JP2001059689A - Tube for heat exchanger - Google Patents

Tube for heat exchanger

Info

Publication number
JP2001059689A
JP2001059689A JP11233484A JP23348499A JP2001059689A JP 2001059689 A JP2001059689 A JP 2001059689A JP 11233484 A JP11233484 A JP 11233484A JP 23348499 A JP23348499 A JP 23348499A JP 2001059689 A JP2001059689 A JP 2001059689A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
hole
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11233484A
Other languages
Japanese (ja)
Inventor
Akihiko Takano
明彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Priority to JP11233484A priority Critical patent/JP2001059689A/en
Priority to PCT/JP2000/001937 priority patent/WO2001014817A1/en
Publication of JP2001059689A publication Critical patent/JP2001059689A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve moldability and heat exchanging performance in a tube for a heat exchanger having high pressure resistant request by arranging a heat transfer enlarging part having a medium channel not formed at both or one side end of a tube section, and perforating a hole in which a medium does not flow, in the enlarging part. SOLUTION: The tube 2 for a heat exchanger comprises a plurality of refrigerant channels 9 formed at its center to communicate in a longitudinal direction, and a heat transfer enlarging part 2a arranged at both or one side end to enlarge a heat transfer area. Then, to assure high pressure resistance, its sectional shape is formed in a circular shape. Meanwhile, A hole 10 of a rectangular section coincident with a sector flat surface shape of the tube 2 is perforated at the part 2a. In the case of extrusion molding the tube 2 of a metal material or the like, a core material for forming the hole 10 is disposed at a part for arranging the part 2a to improve moldability. The tube 2 can be reduced in weight and cost by such a hole 10, and its heat transfer area is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換サイクル間
を通流する媒体がチューブから放熱することによって熱
交換を行う熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for performing heat exchange by radiating heat from a tube through a medium flowing between heat exchange cycles.

【0002】[0002]

【従来の技術】従来、冷媒の熱交換を行う熱交換チュー
ブと、前記冷媒を受給及び送給する一対のヘッダパイプ
とを連通接続して構成される熱交換器が知られている。
2. Description of the Related Art Conventionally, there has been known a heat exchanger formed by connecting a heat exchange tube for exchanging heat of a refrigerant with a pair of header pipes for receiving and sending the refrigerant.

【0003】すなわち、一方のヘッダパイプから取り入
れられた媒体は、熱交換チューブ内部の媒体流路を流通
し、媒体は、チューブ表面及びチューブ間に装着したフ
ィンに伝熱し、外気と熱交換が行われた後、他方のヘッ
ダパイプから排出される。、また、この種の熱交換器に
用いられる熱交換チューブは、アルミニウム及び/又は
アルミニウム合金等を材料として、押し出し成形による
製造方法等を用いて形成されている。
That is, the medium taken in from one header pipe flows through the medium flow path inside the heat exchange tube, and the medium transfers heat to the fins mounted on the tube surface and between the tubes, and exchanges heat with the outside air. After that, it is discharged from the other header pipe. The heat exchange tube used in this type of heat exchanger is formed by using an aluminum and / or aluminum alloy or the like as a material by a manufacturing method by extrusion molding or the like.

【0004】また、前記熱交換器は、熱交換チューブに
当接されるフィンを備え、熱交換チューブとフィンとの
接触面積を大きくするため、熱交換チューブ断面が扁平
形状となるように形成され、前記扁平形状のチューブに
複数の媒体流路が形成されている構成となっている。
Further, the heat exchanger has fins which are in contact with the heat exchange tubes, and is formed so that the cross section of the heat exchange tubes has a flat shape in order to increase the contact area between the heat exchange tubes and the fins. A plurality of medium channels are formed in the flat tube.

【0005】[0005]

【発明が解決しようとする課題】近年において、フロン
系の冷媒は、地球温暖化作用等を生じることから、これ
らの冷媒の使用禁止及び縮減の方向の要求が強くなって
いる。前記フロン系の冷媒の代替として、例えば、CO
を冷媒とする熱交換サイクルが用いられている。
In recent years, chlorofluorocarbon-based refrigerants cause global warming and the like, and therefore there is an increasing demand for the ban on the use of these refrigerants and the direction of reduction. As an alternative to the CFC-based refrigerant, for example, CO 2
A heat exchange cycle using 2 as a refrigerant is used.

【0006】COを冷媒として冷凍サイクルに用いた
場合、高温高圧となった冷媒から熱を放熱するために、
熱交換器を通流する際の冷媒の状態は、気液二相状態の
臨界点を超えた超臨界域にあり、通常の気液二相状態の
冷媒が熱交換器を通流する場合と比較して、熱交換器に
過度の圧力が負荷されることが想定される。例えば、C
を冷媒として用いた場合、高温高圧となった冷媒の
放熱作用を発揮する熱交換器には、気液混合状態の冷媒
が通流する場合と比較して6倍以上の耐圧性が要求され
と考えられる。
When CO 2 is used as a refrigerant in a refrigeration cycle, heat is radiated from the refrigerant which has become high temperature and high pressure.
The state of the refrigerant when flowing through the heat exchanger is in a supercritical region beyond the critical point of the gas-liquid two-phase state, and when the normal refrigerant in the gas-liquid two-phase state flows through the heat exchanger. By comparison, it is assumed that excessive pressure is applied to the heat exchanger. For example, C
When O 2 is used as the refrigerant, the heat exchanger that exerts the heat radiation effect of the high-temperature and high-pressure refrigerant is required to have a pressure resistance of at least six times that of the case where the refrigerant in the gas-liquid mixed state flows. It is considered to be.

【0007】例えば、特開平10−311697号公報
記載の発明は、このような、超臨界状態の媒体の熱交換
を行う放熱器を開示している。
[0007] For example, the invention described in Japanese Patent Application Laid-Open No. 10-311697 discloses a radiator for performing heat exchange of a medium in a supercritical state.

【0008】COを媒体として用いる場合、要求され
る耐圧性を確保するため、冷媒が通流する熱交換器用の
チューブ及びヘッダパイプ等の部材は、部材を肉厚と
し、耐圧性を確保することが考えられる。
When CO 2 is used as a medium, in order to secure the required pressure resistance, members such as a tube and a header pipe for a heat exchanger through which a refrigerant flows are made thick to ensure pressure resistance. It is possible.

【0009】しかし、図11に示すように、チューブ2
7の肉厚及びヘッダパイプ4の肉厚が厚くなっている
と、ヘッダパイプ4の媒体流路の内径が小さくなり、ヘ
ッダパイプ4の媒体流路の内径に伴い、ヘッダパイプ4
に挿入するチューブの挿入部27eが小さくなる。チュ
ーブ挿入部27eによらず、チューブ27の端部を当接
して、ヘッダパイプの冷媒流路と連通することも考えら
れるが、媒体漏れのないように一対のヘッダパイプ4間
に接合されるチューブ長さを規制することは困難であ
り、一般に、チューブは,ヘッダパイプに形成されたチ
ューブ挿入孔にチューブ端部を挿入して連結している。
However, as shown in FIG.
7 and the thickness of the header pipe 4 are increased, the inner diameter of the medium flow path of the header pipe 4 is reduced, and the inner diameter of the medium flow path of the header pipe 4 is reduced.
The insertion portion 27e of the tube to be inserted into the tube becomes smaller. It is conceivable that the end portion of the tube 27 is brought into contact with the refrigerant passage of the header pipe without depending on the tube insertion portion 27e, but the tube joined between the pair of header pipes 4 so as not to leak the medium. It is difficult to regulate the length, and generally, the tubes are connected by inserting a tube end into a tube insertion hole formed in the header pipe.

【0010】ヘッダパイプに形成されるチューブ挿入孔
の大きさにともなって、チューブを形成すると、チュー
ブの平面の面積が小さくなり、チューブとフィンの接触
面積が小さくなって、熱交換性能が低下するという問題
を生じる。
When the tube is formed according to the size of the tube insertion hole formed in the header pipe, the plane area of the tube is reduced, the contact area between the tube and the fin is reduced, and the heat exchange performance is reduced. The problem arises.

【0011】このため、チューブ27の長手方向の端部
において、チューブの断面両端部に媒体流路の形成しな
い伝熱拡大部27aを設け、ヘッダパイプ4に挿入する
チューブの長手方向端部に,前記伝熱拡大部27aを切
削して、ヘッダパイプ4のチューブ挿入孔に合致させた
挿入部27eを備えたチューブが考えられる。このよう
に、伝熱拡大部を設けるとともに、チューブ挿入部を形
成すると、チューブの伝熱面積は確保され、熱交換性能
は維持される。
For this reason, at the longitudinal end of the tube 27, a heat transfer expansion portion 27a in which a medium flow path is not formed is provided at both ends of the cross section of the tube, and at the longitudinal end of the tube inserted into the header pipe 4, A tube provided with an insertion portion 27e that matches the tube insertion hole of the header pipe 4 by cutting the heat transfer expansion portion 27a is conceivable. In this way, when the heat transfer expansion portion is provided and the tube insertion portion is formed, the heat transfer area of the tube is secured, and the heat exchange performance is maintained.

【0012】断面両側端部に伝熱拡大部27aを備えた
チューブ27を押し出し成形によって形成する場合、形
成する型は、冷媒流路を形成する部分が密となり、冷媒
流路を形成しない伝熱拡大部が疎となる。押し出し成形
によって、チューブを形成する場合に、押し出し成形用
の型の疎である部分は、型による抵抗が少ないため、疎
である部分に材料が集中し、密である部分に材料が均等
に行き渡らないため、同一圧で押し出した場合の製品の
歩留まりが悪いという問題を生じる。
When the tube 27 provided with the heat transfer enlarged portions 27a at both ends of the cross section is formed by extrusion molding, the mold to be formed has a portion where the refrigerant flow path is formed dense, and the heat transfer without forming the refrigerant flow path is performed. The enlargement is sparse. When forming a tube by extrusion, the sparse part of the mold for extrusion molding has less resistance due to the mold, so that the material concentrates on the sparse part and the material spreads evenly on the dense part. Therefore, there is a problem that the product yield is poor when extruded with the same pressure.

【0013】そこで、本発明は、前記問題点に鑑みて、
耐圧性要求の高い熱交換器用のチューブにおいて、成形
性がよく、熱交換性能の優れた熱交換器用のチューブを
提供することを目的とする。
Therefore, the present invention has been made in view of the above problems,
An object of the present invention is to provide a tube for a heat exchanger having high pressure resistance, which has good formability and excellent heat exchange performance.

【0014】[0014]

【課題を解決するための手段】本願第1請求項に記載し
た発明は、長手方向に媒体が通流する媒体流路を備えた
熱交換器用のチューブにおいて、前記チューブは、チュ
ーブ断面の両端又は片端に媒体流路が形成されない伝熱
拡大部を備え、前記伝熱拡大部に、媒体の通流しない孔
部を備えた構成の熱交換器用のチューブである。
According to the first aspect of the present invention, there is provided a tube for a heat exchanger provided with a medium flow path through which a medium flows in a longitudinal direction, wherein the tube has two ends or a cross section of the tube. A tube for a heat exchanger having a heat transfer expansion section at one end where a medium flow path is not formed, and a hole section through which the medium does not flow in the heat transfer expansion section.

【0015】耐圧要求の高いチューブを形成する場合、
要求される耐圧性を満たすために、チューブの長手方向
にわたって、チューブ断面の両端に伝熱拡大部を形成し
たチューブが考えられる。
When forming a tube with high pressure resistance,
In order to satisfy the required pressure resistance, a tube in which the heat transfer expansion portions are formed at both ends of the tube cross section in the longitudinal direction of the tube is considered.

【0016】このようなチューブを押し出し成形によっ
て形成する場合、押し出し用の型は、冷媒流路を形成す
る部位にマンドレル(芯材)を設けた密の状態となり、
また、伝熱拡大部を形成する部位には部材をなにも設け
ず、疎の状態となっている。
When such a tube is formed by extrusion, the extrusion die is in a dense state in which a mandrel (core material) is provided at a portion where a refrigerant flow path is formed.
In addition, no member is provided at a portion where the heat transfer expansion portion is formed, and the portion is in a sparse state.

【0017】このように、押し出し成形に用いる型は、
疎である部分と密である部分を有すると、疎である部分
に押し出し材料が集中し、また、疎である部分は型によ
る抵抗が少ないため、材料の流動性がよくなり、均等に
材料が分配されず、チューブの成形不良を生じる場合が
ある。
Thus, the mold used for extrusion molding is as follows:
Extruded material concentrates on the sparse part when there is a sparse part and a dense part, and since the sparse part has little resistance due to the mold, the fluidity of the material is improved, and the material is evenly distributed. It may not be distributed and may cause poor molding of the tube.

【0018】本発明は、チューブの伝熱拡大部において
も、芯材を設けて押し出し成形することにより、チュー
ブの伝熱拡大部にも、均等に材料が行き渡り、チューブ
の成形性が向上する。また、押し出し成形用の型には、
均等に材料による負荷がかかるため、成形不良や,マン
ドレルの故障等を生じることなくチューブを形成でき
る。
According to the present invention, the material is evenly distributed to the heat transfer enlarged portion of the tube by providing the core material and extruding the same at the heat transfer expanded portion of the tube, and the moldability of the tube is improved. In addition, in the mold for extrusion molding,
Since the load due to the material is evenly applied, the tube can be formed without causing molding failure or failure of the mandrel.

【0019】成形されたチューブは、その伝熱拡大部に
孔部が形成されるため、要求される耐圧性を確保しつ
つ、伝熱面積を拡大し、熱交換性能の向上を図るととも
に、部材を軽量化し、製造コストを低減することが可能
となる。
Since the formed tube has a hole in the heat transfer expanding portion, the required pressure resistance is secured, the heat transfer area is increased, the heat exchange performance is improved, and the member is formed. And the manufacturing cost can be reduced.

【0020】本願第2請求項に記載した発明は、前記請
求項1記載の発明において、前記チューブは、前記チュ
ーブの外側面から媒体が通流しない孔部の内面に至るチ
ューブの肉厚は、チューブの外側面から冷媒流路の内面
に至るチューブの肉厚よりも大きく形成している。
According to a second aspect of the present invention, in the first aspect, the tube has a thickness from the outer surface of the tube to the inner surface of the hole through which the medium does not flow, The thickness of the tube from the outer surface of the tube to the inner surface of the refrigerant flow path is larger than the thickness of the tube.

【0021】伝熱面積を確保するために形成した伝熱拡
大部に孔部を形成した場合、チューブの外側面から媒体
が通流しない孔部の内面に至るチューブの肉厚は、前記
チューブの外側面からチューブの孔部に至るチューブの
肉厚よりも大きくなるように構成すると、チューブの肉
厚によって、熱抵抗が大きくならないため、伝熱性を確
保でき、熱交換性能の向上が可能となる。
In the case where a hole is formed in the heat transfer expansion portion formed to secure a heat transfer area, the thickness of the tube from the outer surface of the tube to the inner surface of the hole through which the medium does not flow is determined by the thickness of the tube. If it is configured to be larger than the thickness of the tube from the outer surface to the hole of the tube, the heat resistance does not increase due to the thickness of the tube, so that heat transfer can be secured and the heat exchange performance can be improved. .

【0022】本願第3請求項に記載した発明は、長手方
向に媒体が通流する媒体流路を備えた熱交換器用のチュ
ーブにおいて、前記チューブは、チューブ断面の両端又
は片端に媒体流路が形成されない伝熱拡大部を備え、前
記媒体流路が形成されない伝熱拡大部に、チューブの外
側に向かって開放する開放部を設けている。
According to a third aspect of the present invention, in a tube for a heat exchanger having a medium flow path through which a medium flows in a longitudinal direction, the tube has a medium flow path at both ends or one end of the tube cross section. A heat transfer expansion section that is not formed is provided, and an open section that opens toward the outside of the tube is provided in the heat transfer expansion section where the medium flow path is not formed.

【0023】チューブは、伝熱面積を拡大するために設
けた伝熱拡大部にチューブの外側面に向かって開放する
開放部を形成したため、押し出し成形する際に、押し出
し成形の型が、媒体流路を構成する部分のみが密となら
ず、開放部を構成する部分にも芯材が設置されて押し出
し成形されるため、材料による負荷が均等となり、成形
性を向上される。
In the tube, an open portion that opens toward the outer surface of the tube is formed in the heat transfer expanding portion provided for expanding the heat transfer area. Since only the portion constituting the road does not become dense, and the core material is also installed and extruded at the portion constituting the open portion, the load due to the material becomes uniform and the moldability is improved.

【0024】また、成形されたチューブは、伝熱面積の
確保により熱交換性能を向上するとともに、開放部の形
成によって、チューブの軽量化と、製品コストを低減で
きる。
In the formed tube, the heat exchange performance is improved by securing a heat transfer area, and the formation of the open portion can reduce the weight of the tube and reduce the product cost.

【0025】本願第4請求項に記載した発明は、前記請
求項1乃至3いずれか記載の発明において、媒体流路の
断面形状は,円形状であり、また、前記孔部を設ける場
合は、前記孔部の断面形状が、伝熱拡大部の外周形状に
沿った形状となるように構成している。
According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the cross-sectional shape of the medium flow path is circular. The cross-sectional shape of the hole is configured so as to conform to the outer peripheral shape of the heat transfer expanding portion.

【0026】このように、チューブの媒体流路の断面形
状を円形状とすると、媒体流路にかかる応力集中を緩和
することができ、高い耐圧性を確保できる。
As described above, when the cross section of the medium flow path of the tube is circular, stress concentration applied to the medium flow path can be reduced, and high pressure resistance can be secured.

【0027】ここで、円形状とは、半径を同一とする真
円の他、長軸と短軸を有する楕円形、その他これに類す
る円形状が考えられる。
Here, the circular shape may be a perfect circle having the same radius, an elliptical shape having a major axis and a minor axis, or a similar circular shape.

【0028】一方、伝熱拡大部に形成される孔部は、前
述のような耐圧性を必要としないため、その形状は、限
定されず、例えば、孔部の断面形状は、チューブの扁平
面に沿った矩形状等が考えられる。本願第5請求項に記
載した発明は、前記請求項1乃至5いずれか記載の発明
において、 前記チューブの伝熱拡大部は、媒体流路が
形成される部分と同一面となるように形成している。
On the other hand, the shape of the hole formed in the heat transfer expanding portion does not need to be as described above, and thus the shape thereof is not limited. May be considered. The invention described in claim 5 of the present application is the invention according to any one of claims 1 to 5, wherein the heat transfer expansion portion of the tube is formed so as to be flush with a portion where a medium flow path is formed. ing.

【0029】このため、チューブの伝熱拡大部にも、フ
ィンを装着することができ、伝熱面積を拡大して、熱交
換性能の向上を図ることが可能となる。
Therefore, fins can be attached to the heat transfer expansion portion of the tube, and the heat transfer area can be increased, and the heat exchange performance can be improved.

【0030】[0030]

【発明の実施の形態】図1は、本例の熱交換器の概略構
成を示す平面図である。
FIG. 1 is a plan view showing a schematic configuration of a heat exchanger according to this embodiment.

【0031】図1に示すように、例えば、熱交換器1
は、複数の熱交換チューブ2とフィン3が交互に積層さ
れ、これらの積層されたチューブ2,2の各両端が、そ
れぞれ一対のヘッダパイプ4,4のチューブ挿入孔に挿
入されて接続されている。前記ヘッダパイプ4は、冷媒
が通流する冷媒流路が形成されている。ヘッダパイプ4
内部には、ヘッダパイプ及びチューブに形成された冷媒
流路を複数の区画に仕切る仕切り板が設けられている。
また、熱交換器1の上下には、サイドプレート5,5が
配設されている。一方のヘッダパイプ4には、冷媒をヘ
ッダパイプ4に送給する送給配管7を備え、他方のヘッ
ダパイプ4は、冷媒をヘッダパイプ4から排出する排出
配管8を備えている。
As shown in FIG. 1, for example, the heat exchanger 1
In this configuration, a plurality of heat exchange tubes 2 and fins 3 are alternately laminated, and both ends of the laminated tubes 2 are inserted into and connected to the tube insertion holes of the pair of header pipes 4 and 4, respectively. I have. The header pipe 4 is provided with a coolant passage through which the coolant flows. Header pipe 4
Inside, a partition plate is provided for partitioning the refrigerant flow path formed in the header pipe and the tube into a plurality of sections.
In addition, side plates 5 and 5 are arranged above and below the heat exchanger 1. One of the header pipes 4 has a supply pipe 7 for supplying the refrigerant to the header pipe 4, and the other header pipe 4 has a discharge pipe 8 for discharging the refrigerant from the header pipe 4.

【0032】例えば、本例の熱交換器1を設けた冷凍装
置において、COを冷凍サイクルの冷媒として用いた
場合、高温高圧となった冷媒が気液二相の臨界点を超え
た超臨界域で放熱されるため、通常の気液二相状態の冷
媒が熱交換器間を通流する場合と比較して、6倍以上の
耐圧性が熱交換器に要求される。従って、熱交換器1の
ヘッダパイプ4及びチューブ2は、要求される耐圧性を
確保できる肉厚で形成されている。
For example, in the refrigerating apparatus provided with the heat exchanger 1 of the present embodiment, when CO 2 is used as a refrigerant for a refrigerating cycle, the high temperature and high pressure refrigerant exceeds the critical point of the gas-liquid two-phase. Since the heat is radiated in the region, the heat exchanger is required to have a pressure resistance six times or more as compared with the case where the normal refrigerant in the gas-liquid two-phase state flows between the heat exchangers. Therefore, the header pipe 4 and the tube 2 of the heat exchanger 1 are formed with a sufficient thickness to ensure the required pressure resistance.

【0033】図2は、本例のチューブ2を示す断面図で
あり、図3は、図2に示すチューブ2の斜視図である。
FIG. 2 is a sectional view showing the tube 2 of the present embodiment, and FIG. 3 is a perspective view of the tube 2 shown in FIG.

【0034】図2及び図3に示すように、チューブ2
は、長手方向に連通する冷媒流路9が形成され、チュー
ブの断面の両側端部に伝熱面積を拡大する伝熱拡大部2
aを備えている。
As shown in FIG. 2 and FIG.
Is formed with a refrigerant flow passage 9 communicating in the longitudinal direction, and a heat transfer expansion portion 2 for expanding a heat transfer area at both ends of a cross section of the tube.
a.

【0035】媒体流路9は,高い耐圧性を確保するた
め、媒体流路断面の形状が円形状となるように形成して
いる。
The medium flow path 9 is formed such that the cross section of the medium flow path has a circular shape in order to ensure high pressure resistance.

【0036】本例においては媒体流路の断面形状が真円
に近い形状に形成しているが、本例に限らず、長軸と短
軸を有する楕円形状に形成されてあってもよい。前記伝
熱拡大部2aは、チューブ2の扁平面形状と合致する断
面矩形状の孔部10を形成している。チューブ2は、型
に金属材料を押し出して成形する押し出し成形を用いて
形成している。このように、型を用いてチューブ2を形
成する場合、チューブ2の媒体流路9を形成する部分
は、マンドレル(芯材)を設けてあり、その部分は、型
の構造が密となっている。一方、伝熱拡大部2aを構成
する部分は、芯材がないため、その部分は疎となってい
る。このように、押し出し成形用の型に疎な部分と密な
部分があると、押し出し成形する際に、疎な部分に材料
が集中していしまい、密な部分に材料が行き渡らずに、
成形性が悪く、また、密な部分に設けたマンドレルに材
料による負荷がかかり、寸法不良や、型に破損が生じて
しまう。
In the present embodiment, the cross section of the medium flow path is formed in a shape close to a perfect circle. However, the present invention is not limited to this example, and the medium flow path may be formed in an elliptical shape having a long axis and a short axis. The heat transfer enlargement portion 2 a forms a hole 10 having a rectangular cross section that matches the flat shape of the tube 2. The tube 2 is formed using extrusion molding in which a metal material is extruded into a mold and molded. As described above, when the tube 2 is formed using the mold, a portion where the medium flow path 9 of the tube 2 is formed is provided with a mandrel (core material), and the portion has a dense structure of the mold. I have. On the other hand, the portion constituting the heat transfer expansion portion 2a is sparse because there is no core material. In this way, if there is a sparse part and a dense part in the extrusion mold, the material is concentrated on the sparse part during extrusion molding, and the material does not spread to the dense part,
The moldability is poor, and a load is applied by the material to the mandrel provided in the dense part, resulting in dimensional defects and breakage of the mold.

【0037】本例においては、伝熱拡大部2aを構成す
る部分に、孔部10を形成する芯材を設置したため、押
し出し成形用の型に疎な部分と密な部分ができず、平均
して材料が行き渡るため、チューブの肉厚を均一化し
て、押し出し成形性が良好となり、寸法不良や型の破損
を回避できる。例えば、孔部10を形成するために、設
置する芯材は、ひとつの型に連通して設けるほうが容易
であるため、押し出し成形によって形成されたチューブ
2の伝熱拡大部2aに形成される孔部10は、チューブ
2の長手方向に連通した形状に形成される。
In this embodiment, since the core material for forming the hole 10 is provided in the portion constituting the heat transfer expansion portion 2a, a sparse portion and a dense portion are not formed in the extrusion mold, and the average is not obtained. As a result, the thickness of the tube is made uniform, the extrudability is improved, and dimensional defects and mold breakage can be avoided. For example, since it is easier to provide the core material to be connected to one mold in order to form the hole 10, the hole formed in the heat transfer enlarged portion 2 a of the tube 2 formed by extrusion molding is easy. The part 10 is formed in a shape communicating with the tube 2 in the longitudinal direction.

【0038】本例のように、チューブ2の伝熱拡大部に
孔部10が形成されていると、チューブ2の軽量化、材
料コストの低減を図ることができる。
When the hole 10 is formed in the heat transfer expanding portion of the tube 2 as in this example, the weight of the tube 2 and the material cost can be reduced.

【0039】また、チューブ2の伝熱拡大部2aに形成
する孔部10は、媒体を通流させるものではないため、
孔部10の断面形状は、円形状に限らず、チューブ2形
状に合致するものであればよい。また、孔部10の断面
積を大きくしてしまうと、チューブ2の外側面2bから
孔部10の内面に至る肉厚2cが薄くなり、熱抵抗が大
きくなってしまうため、チューブ2の外側面2bから、
孔部10の内面に至る肉厚2cは、チューブ2の外側面
2bから媒体流路9の内面に至る肉厚2dよりも大きく
することが望ましい。
The hole 10 formed in the heat transfer expansion portion 2a of the tube 2 does not allow a medium to flow therethrough.
The cross-sectional shape of the hole 10 is not limited to a circular shape, but may be any shape that matches the shape of the tube 2. Also, if the cross-sectional area of the hole 10 is increased, the thickness 2c from the outer surface 2b of the tube 2 to the inner surface of the hole 10 is reduced, and the thermal resistance is increased. From 2b,
It is desirable that the thickness 2c reaching the inner surface of the hole 10 be larger than the thickness 2d reaching the inner surface of the medium flow path 9 from the outer surface 2b of the tube 2.

【0040】また、チューブ2に形成する伝熱拡大部2
aは、チューブ2の外側面2bと同一面となるように形
成している。従って、チューブ2にフィン3を装着する
場合に、装着する範囲をチューブ2の伝熱拡大部2aま
で拡大することができ、伝熱面積の拡大が図れるため、
放熱量が増大し,熱交換性能を向上できる。
The heat transfer expansion section 2 formed in the tube 2
a is formed so as to be flush with the outer surface 2b of the tube 2. Therefore, when the fins 3 are mounted on the tube 2, the mounting range can be expanded to the heat transfer expansion portion 2a of the tube 2, and the heat transfer area can be expanded.
The amount of heat radiation increases, and the heat exchange performance can be improved.

【0041】図4は、チューブ20の伝熱拡大部20a
に他の断面形状の孔部11を形成したチューブ20及び
フィン3を示す断面図である。
FIG. 4 shows a heat transfer expansion portion 20a of the tube 20.
FIG. 6 is a sectional view showing a tube 20 and a fin 3 in which a hole 11 having another sectional shape is formed.

【0042】図4に示すように、チューブ20の伝熱拡
大部20aに形成した孔部11は、前記孔部10と異な
り、媒体流路9と同様に、本例の孔部11は、その断面
形状を円形状に形成している。
As shown in FIG. 4, the hole 11 formed in the heat transfer enlarged portion 20a of the tube 20 is different from the hole 10 and, like the medium flow path 9, the hole 11 of the present embodiment is The cross section is formed in a circular shape.

【0043】また、図5に示すチューブ21の伝熱拡大
部21aに形成した孔部12は、その断面形状を矩形状
に形成している。
The hole 12 formed in the expanded heat transfer portion 21a of the tube 21 shown in FIG. 5 has a rectangular cross section.

【0044】このように、孔部11,12の形状は、芯
材の形状によって容易に変形することができる。
As described above, the shapes of the holes 11 and 12 can be easily changed by the shape of the core material.

【0045】図6に示すチューブ22は、チューブ22
の伝熱拡大部22aに断面円形状の孔部14を形成し、
チューブ2の断面両側端部に向けて徐々に孔部14a,
14b,14cの径を大きくしている。
The tube 22 shown in FIG.
The hole 14 having a circular cross section is formed in the heat transfer expansion portion 22a of
Holes 14a, gradually toward both ends of the cross section of the tube 2,
The diameters of 14b and 14c are increased.

【0046】図6に示すように、チューブ22の伝熱拡
大部22aに形成した孔部14の径を徐々に大きくして
いくと、通風方向に対して(図6中矢印)チューブ22
の肉厚、すなわち、チューブ22の外側面22bから孔
部14a,14b,14cの内面に至る肉厚が徐々に薄
くなるため、熱伝導性がよくなるとともに、外気に接す
る部分の熱交換効率がよくなり、チューブ22の熱交換
性能が向上する。
As shown in FIG. 6, when the diameter of the hole portion 14 formed in the heat transfer enlarged portion 22a of the tube 22 is gradually increased, the tube 22 in the ventilation direction (arrow in FIG. 6)
, That is, the thickness from the outer surface 22b of the tube 22 to the inner surfaces of the holes 14a, 14b, and 14c is gradually reduced, so that the heat conductivity is improved and the heat exchange efficiency of the portion in contact with the outside air is improved. Thus, the heat exchange performance of the tube 22 is improved.

【0047】そのほか、図7に示すように、チューブ2
4は、伝熱拡大部24aをチューブ24の断面片側に形
成し、前記伝熱拡大部24aに孔部15を形成してい
る。
In addition, as shown in FIG.
In 4, a heat transfer expansion portion 24 a is formed on one side of a cross section of the tube 24, and a hole 15 is formed in the heat transfer expansion portion 24 a.

【0048】このように、チューブ24の断面片側に伝
熱拡大部24を形成し、この伝熱拡大部24aに孔部1
5を形成すると、この孔部15が形成された側を通風方
向風上側(図7中矢印は,通風方向を示す。)に設置す
ると、伝熱拡大部24に伝熱された媒体の熱が、外気に
よって十分冷却され、冷却効果のある外気が、高温の媒
体の熱が通流される媒体流路16を形成したチューブ2
4の表面にも到達するため、チューブ24の冷却効率を
向上できる。
As described above, the heat transfer expanding portion 24 is formed on one side of the cross section of the tube 24, and the hole 1 is formed in the heat transfer expanding portion 24a.
When the hole 5 is formed, if it is installed on the windward side in the ventilation direction (the arrow in FIG. 7 indicates the ventilation direction) on the side where the hole 15 is formed, the heat of the medium transmitted to the heat transfer expansion section 24 is removed. The tube 2 having a medium flow path 16 through which heat of a high-temperature medium flows through the outside air which is sufficiently cooled by the outside air and has a cooling effect.
4, the cooling efficiency of the tube 24 can be improved.

【0049】図8は,図7に示すチューブ24をヘッダ
パイプ4に接合した状態を示す図である。
FIG. 8 is a view showing a state where the tube 24 shown in FIG. 7 is joined to the header pipe 4.

【0050】そのほか、図9及び図10に示すように、
チューブ25,26の断面端部に形成された伝熱拡大部
25a,26aに、矩形状または楔状にチューブ25,
26の外側面25b,26bに向けて開放する開放部1
7,18を形成することも考えられる。
In addition, as shown in FIGS. 9 and 10,
A rectangular or wedge-shaped tube 25, 26 is formed on the heat transfer expansion portions 25a, 26a formed at the cross-sectional ends of the tubes 25, 26.
Opening part 1 opening toward outer surfaces 25b, 26b of 26
It is also conceivable to form 7,18.

【0051】このように、押し出し成形用の型に、楔状
又は矩形状の芯材を設置すると、押し出し成形によっ
て、形成されたチューブ25,26には、チューブ2
5,26の外側面に向かって開放する開放部17,18
が形成される。
As described above, when the wedge-shaped or rectangular core material is set in the extrusion mold, the tubes 25 and 26 formed by the extrusion molding are connected to the tube 2.
Opening portions 17, 18 opening toward the outer surfaces of 5, 26
Is formed.

【0052】このように、チューブ25,26は、開放
部17,18を備えているため、伝熱面積を確保しつ
つ、部材の軽量化を図り、製造コストを低減できる。
As described above, since the tubes 25 and 26 are provided with the open portions 17 and 18, the heat transfer area can be ensured, the weight of the members can be reduced, and the manufacturing cost can be reduced.

【0053】また、開放部17は、その断面形状が楔状
であるため、伝熱拡大部25aの肉厚が徐々に薄くな
り、媒体の熱を効率よく冷却することが可能となる。
Since the open section 17 has a wedge-shaped cross section, the thickness of the heat transfer expansion section 25a is gradually reduced, and the heat of the medium can be efficiently cooled.

【0054】[0054]

【発明の効果】以上説明したように、 本発明は、長手
方向に媒体が通流する媒体流路を備えた熱交換器用のチ
ューブにおいて、前記チューブは、チューブ断面の両端
又は片端に媒体流路が形成されない伝熱拡大部を備え、
前記伝熱拡大部に、媒体の通流しない孔部を備えた構成
の熱交換器用のチューブである。
As described above, the present invention relates to a tube for a heat exchanger having a medium flow path through which a medium flows in a longitudinal direction, wherein the tube has a medium flow path at both ends or one end of the tube cross section. Is provided with a heat transfer expansion section where no
A heat exchanger tube having a configuration in which the heat transfer expansion section includes a hole through which a medium does not flow.

【0055】本発明は、チューブの伝熱拡大部に、芯材
を設けて押し出し成形することにより、チューブの伝熱
拡大部に孔部を形成するため、押し出し成形する際に、
材料が押し出し成形用の型に均等に行き渡り、チューブ
の成形性が向上する。また、押し出し成形用の型には、
均等に材料の圧力負荷がかかるため、成形不良や,マン
ドレルの故障等を生じることなくチューブを形成でき
る。
According to the present invention, the core material is provided in the expanded heat transfer portion of the tube and extrusion-molded to form a hole in the expanded heat transfer portion of the tube.
The material is evenly distributed in the extrusion mold, and the moldability of the tube is improved. In addition, in the mold for extrusion molding,
Since the material pressure load is evenly applied, the tube can be formed without causing molding failure or failure of the mandrel.

【0056】成形されたチューブは、その伝熱拡大部に
孔部が形成されるため、要求される耐圧性を確保しつ
つ、伝熱面積を拡大し、熱交換性能の向上を図るととも
に、部材を軽量化し、製造コストを低減することが可能
となる。
In the formed tube, a hole is formed in the heat transfer expanding portion, so that the required pressure resistance is ensured, the heat transfer area is increased, the heat exchange performance is improved, and the member is formed. And the manufacturing cost can be reduced.

【0057】また、前記チューブは、前記チューブの外
側面から媒体が通流しない孔部の内面に至るチューブの
肉厚は、チューブの外側面から冷媒流路の内面に至るチ
ューブの肉厚よりも大きく形成している。
The thickness of the tube extending from the outer surface of the tube to the inner surface of the hole through which the medium does not flow is greater than the thickness of the tube extending from the outer surface of the tube to the inner surface of the refrigerant passage. Largely formed.

【0058】伝熱面積を確保するために形成した伝熱拡
大部に孔部を形成した場合、チューブの外側面から媒体
が通流しない孔部の内面に至るチューブの肉厚は、前記
チューブの外側面からチューブの孔部に至るチューブの
肉厚よりも大きくなるように構成すると、チューブの肉
厚によって、熱抵抗が大きくならないため、伝熱性を確
保でき、熱交換性能の向上が可能となる。
When a hole is formed in the heat transfer enlarged portion formed to secure the heat transfer area, the thickness of the tube from the outer surface of the tube to the inner surface of the hole through which the medium does not flow is limited to the thickness of the tube. If it is configured to be larger than the wall thickness of the tube from the outer surface to the hole of the tube, the heat resistance does not increase due to the wall thickness of the tube, so that heat transfer can be secured and the heat exchange performance can be improved. .

【0059】また、チューブに形成される媒体流路の断
面形状は,円形状に形成する。
The cross section of the medium flow path formed in the tube is formed in a circular shape.

【0060】このように、チューブの媒体流路の断面形
状を円形状とすると、媒体流路にかかる応力集中を緩和
することができ、高い耐圧性を確保できる。
As described above, when the cross section of the medium flow path of the tube is circular, stress concentration applied to the medium flow path can be reduced, and high pressure resistance can be secured.

【0061】チューブに形成する孔部は、媒体が通流す
るものではないため、孔部の断面形状は、円形状に限ら
ず、チューブの外周形状に沿った形状、例えば、円形状
や矩形状等が考えられる。 そのほか、チューブの伝熱
拡大部には、チューブの外側面に向かって開放する断面
楔状や、断面矩形状の開放部であってもよい。
Since the hole formed in the tube does not allow a medium to flow, the cross-sectional shape of the hole is not limited to a circular shape, but a shape along the outer peripheral shape of the tube, for example, a circular shape or a rectangular shape. And so on. In addition, the heat transfer expansion portion of the tube may have a wedge-shaped cross-section opening toward the outer surface of the tube or an opening having a rectangular cross-section.

【0062】また、チューブの伝熱拡大部は、媒体流路
が形成される部分と同一面となるように形成しすると、
チューブの媒体流路を形成する部分のみならず、チュー
ブの伝熱拡大部においても、フィンを装着できるため、
伝熱面積を拡大して熱交換性能を向上できる。
When the heat transfer expansion portion of the tube is formed so as to be flush with the portion where the medium flow path is formed,
Fins can be attached not only to the part forming the medium flow path of the tube, but also to the heat transfer expansion part of the tube,
The heat transfer area can be increased to improve the heat exchange performance.

【0063】[0063]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体例に係り、熱交換器の概略構成を
示す図である。
FIG. 1 is a diagram showing a schematic configuration of a heat exchanger according to a specific example of the present invention.

【図2】本発明の具体例に係り、チューブの断面図であ
る。
FIG. 2 is a cross-sectional view of a tube according to an embodiment of the present invention.

【図3】本発明の具体例に係り、図2に示すチューブの
斜視図である。
FIG. 3 is a perspective view of the tube shown in FIG. 2 according to a specific example of the present invention.

【図4】本発明の第二の具体例に係り、チューブ及びフ
ィンを示す断面図である。
FIG. 4 is a sectional view showing a tube and fins according to a second embodiment of the present invention.

【図5】本発明の第三の具体例に係り、チューブの断面
図である。
FIG. 5 is a sectional view of a tube according to a third embodiment of the present invention.

【図6】本発明の第四の具体例に係り、チューブの断面
図である。
FIG. 6 is a sectional view of a tube according to a fourth embodiment of the present invention.

【図7】本発明の第五の具体例に係り、チューブの断面
図である。
FIG. 7 is a sectional view of a tube according to a fifth embodiment of the present invention.

【図8】図5に示すチューブをヘッダパイプに連結した
状態を示す平面図である。
FIG. 8 is a plan view showing a state where the tube shown in FIG. 5 is connected to a header pipe.

【図9】本発明の第六の具体例に係り、チューブの一部
断面図である。
FIG. 9 is a partial sectional view of a tube according to a sixth embodiment of the present invention.

【図10】本発明の第七の具体例に係り、チューブの一
部断面図である
FIG. 10 is a partial cross-sectional view of a tube according to a seventh embodiment of the present invention.

【図11】従来例に係り、ヘッダパイプとチューブを連
結した状態を示す平面図である。
FIG. 11 is a plan view showing a state in which a header pipe and a tube are connected according to a conventional example.

【図12】従来例に係り、チューブを示す斜視図であ
る。
FIG. 12 is a perspective view showing a tube according to a conventional example.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 チューブ 2a 伝熱拡大部 2b 外側面 2c 肉厚 2d 肉厚 3 フィン 4 ヘッダパイプ 5 サイドプレート 7 配管 8 配管 9 媒体流路 10 孔部 11 孔部 12 孔部 13 孔部 14a 孔部 14b 孔部 14c 孔部 15 孔部 16 開放部 17 開放部 20 チューブ 20a 伝熱拡大部 21 チューブ 21a 伝熱拡大部 22 チューブ 22a 伝熱拡大部 23 チューブ 23a 伝熱拡大部 24 チューブ 24a 伝熱拡大部 24b チューブ外側面 25 チューブ 25a 伝熱拡大部 26 チューブ 26a 伝熱拡大部 26b チューブ外側面 27 チューブ 27a 伝熱拡大部 27e チューブ挿入部 DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Tube 2a Heat transfer expansion part 2b Outer side surface 2c Thickness 2d Thickness 3 Fin 4 Header pipe 5 Side plate 7 Piping 8 Piping 9 Medium flow path 10 Hole 11 Hole 12 Hole 13 Hole 14a Hole Portion 14b Hole portion 14c Hole portion 15 Hole portion 16 Open portion 17 Open portion 20 Tube 20a Heat transfer expansion portion 21 Tube 21a Heat transfer expansion portion 22 Tube 22a Heat transfer expansion portion 23 Tube 23a Heat transfer expansion portion 24 Tube 24a Heat transfer expansion Portion 24b Tube outer surface 25 Tube 25a Heat transfer expansion portion 26 Tube 26a Heat transfer expansion portion 26b Tube outer surface 27 Tube 27a Heat transfer expansion portion 27e Tube insertion portion

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 長手方向に媒体が通流する媒体流路を備
えた熱交換器用のチューブにおいて、 前記チューブは、チューブ断面の両端又は片端に媒体流
路が形成されない伝熱拡大部を備え、前記伝熱拡大部
に、媒体の通流しない孔部を備えたことを特徴とする熱
交換器用のチューブ。
1. A tube for a heat exchanger including a medium flow path through which a medium flows in a longitudinal direction, wherein the tube includes a heat transfer expansion section in which a medium flow path is not formed at both ends or one end of a tube cross section. A tube for a heat exchanger, wherein the heat transfer expansion section is provided with a hole through which a medium does not flow.
【請求項2】 前記チューブの外側面から媒体が通流し
ない孔部の内面に至るチューブの肉厚は、チューブの外
側面から冷媒流路の内面に至るチューブの肉厚よりも大
きく形成したことを特徴とする前記請求項1記載の熱交
換器用のチューブ。
2. The thickness of the tube extending from the outer surface of the tube to the inner surface of the hole through which the medium does not flow is formed to be larger than the thickness of the tube extending from the outer surface of the tube to the inner surface of the refrigerant flow path. The tube for a heat exchanger according to claim 1, wherein:
【請求項3】 長手方向に媒体が通流する媒体流路を備
えた熱交換器用のチューブにおいて、 前記チューブは、チューブ断面の両端又は片端に媒体流
路が形成されない伝熱拡大部を備え、前記媒体流路が形
成されない伝熱拡大部に、チューブの外側に向かって開
放する開放部を設けたことを特徴とする熱交換器用のチ
ューブ。
3. A tube for a heat exchanger provided with a medium flow path through which a medium flows in a longitudinal direction, wherein the tube has a heat transfer expansion portion in which a medium flow path is not formed at both ends or one end of a cross section of the tube. A tube for a heat exchanger, wherein an open portion that opens toward the outside of the tube is provided in the heat transfer expansion portion where the medium flow path is not formed.
【請求項4】 前記媒体流路の断面形状は,円形状であ
り、また、前記孔部の断面形状は、円形状又は伝熱拡大
部の外周形状に沿った形状であることを特徴とする前記
請求項1乃至3いずれか記載の熱交換器用のチューブ。
4. A cross-sectional shape of the medium flow path is circular, and a cross-sectional shape of the hole is a circular shape or a shape along an outer peripheral shape of the heat transfer expanding portion. The tube for a heat exchanger according to claim 1.
【請求項5】 前記チューブの伝熱拡大部は、媒体流路
が形成される部分と同一面となるように形成したことを
特徴とする前記請求項1乃至5いずれか記載の熱交換器
用のチューブ。
5. The heat exchanger according to claim 1, wherein the heat transfer expansion portion of the tube is formed so as to be flush with a portion where a medium flow path is formed. tube.
JP11233484A 1999-08-20 1999-08-20 Tube for heat exchanger Pending JP2001059689A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11233484A JP2001059689A (en) 1999-08-20 1999-08-20 Tube for heat exchanger
PCT/JP2000/001937 WO2001014817A1 (en) 1999-08-20 2000-03-29 Heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11233484A JP2001059689A (en) 1999-08-20 1999-08-20 Tube for heat exchanger

Publications (1)

Publication Number Publication Date
JP2001059689A true JP2001059689A (en) 2001-03-06

Family

ID=16955741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11233484A Pending JP2001059689A (en) 1999-08-20 1999-08-20 Tube for heat exchanger

Country Status (2)

Country Link
JP (1) JP2001059689A (en)
WO (1) WO2001014817A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068742A (en) * 2007-09-12 2009-04-02 Sharp Corp Heat exchanger
WO2009088796A2 (en) * 2007-12-30 2009-07-16 Valeo Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
WO2010105170A2 (en) * 2009-03-13 2010-09-16 Carrier Corporation Manifold assembly for distributing a fluid to a heat exchanger
JP2010256004A (en) * 2009-04-21 2010-11-11 Hamilton Sundstrand Corp Microchannel heat exchanger and thermal energy extracting method
EP3978857A4 (en) * 2019-05-31 2023-06-07 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co. Ltd Flat tube, multi-channel heat exchanger and air conditioning refrigeration system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017201081A1 (en) * 2016-01-25 2017-07-27 Hanon Systems Pipe for a heat exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932247A (en) * 1972-07-24 1974-03-23
JPS53114647U (en) * 1977-02-21 1978-09-12
JPS53142364A (en) * 1977-05-18 1978-12-12 Sumitomo Light Metal Ind Manufacturing process of heat exchange pipe with fin
JPH027492U (en) * 1988-06-21 1990-01-18
JPH0596770U (en) * 1992-05-20 1993-12-27 日産ディーゼル工業株式会社 Vehicle radiator
JPH10288476A (en) * 1997-04-10 1998-10-27 Sanden Corp Heat-exchanger
JP2000028226A (en) * 1998-07-10 2000-01-28 Calsonic Corp Heat exchanger for carbonic acid refrigerating cycle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068742A (en) * 2007-09-12 2009-04-02 Sharp Corp Heat exchanger
WO2009088796A2 (en) * 2007-12-30 2009-07-16 Valeo Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
WO2009088796A3 (en) * 2007-12-30 2009-10-08 Valeo Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
US8776874B2 (en) 2007-12-30 2014-07-15 Valeo, Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
WO2010105170A2 (en) * 2009-03-13 2010-09-16 Carrier Corporation Manifold assembly for distributing a fluid to a heat exchanger
WO2010105170A3 (en) * 2009-03-13 2011-02-03 Carrier Corporation Manifold assembly for distributing a fluid to a heat exchanger
US9562722B2 (en) 2009-03-13 2017-02-07 Carrier Corporation Manifold assembly for distributing a fluid to a heat exchanger
JP2010256004A (en) * 2009-04-21 2010-11-11 Hamilton Sundstrand Corp Microchannel heat exchanger and thermal energy extracting method
EP3978857A4 (en) * 2019-05-31 2023-06-07 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co. Ltd Flat tube, multi-channel heat exchanger and air conditioning refrigeration system

Also Published As

Publication number Publication date
WO2001014817A1 (en) 2001-03-01

Similar Documents

Publication Publication Date Title
JP3131774B2 (en) Multi-flow condenser for vehicle air conditioner
US20110094258A1 (en) Heat exchanger and air conditioner provided with heat exchanger
JPH0384395A (en) Duplex heat exchanger
JPH07190661A (en) Heat exchanger
JP2001059689A (en) Tube for heat exchanger
JP3661275B2 (en) Stacked evaporator
KR20090033926A (en) Dualpipe type heat exchanger and method for menufacturing the same
JP6636110B1 (en) Air conditioner equipped with heat exchanger, pipe expansion member, and heat exchanger
WO2019203115A1 (en) Flat multi-hole tube, heat exchanger, and method for manufacturing heat exchanger
JP2001289589A (en) Pipe connecting structure of heat exchanger
JPH11325784A (en) Heat exchanger
JPH11281287A (en) Heat exchanger
JPH0531432Y2 (en)
KR20050104072A (en) Heat exchanger
JP2002062062A (en) Heat exchanger
US20140083664A1 (en) Heat exchanger
JP2000220982A (en) Heat exchanger
KR100740698B1 (en) Header pipe for heat exchanger
JP2003202195A (en) Tube with fins for heat exchanger, heat exchanger, method for manufacturing tube with fins for heat exchanger and method for manufacturing heat exchanger
JPH11230686A (en) Heat exchanger
JP2001174188A (en) Serpentine type heat exchanger and method of manufacturing tube used therefor
CN217442009U (en) Condenser and air-cooled water chiller
WO2001061263A1 (en) Heat exchanger
JP3863217B2 (en) Stacked evaporator
JP4164145B2 (en) Heat exchanger and car air conditioner using the same