチウム(Li3PO4)を電解液に対して1質量
%だけ添加し、混合して実施例6の電解液fを調製し
た。
(6) Example 6 In a mixed solvent of EC and DEC mixed at a volume ratio of 40:60, LiN (C
F 3 SO 2 ) (C 4 F 9 SO 2 ) was dissolved at 1.0 mol / liter to prepare an electrolyte solution. Trilithium phosphate (Li 3 PO 4 ) was added as an additive to the electrolyte at 1% by mass with respect to the electrolyte, and mixed to prepare an electrolyte f of Example 6.

【0016】(7)実施例7 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、メチド系リチウム塩としてLiC(C
3SO23を1.0モル/リットル溶解して電解液を
調製した。この電解液に添加剤としてフッ化リチウム
(LiF)を電解液に対して1質量%だけ添加し、混合
して実施例7の電解液gを調製した。なお、溶質として
用いられたメチド系リチウム塩であるLiC(CF3
23は、LiC(Cp2p+1SO2)(Cq2q+1
2)(Cr2r+1SO2)と表わした場合のp=1,q
=1,r=1、即ち、(p,q,r)=(1,1,1)
に相当する。
(7) Example 7 A mixture of EC and DEC in a volume ratio of 40:60 was mixed with LiC (C
F 3 SO 2 ) 3 was dissolved in 1.0 mol / l to prepare an electrolyte solution. Lithium fluoride (LiF) was added as an additive to the electrolyte at only 1% by mass with respect to the electrolyte, and mixed to prepare an electrolyte g of Example 7. Note that LiC (CF 3 S), which is a methide-based lithium salt used as a solute, was used.
O 2 ) 3 is LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 S
O 2) (C r F 2r +1 when SO 2) and represents p = 1, q
= 1, r = 1, that is, (p, q, r) = (1, 1, 1)
Is equivalent to

【0017】(8)実施例8 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、メチド系リチウム塩としてLiC(C
3SO23を1.0モル/リットル溶解して電解液を
調製した。この電解液に添加剤としてリン酸三リチウム
(Li3PO4)を電解液に対して1質量%だけ添加し、
混合して実施例8の電解液hを調製した。
(8) Example 8 A mixed solvent of EC and DEC in a volume ratio of 40:60 was mixed with LiC (C
F 3 SO 2 ) 3 was dissolved in 1.0 mol / l to prepare an electrolyte solution. Trilithium phosphate (Li 3 PO 4 ) was added as an additive to the electrolyte by 1% by mass with respect to the electrolyte,
The electrolyte h of Example 8 was prepared by mixing.

【0018】(9)比較例1 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、イミド系リチウム塩としてLiN(C
3SO22を1.0モル/リットル溶解し、添加剤を
添加することなく混合して比較例1の電解液xを調製し
た。
(9) Comparative Example 1 In a mixed solvent of EC and DEC mixed at a volume ratio of 40:60, LiN (C
F 3 SO 2 ) 2 was dissolved in 1.0 mol / liter and mixed without adding any additives to prepare an electrolyte x of Comparative Example 1.

【0019】(10)比較例2 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、イミド系リチウム塩としてLiN(C
25SO22を1.0モル/リットル溶解し、添加剤を
添加することなく混合して比較例2の電解液yを調製し
た。
(10) Comparative Example 2 In a mixed solvent of EC and DEC mixed at a volume ratio of 40:60, LiN (C
2 F 5 SO 2 ) 2 was dissolved in 1.0 mol / liter and mixed without adding any additives to prepare an electrolyte y of Comparative Example 2.

【0020】(11)比較例3 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、イミド系リチウム塩としてLiN(C
3SO2)(C49SO2)を1.0モル/リットル溶
解し、添加剤を添加することなく混合して比較例3の電
解液zを調製した。
(11) Comparative Example 3 In a mixed solvent in which EC and DEC were mixed at a volume ratio of 40:60, LiN (C
F 3 SO 2 ) (C 4 F 9 SO 2 ) was dissolved in 1.0 mol / liter and mixed without adding any additives to prepare an electrolyte solution z of Comparative Example 3.

【0021】(12)比較例4 ECとDECとを体積比で40:60となるように混合
した混合溶媒に、メチド系リチウム塩としてLiC(C
3SO23を1.0モル/リットル溶解し、添加剤を
添加することなく混合して比較例4の電解液wを調製し
た。
(12) Comparative Example 4 A mixed solvent of EC and DEC in a volume ratio of 40:60 was mixed with LiC (C
F 3 SO 2 ) 3 was dissolved in 1.0 mol / l and mixed without adding any additives to prepare an electrolyte w of Comparative Example 4.

【0022】なお、上述した各実施例および比較例にお
いては、ECとDECとを体積比で40:60となるよ
うに混合した混合溶媒を用いる例について説明したが、
電解質の溶媒としては、ECおよびDEC以外にも、プ
ロピレンカーボネート(PC)、ブチレンカーボネート
(BC)、ジメチルカーボネート(DMC)、スルホラ
ン(SL)、ビニレンカーボネート(VC)、メチルエ
チルカーボネート(MEC)、テトラヒドロフラン(T
HF)、1,2−ジエトキシエタン(DEE)、1,2
−ジメトキシエタン(DME)、エトキシメトキシエタ
ン(EME)等の単体、あるいはこれらの二成分以上の
混合溶媒を選択して用いても良い。
In each of the above Examples and Comparative Examples, an example was described in which a mixed solvent in which EC and DEC were mixed at a volume ratio of 40:60 was used.
As a solvent for the electrolyte, in addition to EC and DEC, propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), sulfolane (SL), vinylene carbonate (VC), methyl ethyl carbonate (MEC), tetrahydrofuran (T
HF), 1,2-diethoxyethane (DEE), 1,2
A simple substance such as dimethoxyethane (DME) and ethoxymethoxyethane (EME), or a mixed solvent of two or more of these may be used.

【0023】2.正極の作製 正極活物質としてのリチウム含有コバルト酸化物(Li
CoO2)粉末90質量部と、人造黒鉛、アセチレンブ
ラック、グラファイト等の炭素系導電剤5質量部と、結
着剤としてのポリフッ化ビニリデン5質量部とを混合し
て、N−メチル−2−ピロリドン(NMP)溶液にして
スラリーを調製した。このスラリーをドクターブレード
等を用いて、正極集電体(例えば、アルミニウム箔)の
片面に均一に塗布して、活物質層を塗布した正極板を形
成した。この後、130℃で2時間熱処理して、スラリ
ー作製に必要であった有機溶剤を除去した後、ロールプ
レス機により圧延して、正極板1(図1参照)を作製し
た。なお、正極活物質として、LiCoO2に代えて、
LiNiO2、LiMnO2、LiMn24、リチウム含
有MnO2、LiCo0.5Ni0.52、LiNi0.7Co
0.2Mn0.12などのリチウム含有遷移金属酸化物を用
いてもよい。
2. Preparation of positive electrode Lithium-containing cobalt oxide (Li
90 parts by mass of CoO 2 ) powder, 5 parts by mass of a carbon-based conductive agent such as artificial graphite, acetylene black, and graphite, and 5 parts by mass of polyvinylidene fluoride as a binder were mixed, and N-methyl-2- A slurry was prepared using a pyrrolidone (NMP) solution. This slurry was uniformly applied to one surface of a positive electrode current collector (for example, aluminum foil) using a doctor blade or the like to form a positive electrode plate coated with an active material layer. Thereafter, heat treatment was performed at 130 ° C. for 2 hours to remove the organic solvent necessary for preparing the slurry, and then rolling was performed with a roll press to prepare a positive electrode plate 1 (see FIG. 1). Note that, instead of LiCoO 2 as the positive electrode active material,
LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , lithium-containing MnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co
A lithium-containing transition metal oxide such as 0.2 Mn 0.1 O 2 may be used.

【0024】3.負極の作製 負極活物質としての天然黒鉛(d=3.35Å)粉末が
95質量部で、結着剤としてのポリフッ化ビニリデンが
5質量部となるよう混合した後、N−メチル−2−ピロ
リドン(NMP)溶液にしてスラリーを調製した。この
スラリーをドクターブレード等を用いて負極集電体(例
えば、銅箔)の片面に均一に塗布して、活物質層を塗布
した負極板を形成した。この後、130℃で2時間熱処
理して炭素材料からなる負極2(図1参照)を作製し
た。なお、炭素材料としては、天然黒鉛に代えて、人造
黒鉛、コークス、有機物焼成体などを用いてもよい。
3. Preparation of Negative Electrode After mixing 95 parts by mass of natural graphite (d = 3.35 °) powder as a negative electrode active material and 5 parts by mass of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone was used. (NMP) solution was used to prepare a slurry. This slurry was uniformly applied to one surface of a negative electrode current collector (for example, copper foil) using a doctor blade or the like to form a negative electrode plate coated with an active material layer. Thereafter, heat treatment was performed at 130 ° C. for 2 hours to produce a negative electrode 2 made of a carbon material (see FIG. 1). Note that, as the carbon material, artificial graphite, coke, a fired organic material, or the like may be used instead of natural graphite.

【0025】4.リチウム二次電池の作製 ついで、リチウム二次電池の作製例を図1に基づいて説
明する。上述のようにして作製した負極2を、周端縁に
絶縁パッキング6を配設した断面形状がコの字状の負極
缶(例えば、フェライト系ステンレス鋼よりなる)4の
内底面に負極集電体が密着するように固定した。一方、
上述のようにして作製した正極1を、断面形状が逆コの
字状の正極缶(例えば、ステンレス鋼よりなる)5の内
底面に正極集電体が密着するように固定した。これらの
負極2と正極1との間に、上述のようにして調製した実
施例1〜8の電解液a〜hおよび比較例1〜4の電解液
x,y,z,wを含浸したポリオレフィン系樹脂からな
る微多孔膜、好適にはポリプロピレン製微多孔膜(セパ
レータ)3を介在させて重ね合わせた。
4. Production of Lithium Secondary Battery Next, an example of producing a lithium secondary battery will be described with reference to FIG. The negative electrode 2 produced as described above is placed on the inner bottom surface of a negative can (for example, made of ferritic stainless steel) 4 having a U-shaped cross section in which an insulating packing 6 is provided on the peripheral edge. The body was fixed so that it adhered. on the other hand,
The positive electrode 1 manufactured as described above was fixed to the inner bottom surface of a positive electrode can (made of, for example, stainless steel) 5 having an inverted U-shaped cross section so that the positive electrode current collector was in close contact therewith. Polyolefin impregnated between the negative electrode 2 and the positive electrode 1 with the electrolytes a to h of Examples 1 to 8 and the electrolytes x, y, z, and w of Comparative Examples 1 to 4 prepared as described above. They were laminated with a microporous membrane made of a base resin, preferably a polypropylene microporous membrane (separator) 3 interposed.

【0026】この後、正極缶5の周端縁を絶縁パッキン
グ6の方にカシメて液密に封口し、定格容量が8mAh
のリチウム二次電池A〜HおよびX,Y,Z,Wを作製
した。なお、電池Aは実施例1の電解液aを注入したも
のであり、電池Bは実施例2の電解液bを注入したもの
であり、電池Cは実施例3の電解液cを注入したもので
あり、電池Dは実施例4の電解液dを注入したものであ
り、電池Eは実施例5の電解液eを注入したものであ
り、電池Fは実施例6の電解液fを注入したものであ
り、電池Gは実施例7の電解液gを注入したものであ
り、電池Hは実施例8の電解液hを注入したものであ
る。また、電池Xは比較例1の電解液xを注入したもの
であり、電池Yは比較例2の電解液yを注入したもので
あり、電池Zは比較例3の電解液zを注入したものであ
り、電池Wは比較例4の電解液wを注入したものであ
る。
Thereafter, the peripheral edge of the positive electrode can 5 is caulked toward the insulating packing 6 and sealed in a liquid-tight manner so that the rated capacity is 8 mAh.
, And X, Y, Z and W were manufactured. The battery A was obtained by injecting the electrolytic solution a of Example 1, the battery B was obtained by injecting the electrolytic solution b of Example 2, and the battery C was obtained by injecting the electrolytic solution c of Example 3. The battery D was obtained by injecting the electrolyte d of Example 4, the battery E was obtained by injecting the electrolyte e of Example 5, and the battery F was obtained by injecting the electrolyte f of Example 6. The battery G was prepared by injecting the electrolyte g of Example 7, and the battery H was obtained by injecting the electrolyte h of Example 8. The battery X was injected with the electrolyte x of Comparative Example 1, the battery Y was injected with the electrolyte y of Comparative Example 2, and the battery Z was injected with the electrolyte z of Comparative Example 3. In the battery W, the electrolyte w of Comparative Example 4 was injected.

【0027】5.充放電サイクル試験 上述のように作製した各電池A〜HおよびX,Y,Z,
Wを室温(25℃)にて、1mAの充電々流で4.1V
になるまで定電流充電した後、1mAの放電々流で2.
5Vになるまで定電流放電して、初期放電容量を求め
た。ついで、これらの各電池A〜HおよびX,Y,Z,
Wを1mAの充電々流で4.1Vになるまで定電流充電
した後、60℃の温度で10日間保存した後、1mAの
放電々流で2.5Vになるまで定電流放電して、高温保
存後の放電容量を求めた。ついで、初期放電容量に対す
る高温保存後の放電容量の割合を容量残存率して算出す
ると下記の表1に示すような結果となった。
5. Charge / discharge cycle test Each of the batteries A to H and X, Y, Z,
W at room temperature (25 ° C.), 4.1 V with 1 mA charging current
After charging at a constant current until the current becomes 1.
Constant current discharge was performed until the voltage reached 5 V, and the initial discharge capacity was determined. Next, these batteries A to H and X, Y, Z,
W was charged at a constant current of 1 V with a charge current of 4.1 mA until it reached 4.1 V, stored at a temperature of 60 ° C. for 10 days, and then discharged at a constant current of 1 mA with a discharge current of 2.5 mA until it reached 2.5 V. The discharge capacity after storage was determined. Next, when the ratio of the discharge capacity after high-temperature storage to the initial discharge capacity was calculated as the remaining capacity ratio, the results shown in Table 1 below were obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】上記表1より明らかなように、イミド系リ
チウム塩あるいはメチド系リチウム塩を溶質とした電解
液にLiFなどのフッ化物あるいはLi3PO4などのリ
ン化合物が無添加の電池X,Y,X,Wの容量残存率は
34%〜42%と低いのに対し、イミド系リチウム塩あ
るいはメチド系リチウム塩を溶質とした電解液にLiF
などのフッ化物あるいはLi3PO4などのリン化合物を
添加した電池A〜Hの容量残存率は69%〜76%と高
くなっており、充電保存特性が優れていることが分か
る。これは、LiFなどのフッ化物あるいはLi3PO4
などのリン化合物を添加剤として電解液中に添加する
と、正極1あるいは負極2の表面に保護膜が形成され、
この保護膜により電解液が直接正極1あるいは負極2と
接触することがなくなり、結果として、リチウム二次電
池を充電状態で保存しても電解液が分解されるのが防止
されて、充電保存特性が向上したと考えられる。
As is clear from Table 1, batteries X and Y in which a fluoride such as LiF or a phosphorus compound such as Li 3 PO 4 is not added to an electrolyte containing an imide-based lithium salt or a methide-based lithium salt as a solute. , X and W have a low residual capacity of 34% to 42%, while an electrolyte containing imide-based lithium salt or methide-based lithium salt as a solute has LiF
The remaining capacity of the batteries A to H to which a fluoride such as Li or a phosphorus compound such as Li 3 PO 4 is added is as high as 69% to 76%, which indicates that the charge storage characteristics are excellent. This is a fluoride such as LiF or Li 3 PO 4
When a phosphorus compound such as is added to the electrolyte as an additive, a protective film is formed on the surface of the positive electrode 1 or the negative electrode 2,
This protective film prevents the electrolyte solution from directly contacting the positive electrode 1 or the negative electrode 2, and as a result, prevents the electrolyte solution from being decomposed even when the lithium secondary battery is stored in a charged state, and has a charge storage characteristic. It is considered that has improved.

【0030】6.添加剤の検討(実施例9〜23) ついで、添加剤について検討した。ここでは、イミド系
リチウム塩としてLiN(C25SO22を用いた電解
液を使用し、この電解液に下記の表2に示す種々の添加
剤(フッ化物としては、AgF、CoF2、CoF3、C
uF、CuF2、FeF2、FeF3、LiF(上記電池
B)、MnF2、MnF3、SnF2、SnF4、Ti
3、TiF4、ZrF4を用い、リン化合物しては、L
3PO4(上記電池E)、LiPO3を用いた)を添加
した場合の容量残存率を上述と同様に求めると、下記の
表2に示すような結果となった。なお、これらの添加剤
の添加量は電解液に対して1質量%である。
6. Examination of Additives (Examples 9 to 23) Next, additives were examined. Here, an electrolytic solution using LiN (C 2 F 5 SO 2 ) 2 as an imide-based lithium salt was used, and various additives (AgF and CoF as fluorides) shown in Table 2 below were added to the electrolytic solution. 2, CoF 3, C
uF, CuF 2 , FeF 2 , FeF 3 , LiF (Battery B), MnF 2 , MnF 3 , SnF 2 , SnF 4 , Ti
Using F 3 , TiF 4 , and ZrF 4 , the phosphorus compound is L
When the remaining capacity ratio when i 3 PO 4 (using the above-mentioned battery E and LiPO 3 ) was added was determined in the same manner as described above, the results shown in Table 2 below were obtained. In addition, the addition amount of these additives is 1 mass% with respect to an electrolyte solution.

【0031】なお、AgFを添加した電解液を実施例9
の電解液としこの電解液を用いた電池をB1とし、Co
2を添加した電解液を実施例10の電解液としこの電
解液を用いた電池をB2とし、CoF3を添加した電解
液を実施例11の電解液としこの電解液を用いた電池を
B3とし、CuFを添加した電解液を実施例12の電解
液としこの電解液を用いた電池をB4とし、CuF2
添加した電解液を実施例13の電解液としこの電解液を
用いた電池をB5とし、FeF2を添加した電解液を実
施例14の電解液としこの電解液を用いた電池をB6と
し、FeF3を添加した電解液を実施例15の電解液と
しこの電解液を用いた電池をB7とした。
The electrolyte solution containing AgF was used in Example 9
B1 is a battery using this electrolyte as the electrolyte of
The electrolytic liquid containing F 2 as the electrolytic solution of Example 10 the cell using the electrolytic solution is B2, the electrolytic liquid containing CoF 3 an electrolyte solution of Example 11 the battery using the electrolytic solution B3 The electrolyte using CuF was used as the electrolyte of Example 12, the battery using this electrolyte was used as B4, the electrolyte using CuF 2 was used as the electrolyte of Example 13, and the battery using this electrolyte was used. B5, the electrolyte containing FeF 2 was used as the electrolyte of Example 14, and the battery using this electrolyte was called B6. The electrolyte containing FeF 3 was used as the electrolyte of Example 15, and this electrolyte was used. The battery was designated as B7.

【0032】同様に、MnF2を添加した電解液を実施
例16の電解液としこの電解液を用いた電池をB8と
し、MnF3を添加した電解液を実施例17の電解液と
しこの電解液を用いた電池をB9とし、SnF2を添加
した電解液を実施例18の電解液としこの電解液を用い
た電池をB10とし、SnF4を添加した電解液を実施
例19の電解液としこの電解液を用いた電池をB11と
し、TiF3を添加した電解液を実施例20の電解液と
しこの電解液を用いた電池をB12とし、TiF 4を添
加した電解液を実施例21の電解液としこの電解液を用
いた電池をB13とし、ZrF4を添加した電解液を実
施例22の電解液としこの電解液を用いた電池をB14
とし、LiPO3を添加した電解液を実施例23の電解
液としこの電解液を用いた電池をE1とした。
Similarly, MnFTwoImplement electrolyte solution
A battery using this electrolyte as the electrolyte of Example 16 was designated as B8.
And MnFThreeWas added to the electrolyte solution of Example 17.
The battery using this electrolyte was designated as B9, and SnFTwoAdd
The obtained electrolyte was used as the electrolyte of Example 18 and this electrolyte was used.
The battery that was used was designated as B10, and SnFFourImplement electrolyte solution
A battery using this electrolyte as the electrolyte of Example 19 was designated as B11.
And TiFThreeIs added to the electrolyte solution of Example 20.
A battery using this electrolyte was designated as B12, and TiF FourWith
The added electrolyte was used as the electrolyte of Example 21 and this electrolyte was used.
The battery was B13, ZrFFourThe electrolyte solution containing
A battery using this electrolyte as the electrolyte of Example 22 was replaced with B14
And LiPOThreeWas added to the electrolytic solution of Example 23.
A battery using this electrolyte as a liquid was designated as E1.

【0033】[0033]

【表2】 [Table 2]

【0034】上記表2より明らかなように、イミド系リ
チウム塩を溶質とした電解液にフッ化物としてAgF、
CoF2、CoF3、CuF、CuF2、FeF2、FeF
3、LiF、MnF2、MnF3、SnF2、SnF4、T
iF3、TiF4、ZrF4を添加し、リン化合物してL
3PO4、LiPO3を添加した電解液を用いた電池
B,B1〜B14およびE,E1は、いずれも容量残存
率が70%〜78%と高くなっており、充電保存特性が
優れていることが分かる。このことから、イミド系リチ
ウム塩を溶質とした電解液に添加されるフッ化物は、A
gF、CoF2、CoF3、CuF、CuF2、FeF2
FeF3、LiF、MnF2、MnF3、SnF2、SnF
4、TiF3、TiF4、ZrF4から選択することが好ま
しく、リン化合物は、Li3PO4、LiPO3から選択
することが好ましということができる。
As is clear from the above Table 2, AgF as fluoride was added to the electrolyte containing imide type lithium salt as a solute.
CoF 2 , CoF 3 , CuF, CuF 2 , FeF 2 , FeF
3, LiF, MnF 2, MnF 3, SnF 2, SnF 4, T
iF 3 , TiF 4 , and ZrF 4 were added, and phosphorus compound was added to L
Batteries B, B1 to B14 and E, E1 using the electrolyte solution to which i 3 PO 4 and LiPO 3 were added all had a high remaining capacity ratio of 70% to 78%, and had excellent charge storage characteristics. You can see that there is. From this, the fluoride added to the electrolytic solution using the imide-based lithium salt as a solute is A
gF, CoF 2 , CoF 3 , CuF, CuF 2 , FeF 2 ,
FeF 3 , LiF, MnF 2 , MnF 3 , SnF 2 , SnF
4 , TiF 3 , TiF 4 , and ZrF 4 , and the phosphorus compound is preferably selected from Li 3 PO 4 and LiPO 3 .

【0035】7.添加剤の混合についての検討(実施例
24〜29) ついで、添加剤の混合について検討した。ここでは、イ
ミド系リチウム塩としてLiN(C25SO22を用い
た電解液を使用し、この電解液に下記の表3に示すフッ
化物とリン化合物、フッ化物同士およびリン化合物同士
を混合して用い、容量残存率を上述と同様に求めると、
下記の表3に示すような結果となった。
7. Examination on Mixing of Additives (Examples 24 to 29) Next, mixing of additives was examined. Here, an electrolytic solution using LiN (C 2 F 5 SO 2 ) 2 as the imide-based lithium salt is used, and this electrolytic solution contains a fluoride and a phosphorus compound shown in Table 3 below, a fluoride compound and a phosphorus compound compound. Are used in combination, and the remaining capacity ratio is determined in the same manner as described above.
The results are as shown in Table 3 below.

【0036】なお、LiFとLi3PO4を1:1(質量
比、以下同様である)に混合して混合添加剤とし、この
混合添加剤を電解液に対して1質量%添加した電解液を
実施例24の電解液としこの電解液を用いた電池をIと
した。また、LiFとLiPO3を1:1に混合して混
合添加剤とし、この混合添加剤を電解液に対して1質量
%添加した電解液を実施例25の電解液としこの電解液
を用いた電池をJとした。また、TiF4とLi3PO4
を1:1に混合して混合添加剤とし、この混合添加剤を
電解液に対して1質量%添加した電解液を実施例26の
電解液としこの電解液を用いた電池をKとした。
An electrolyte prepared by mixing LiF and Li 3 PO 4 at a ratio of 1: 1 (mass ratio, the same applies hereinafter) to form a mixed additive, and adding the mixed additive to the electrolytic solution at 1% by mass. Was used as the electrolyte of Example 24, and a battery using this electrolyte was designated as I. Further, LiF and LiPO 3 were mixed at a ratio of 1: 1 to obtain a mixed additive, and an electrolytic solution obtained by adding this mixed additive to the electrolytic solution at 1% by mass was used as the electrolytic solution of Example 25, and this electrolytic solution was used. The battery was designated as J. Also, TiF 4 and Li 3 PO 4
Was mixed at a ratio of 1: 1 to obtain a mixed additive. An electrolytic solution obtained by adding the mixed additive to the electrolytic solution at 1% by mass was used as the electrolytic solution of Example 26, and a battery using this electrolytic solution was designated as K.

【0037】また、TiF4とLiPO3を1:1に混合
して混合添加剤とし、この混合添加剤を電解液に対して
1質量%添加した電解液を実施例27の電解液としこの
電解液を用いた電池をLとした。また、LiFとTiF
4を1:1に混合して混合添加剤とし、この混合添加剤
を電解液に対して1質量%添加した電解液を実施例28
の電解液としこの電解液を用いた電池をMとした。さら
に、Li3PO4とLiPO3を1:1に混合して混合添
加剤とし、この混合添加剤を電解液に対して1質量%添
加した電解液を実施例29の電解液としこの電解液を用
いた電池をNとした。
Further, TiF 4 and LiPO 3 were mixed at a ratio of 1: 1 to obtain a mixed additive, and an electrolyte obtained by adding 1% by mass of the mixed additive to the electrolyte was used as an electrolyte of Example 27. The battery using the liquid was designated as L. LiF and TiF
4 was mixed at a ratio of 1: 1 to obtain a mixed additive.
The battery using this electrolyte was designated as M. Further, Li 3 PO 4 and LiPO 3 were mixed at a ratio of 1: 1 to obtain a mixed additive, and an electrolyte obtained by adding 1% by mass of the mixed additive to the electrolyte was used as an electrolyte of Example 29. The battery using was designated as N.

【0038】[0038]

【表3】 [Table 3]

【0039】上記表3より明らかなように、フッ化物同
士(実施例28)あるいはリン化合物同士(実施例2
9)からなる混合添加剤を添加した電池Mあるいは電池
Nは、これらの添加剤を単独で用いた電池(表2参照)
とほぼ同等の容量残存率であることが分かる。一方、フ
ッ化物とリン化合物からなる混合添加剤(実施例24〜
27)を添加した電池I,J,K,Lは、これらの添加
剤を単独で用いた電池(表2参照)よりも容量残存率が
向上していることが分かる。このことから、イミド系リ
チウム塩を溶質とした電解液に添加されるフッ化物ある
いはリン化合物からなる添加剤としては、混合添加剤と
することが好ましく、特に、フッ化物とリン化合物から
なる混合添加剤とすることが好ましということができ
る。
As is clear from Table 3 above, fluorides (Example 28) or phosphorus compounds (Example 2)
The battery M or the battery N to which the mixed additive of 9) was added was a battery using these additives alone (see Table 2).
It can be seen that the capacity remaining rate is almost equal to On the other hand, a mixed additive composed of a fluoride and a phosphorus compound (Examples 24 to 24)
It can be seen that the batteries I, J, K, and L to which 27) was added had a higher remaining capacity ratio than the batteries using these additives alone (see Table 2). For this reason, it is preferable that the additive comprising a fluoride or a phosphorus compound to be added to the electrolytic solution containing the imide-based lithium salt as a solute is a mixed additive, and in particular, a mixed additive comprising a fluoride and a phosphorus compound. It can be said that the agent is preferable.

【0040】8.添加剤の添加量の検討(実施例30〜
35) ついで、添加剤の添加量について検討した。ここでは、
イミド系リチウム塩としてLiN(C25SO22を用
いた電解液を使用し、フッ化物としてのLiFとリン化
合物としてのLi3PO4を1:1の割合で混合して混合
添加剤とし、この混合添加剤を下記の表4に示すような
添加量だけ添加した電解液を用いた電池の容量残存率を
上述と同様に求めると、下記の表4に示すような結果と
なった。
8. Examination of additive amount (Examples 30 to 30)
35) Next, the amount of the additive was examined. here,
An electrolytic solution using LiN (C 2 F 5 SO 2 ) 2 as an imide-based lithium salt is used, and LiF as a fluoride and Li 3 PO 4 as a phosphorus compound are mixed at a ratio of 1: 1 and mixed and added. When the remaining capacity ratio of a battery using an electrolyte solution in which this mixed additive was added in an amount as shown in Table 4 below was obtained in the same manner as described above, the results shown in Table 4 below were obtained. Was.

【0041】なお、この混合添加剤を電解液に対して
0.001質量%添加した電解液を実施例30の電解液
としこの電解液を用いた電池をOとした。また、0.0
1質量%添加した電解液を実施例31の電解液としこの
電解液を用いた電池をPとし、0.1質量%添加した電
解液を実施例32の電解液としこの電解液を用いた電池
をQとした。さらに、この混合添加剤を電解液に対して
2質量%添加した電解液を実施例33の電解液としこの
電解液を用いた電池をRとし、5質量%添加した電解液
を実施例34の電解液としこの電解液を用いた電池をS
とし、10質量%添加した電解液を実施例35の電解液
としこの電解液を用いた電池をTとした。なお、下記の
表4には実施例24の電解液(混合添加剤の添加量が1
質量%のもの)を用いた電池Iの容量残存率も示してい
る。
The electrolyte prepared by adding 0.001% by mass of this mixed additive to the electrolyte was used as the electrolyte of Example 30, and the battery using this electrolyte was designated O. Also, 0.0
An electrolyte containing 1% by mass of the electrolyte was used as the electrolyte of Example 31, and a battery using this electrolyte was designated as P. An electrolyte containing 0.1% by mass was used as the electrolyte of Example 32, and a battery using this electrolyte was used. Is Q. Further, an electrolytic solution obtained by adding 2% by mass of this mixed additive to the electrolytic solution was used as the electrolytic solution of Example 33, a battery using this electrolytic solution was denoted by R, and an electrolytic solution containing 5% by mass of the electrolytic solution of Example 34 was used. A battery using this electrolyte as an electrolyte was S
The electrolyte containing 10% by mass was used as the electrolyte of Example 35, and a battery using this electrolyte was designated as T. In Table 4 below, the electrolyte solution of Example 24 (the amount of the mixed additive added was 1
In addition, the remaining capacity ratio of the battery I using the mass%) is also shown.

【0042】[0042]

【表4】 [Table 4]

【0043】上記表4より明らかなように、LiFとL
3PO4からなる混合添加剤の添加量が少なすぎても多
すぎても効果的な添加効果が得られないため、混合添加
剤の添加量は、電解液に対して0.001〜10質量%
となるように添加することが望ましく、特に、0.01
〜5質量%となるように添加することが好ましい。これ
は、添加量が少なすぎると添加剤の被膜が正極あるいは
負極表面に均一に形成されにくく、また、添加量が多す
ぎると被膜が厚くなりすぎて抵抗が大きくなるためと考
えられる。
As is clear from Table 4 above, LiF and L
If the amount of the i 3 PO 4 mixed additive is too small or too large, an effective addition effect cannot be obtained. mass%
It is desirable to add so that
It is preferable to add so that it may be ~ 5 mass%. This is presumably because, if the amount is too small, it is difficult to form a film of the additive uniformly on the surface of the positive electrode or the negative electrode, and if the amount is too large, the film becomes too thick and the resistance becomes large.

【0044】このことは、LiFとLi3PO4からなる
混合添加剤のみに限らず、他の混合添加剤を用いても、
フッ化物あるいはリン化合物同士の混合添加剤、または
それらを単独で用いてもほぼ同様な傾向が認められた。
したがって、フッ化物、リン化合物、これら同士の混合
添加剤、あるいはフッ化物とリン化合物との混合添加剤
の添加量は、電解液に対して0.001〜10質量%と
なるように添加することが望ましく、特に、0.01〜
5質量%となるように添加することが好ましい。
This is not limited to only the mixed additive composed of LiF and Li 3 PO 4 , and even if other mixed additives are used,
Almost the same tendency was observed when a mixed additive of fluorides or phosphorus compounds was used, or when these were used alone.
Therefore, the amount of addition of the fluoride, the phosphorus compound, the mixed additive thereof, or the mixed additive of the fluoride and the phosphorus compound should be 0.001 to 10% by mass with respect to the electrolytic solution. Is desirable, in particular, 0.01 to
It is preferable to add so that it may become 5 mass%.

【0045】9.ポリマー電解質についての検討(実施
例36〜37) ついで、電解液をポリマー材料でゲル化してポリマー電
解質とした場合の添加剤の影響について検討した。ここ
では、イミド系リチウム塩としてLiN(C25
22を使用し、フッ化物としてのLiFとリン化合物
としてのLi3PO 4を1:1の割合で混合した混合添加
剤を用いた。そして、まず、極板上にキャストでポリマ
ー膜(ポリエチレンオキシド(PEO)あるいはポリフ
ッ化ビニリデン(PVdF)等)を形成し、その後、電
解液を添加してゲル化させた。これらの電池の容量残存
率を上述と同様に求めると、下記の表5に示すような結
果となった。
9. Examination of polymer electrolyte (implementation
Examples 36 to 37) Next, the electrolyte was gelled with a polymer material to form a polymer electrolyte.
The effect of additives on degrading was investigated. here
In this case, LiN (CTwoFFiveS
OTwo)TwoLiF as a fluoride and phosphorus compound
Li asThreePO FourMixed in a 1: 1 ratio
Agent was used. First, cast the polymer on the electrode plate
-Film (polyethylene oxide (PEO) or polyf
Vinylidene difluoride (PVdF), etc.
The solution was added to cause gelation. The remaining capacity of these batteries
When the ratio is obtained in the same manner as described above, the results shown in Table 5 below are obtained.
Result.

【0046】なお、ポリマー材料(分子量が20万のも
の)としてのポリエチレンオキシド(PEO)を添加し
てポリマー電解質としたものを実施例36の電解質と
し、これを用いた電池をUとした。また、ポリフッ化ビ
ニリデン(PVdF)を添加してポリマー電解質とした
ものを実施例37の電解質とし、これを用いた電池をV
とした。なお、下記の表5には実施例24の電解液を用
いた電池Iの容量残存率も示している。
A polymer electrolyte obtained by adding polyethylene oxide (PEO) as a polymer material (having a molecular weight of 200,000) was used as the electrolyte of Example 36, and a battery using this was designated U. The polymer electrolyte obtained by adding polyvinylidene fluoride (PVdF) was used as the electrolyte of Example 37.
And Table 5 below also shows the remaining capacity of the battery I using the electrolyte of Example 24.

【0047】[0047]

【表5】 [Table 5]

【0048】上記表5より明らかなように、ポリエチレ
ンオキシド(PEO)あるいはポリフッ化ビニリデン
(PVdF)などの分子量が20万のポリマー材料を添
加したポリマー電解質にLiFとLi3PO4からなる混
合添加剤が添加されていると、容量残存率、即ち、充電
保存特性が向上することがわかる。このことは、LiF
とLi3PO4からなる混合添加剤のみに限らず、他の混
合添加剤を用いても、フッ化物あるいはリン化合物同士
の混合添加剤、またはそれらを単独で用いてもほぼ同様
な傾向が認められた。これらの結果からすると、LiN
(C25SO22からなるイミド系リチウム塩が添加さ
れた電解質に、フッ化物、リン化合物あるいはこれらを
混合したものを添加した場合には、ポリマー電解質とし
て用いると特に充電保存特性が向上するということがで
きる。
As is clear from Table 5, a mixed additive composed of LiF and Li 3 PO 4 is added to a polymer electrolyte containing a polymer material having a molecular weight of 200,000 such as polyethylene oxide (PEO) or polyvinylidene fluoride (PVdF). It can be seen that the addition of C improves the residual capacity ratio, that is, the charge storage characteristics. This means that LiF
It is not limited to the mixed additive consisting of and Li 3 PO 4, and the similar tendency is recognized even when using another mixed additive, a mixed additive of fluorides or phosphorus compounds, or using them alone. Was done. Based on these results, LiN
When a fluoride, a phosphorus compound or a mixture thereof is added to an electrolyte to which an imide-based lithium salt composed of (C 2 F 5 SO 2 ) 2 is added, particularly when used as a polymer electrolyte, the charge storage characteristics are particularly poor. Can be improved.

【0049】以上に詳述したように、イミド系リチウム
塩あるいはメチド系リチウム塩の少なくとも一方が溶質
として用いられた電解質に、フッ化物あるいはリン化合
物からなる添加剤の少なくとも一方が添加されている
と、これらの添加剤が正極あるいは負極の表面に保護膜
を形成する。この保護膜は電解質が直接、正極あるいは
負極と接触することが防止するように作用するため、充
電状態で保存しても電解質が分解されるのを防止でき、
充電保存性が向上する。この結果、充電保存特性の優
れ、信頼性の高いリチウム二次電池を提供できるように
なる。
As described in detail above, when at least one of an additive comprising a fluoride or a phosphorus compound is added to an electrolyte in which at least one of an imide-based lithium salt and a methide-based lithium salt is used as a solute. These additives form a protective film on the surface of the positive electrode or the negative electrode. Since this protective film acts to prevent the electrolyte from directly contacting the positive electrode or the negative electrode, the electrolyte can be prevented from being decomposed even when stored in a charged state,
The charge storage property is improved. As a result, a highly reliable lithium secondary battery having excellent charge storage characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態のリチウム二次電池の断
面を示す図である。
FIG. 1 is a diagram showing a cross section of a lithium secondary battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…セパレータ、4…負極缶、5
…正極缶、6…絶縁パッキング
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Negative electrode can, 5
... positive electrode can, 6 ... insulating packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ04 AK03 AL07 AM03 AM04 AM05 AM07 BJ03 BJ16 EJ11 EJ12 HJ01 HJ02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shin Fujitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H029 AJ04 AK03 AL07 AM03 AM04 AM05 AM07 BJ03 BJ16 EJ11 EJ12 HJ01 HJ02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンの挿入・脱離が可能な正
極と、リチウムイオンの挿入・脱離が可能な負極と、電
解質とを備えたリチウム二次電池であって、 前記電解質はLiN(Cm2m+1SO2)(Cn2n+1
2)(ただし、mおよびnは各々独立した1〜4の整
数)で表されるイミド系リチウム塩あるいはLiC(C
p2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2
(ただし、p、qおよびrは各々独立した1〜4の整
数)で表されるメチド系リチウム塩の少なくとも一方が
前記電解質の溶質として用いられ、 前記電解質にフッ化物あるいはリン化合物からなる添加
剤の少なくとも一方が添加されていることを特徴とする
リチウム二次電池。
1. A lithium secondary battery comprising a positive electrode capable of inserting and removing lithium ions, a negative electrode capable of inserting and removing lithium ions, and an electrolyte, wherein the electrolyte is LiN (C m F 2m + 1 SO 2 ) (C n F 2n + 1 S
O 2 ) (where m and n are each independently an integer of 1 to 4) or an imide-based lithium salt represented by LiC (C
p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2)
(Where p, q and r are each independently an integer of 1 to 4) wherein at least one of the methide-based lithium salts is used as a solute of the electrolyte, and an additive comprising a fluoride or a phosphorus compound in the electrolyte. A lithium secondary battery characterized by adding at least one of the following.
【請求項2】 前記フッ化物からなる添加剤として、A
gF、CoF2、CoF3、CuF、CuF2、FeF2
FeF3、LiF、MnF2、MnF3、SnF2、SnF
4、TiF3、TiF4およびZrF4から選択された少な
くとも1種が用いられ、前記リン化合物からなる添加剤
として、LiPO3およびLi3PO4から選択された少
なくとも1種が用いられたことを特徴とする請求項1に
記載のリチウム二次電池。
2. An additive comprising the fluoride, A
gF, CoF 2 , CoF 3 , CuF, CuF 2 , FeF 2 ,
FeF 3 , LiF, MnF 2 , MnF 3 , SnF 2 , SnF
4 , at least one selected from TiF 3 , TiF 4 and ZrF 4 is used, and at least one selected from LiPO 3 and Li 3 PO 4 is used as an additive comprising the phosphorus compound. The lithium secondary battery according to claim 1, wherein:
【請求項3】 前記電解質の添加剤として前記フッ化物
および前記リン化合物の両方が用いられたことを特徴と
する請求項1または請求項2に記載のリチウム二次電
池。
3. The lithium secondary battery according to claim 1, wherein both the fluoride and the phosphorus compound are used as additives for the electrolyte.
【請求項4】 前記添加剤の添加量は前記電解質に対し
て0.01〜5質量%であることを特徴とする請求項1
から請求項3のいずれかに記載のリチウム二次電池。
4. The method according to claim 1, wherein the amount of the additive is 0.01 to 5% by mass with respect to the electrolyte.
The lithium secondary battery according to any one of claims 1 to 3.
【請求項5】 前記電解質はポリマーでゲル化されてい
ることを特徴とする請求項1から請求項4のいずかに記
載のリチウム二次電池。
5. The lithium secondary battery according to claim 1, wherein the electrolyte is gelled with a polymer.
JP2000175265A 1999-06-25 2000-06-12 Lithium secondary battery Expired - Fee Related JP4020571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175265A JP4020571B2 (en) 1999-06-25 2000-06-12 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17978999 1999-06-25
JP11-179789 1999-06-25
JP2000175265A JP4020571B2 (en) 1999-06-25 2000-06-12 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001068154A true JP2001068154A (en) 2001-03-16
JP4020571B2 JP4020571B2 (en) 2007-12-12

Family

ID=26499531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175265A Expired - Fee Related JP4020571B2 (en) 1999-06-25 2000-06-12 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4020571B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007248A1 (en) * 2000-07-17 2002-01-24 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
WO2003067688A1 (en) * 2002-02-04 2003-08-14 Sony Corporation Nonaqueous electrolyte secondary cell
JP2006107796A (en) * 2004-09-30 2006-04-20 Sony Corp Electrolyte and battery
US7163768B2 (en) 2002-08-29 2007-01-16 Nec Corporation Electrolyte solution for secondary battery and secondary battery using the same
JP2008078199A (en) * 2006-09-19 2008-04-03 Daihatsu Motor Co Ltd Power storage device
US8026394B2 (en) 2006-12-05 2011-09-27 Toyota Jidosha Kabushiki Kaisha Lithium salt and method for producing thereof
US8159815B2 (en) 2006-09-19 2012-04-17 Daihatsu Motor Co., Ltd. Electrochemical capacitor
CN104466244A (en) * 2013-09-12 2015-03-25 华为技术有限公司 Non-aqueous organic high voltage electrolyte additive, non-aqueous organic high voltage electrolyte and lithium ion secondary battery
JP2016062821A (en) * 2014-09-19 2016-04-25 トヨタ自動車株式会社 Electrolytic solution for fluoride ion batteries and fluoride ion battery
US9455472B2 (en) 2011-06-07 2016-09-27 3M Innovative Properties Company Lithium-ion electrochemical cells including fluorocarbon electrolyte additives
JP2017027656A (en) * 2015-07-15 2017-02-02 トヨタ自動車株式会社 Lithium ion secondary battery
US9954246B2 (en) 2015-01-09 2018-04-24 Toyota Jidosha Kabushiki Kaisha Liquid electrolyte for lithium battery and lithium battery
KR20190080169A (en) * 2017-12-28 2019-07-08 광주과학기술원 Sodium-Sulfur battery
WO2019138724A1 (en) * 2018-01-15 2019-07-18 パナソニックIpマネジメント株式会社 Secondary battery and electrolyte solution
CN111313086A (en) * 2019-12-24 2020-06-19 安徽圣格能源科技有限公司 Electrolyte and lithium ion battery
JP2021034148A (en) * 2019-08-20 2021-03-01 時空化学株式会社 Electrolyte additive, solid electrolyte and lithium ion secondary battery
WO2023042567A1 (en) * 2021-09-15 2023-03-23 パナソニックIpマネジメント株式会社 Composition, battery, and method for manufacturing composition

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864016B2 (en) 2000-07-17 2005-03-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2002007248A1 (en) * 2000-07-17 2002-01-24 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
WO2003067688A1 (en) * 2002-02-04 2003-08-14 Sony Corporation Nonaqueous electrolyte secondary cell
US7311996B2 (en) 2002-02-04 2007-12-25 Sony Corporation Non-aqueous electrolyte secondary battery
US7163768B2 (en) 2002-08-29 2007-01-16 Nec Corporation Electrolyte solution for secondary battery and secondary battery using the same
JP4674455B2 (en) * 2004-09-30 2011-04-20 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP2006107796A (en) * 2004-09-30 2006-04-20 Sony Corp Electrolyte and battery
JP2008078199A (en) * 2006-09-19 2008-04-03 Daihatsu Motor Co Ltd Power storage device
US8159815B2 (en) 2006-09-19 2012-04-17 Daihatsu Motor Co., Ltd. Electrochemical capacitor
US8026394B2 (en) 2006-12-05 2011-09-27 Toyota Jidosha Kabushiki Kaisha Lithium salt and method for producing thereof
US9455472B2 (en) 2011-06-07 2016-09-27 3M Innovative Properties Company Lithium-ion electrochemical cells including fluorocarbon electrolyte additives
CN104466244A (en) * 2013-09-12 2015-03-25 华为技术有限公司 Non-aqueous organic high voltage electrolyte additive, non-aqueous organic high voltage electrolyte and lithium ion secondary battery
JP2016062821A (en) * 2014-09-19 2016-04-25 トヨタ自動車株式会社 Electrolytic solution for fluoride ion batteries and fluoride ion battery
KR101949041B1 (en) * 2014-09-19 2019-02-15 도요타 지도샤(주) Liquid electrolyte for fluoride ion battery and fluoride ion battery
US9991560B2 (en) 2014-09-19 2018-06-05 Toyota Jidosha Kabushiki Kaisha Liquid electrolyte for fluoride ion battery and fluoride ion battery
US9954246B2 (en) 2015-01-09 2018-04-24 Toyota Jidosha Kabushiki Kaisha Liquid electrolyte for lithium battery and lithium battery
KR101930988B1 (en) * 2015-01-09 2018-12-19 도요타 지도샤(주) Liquid electrolyte for lithium battery and lithium battery
JP2017027656A (en) * 2015-07-15 2017-02-02 トヨタ自動車株式会社 Lithium ion secondary battery
KR102039988B1 (en) * 2017-12-28 2019-11-04 광주과학기술원 Sodium-Sulfur battery
KR20190080169A (en) * 2017-12-28 2019-07-08 광주과학기술원 Sodium-Sulfur battery
CN111602283A (en) * 2018-01-15 2020-08-28 松下知识产权经营株式会社 Secondary battery and electrolyte
WO2019138724A1 (en) * 2018-01-15 2019-07-18 パナソニックIpマネジメント株式会社 Secondary battery and electrolyte solution
JPWO2019138724A1 (en) * 2018-01-15 2021-01-07 パナソニックIpマネジメント株式会社 Rechargeable battery and electrolyte
JP7174922B2 (en) 2018-01-15 2022-11-18 パナソニックIpマネジメント株式会社 Secondary battery and electrolyte
US11646446B2 (en) 2018-01-15 2023-05-09 Panasonic Intellectual Property Management Co., Ltd. Rechargeable battery and electrolyte solution
CN111602283B (en) * 2018-01-15 2024-03-29 松下知识产权经营株式会社 Secondary battery and electrolyte
JP2021034148A (en) * 2019-08-20 2021-03-01 時空化学株式会社 Electrolyte additive, solid electrolyte and lithium ion secondary battery
JP7349644B2 (en) 2019-08-20 2023-09-25 時空化学株式会社 Additives for electrolytes, solid electrolytes and lithium ion secondary batteries
CN111313086A (en) * 2019-12-24 2020-06-19 安徽圣格能源科技有限公司 Electrolyte and lithium ion battery
CN111313086B (en) * 2019-12-24 2022-11-01 安徽圣格能源科技有限公司 Electrolyte and lithium ion battery
WO2023042567A1 (en) * 2021-09-15 2023-03-23 パナソニックIpマネジメント株式会社 Composition, battery, and method for manufacturing composition

Also Published As

Publication number Publication date
JP4020571B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US6489055B1 (en) Lithium secondary battery
US8313866B2 (en) Non-aqueous electrolytes and electrochemical devices including the same
JP4847675B2 (en) Nonaqueous electrolyte secondary battery and electrolyte used therefor
CN101188313B (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including same
JP4020571B2 (en) Lithium secondary battery
US20160043389A1 (en) Non-aqueous electrolyte secondary battery
JP6204647B2 (en) Laminated alkaline metal battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP3883726B2 (en) Non-aqueous electrolyte secondary battery
JP3349399B2 (en) Lithium secondary battery
CN102479975A (en) Electrolyte additive, electrolyte including the same and lithiumsecondary battery including the electrolyte.
JP4082853B2 (en) Lithium secondary battery
JP2003031259A (en) Nonaqueous electrolyte secondary battery
JP2001052744A (en) Nonaqueous electrolyte battery
JP4056278B2 (en) Non-aqueous electrolyte battery
JP2001052698A (en) Lithium secondary battery
JP2001266939A (en) Non-aqueous electrolytic solution for lithium ion secondary battery
JP3825571B2 (en) Non-aqueous electrolyte battery
JP4306891B2 (en) Non-aqueous electrolyte battery
JP3525921B2 (en) Cathode active material for non-aqueous secondary batteries
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP3258907B2 (en) Non-aqueous electrolyte secondary battery
JP2004095495A (en) Nonaqueous electrolyte secondary battery
JP3762560B2 (en) Secondary battery with non-aqueous electrolyte
JPH11329499A (en) High-polymer gel electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees