JP2009068742A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009068742A
JP2009068742A JP2007236123A JP2007236123A JP2009068742A JP 2009068742 A JP2009068742 A JP 2009068742A JP 2007236123 A JP2007236123 A JP 2007236123A JP 2007236123 A JP2007236123 A JP 2007236123A JP 2009068742 A JP2009068742 A JP 2009068742A
Authority
JP
Japan
Prior art keywords
refrigerant
flat tube
heat exchanger
passages
flat tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007236123A
Other languages
Japanese (ja)
Inventor
Hiroshi Okuda
浩史 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007236123A priority Critical patent/JP2009068742A/en
Publication of JP2009068742A publication Critical patent/JP2009068742A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat exchange efficiency by not making a big difference in a flow rate of a refrigerant in a flat tube regardless of a position to a refrigerant outflow port in a parallel flow-type heat exchanger. <P>SOLUTION: The heat exchanger 1 includes two header pipes 2 disposed spaced apart in parallel with each other, the plurality of flat tubes 4 disposed between the header pipes 2, 3 at prescribed pitches and communicating refrigerant passages 5 vertically disposed thereto with the inside of the header pipes, and corrugated fins 6 disposed among the flat tubes 4. A refrigerant inflow port 7 is formed at one end of the header pipe 3, and the refrigerant outflow port 8 is formed at one end of the header pipe 2. The internal flow channel resistance of the flat tubes 4 near the refrigerant outflow port 8 is relatively more than that of the flat tubes 4 far from the refrigerant outflow port 9. The difference in the internal flow channel resistances of the flat tubes 4 is made by changing a cross-sectional area of the refrigerant passages 5 or changing the number of refrigerant passages 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はパラレルフロー型の熱交換器に関する。   The present invention relates to a parallel flow type heat exchanger.

2本のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したパラレルフロー型の熱交換器はカーエアコンなどに広く利用されている。その例を特許文献1、2に見ることができる。   A parallel flow type heat exchange in which a plurality of flat tubes are arranged between two header pipes so that a refrigerant passage inside the flat tubes communicates with the header pipe, and fins such as corrugated fins are arranged between the flat tubes. The instrument is widely used for car air conditioners. Examples thereof can be seen in Patent Documents 1 and 2.

従来のパラレルフロー型熱交換器の一例を図14に示す。熱交換器1は、2本の水平なヘッダパイプ2、3を上下に間隔を置いて平行に配置し、ヘッダパイプ2、3の間に垂直な偏平チューブ4を所定ピッチで複数配置する。偏平チューブ4はアルミニウム等熱伝導の良い金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路5が形成されている。偏平チューブ4は押出成型方向を垂直にする形で配置されるので、冷媒通路5の冷媒流通方向も垂直になる。各冷媒通路5はヘッダパイプ2、3の内部に連通する。なお図14において紙面上側が垂直方向の上側、紙面下側が垂直方向の下側であり、上側のヘッダパイプ2と下側のヘッダパイプ3の間に複数の偏平チューブ4が長手方向を垂直にして所定ピッチで配置された構成となっている。   An example of a conventional parallel flow heat exchanger is shown in FIG. In the heat exchanger 1, two horizontal header pipes 2 and 3 are arranged in parallel with an interval in the vertical direction, and a plurality of vertical flat tubes 4 are arranged between the header pipes 2 and 3 at a predetermined pitch. The flat tube 4 is an elongated molded product obtained by extruding a metal having good heat conductivity such as aluminum, and a refrigerant passage 5 through which a refrigerant flows is formed inside. Since the flat tube 4 is disposed so that the extrusion molding direction is vertical, the refrigerant flow direction of the refrigerant passage 5 is also vertical. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3. In FIG. 14, the upper side of the paper is the upper side in the vertical direction, the lower side of the paper is the lower side in the vertical direction, and a plurality of flat tubes 4 are vertically arranged between the upper header pipe 2 and the lower header pipe 3. The configuration is arranged at a predetermined pitch.

ヘッダパイプ2、3と偏平チューブ4は溶着により固定される。冷媒通路5は断面形状及び断面面積の等しいものが図の奥行き方向に複数個並び、そのため偏平チューブ4はハーモニカのような断面を呈している。偏平チューブ4同士の間にはコルゲートフィン6が配置される。偏平チューブ4とコルゲートフィン6は溶着により固定される。偏平チューブ4の他、ヘッダパイプ2、3及びコルゲートフィン6も熱伝導の良い金属からなる。   The header pipes 2 and 3 and the flat tube 4 are fixed by welding. A plurality of refrigerant passages 5 having the same cross-sectional shape and cross-sectional area are arranged in the depth direction of the drawing, and therefore the flat tube 4 has a cross section like a harmonica. Corrugated fins 6 are disposed between the flat tubes 4. The flat tube 4 and the corrugated fin 6 are fixed by welding. In addition to the flat tube 4, the header pipes 2 and 3 and the corrugated fin 6 are also made of a metal having good heat conduction.

ヘッダパイプ2、3の間に多数の偏平チューブ4を設け、偏平チューブ4間にコルゲートフィン6を設けた構造であるから、熱交換器1の放熱(吸熱)面積は大きく、効率的に熱交換を行うことができる。下側のヘッダパイプ(下部ヘッダパイプと称することもある)3の一端には冷媒流入口7が設けられ、上側のヘッダパイプ(上部ヘッダパイプと称することもある)2の一端には、冷媒流入口7と対角をなす位置に冷媒流出口8が設けられている。
特開2005−37054号公報 特開2001−59689号公報
Since many flat tubes 4 are provided between the header pipes 2 and 3 and corrugated fins 6 are provided between the flat tubes 4, the heat exchanger 1 has a large heat radiation (heat absorption) area, and efficiently exchanges heat. It can be performed. A refrigerant inlet 7 is provided at one end of the lower header pipe (sometimes referred to as a lower header pipe), and a refrigerant flow is provided at one end of the upper header pipe (sometimes referred to as an upper header pipe) 2. A refrigerant outlet 8 is provided at a position diagonal to the inlet 7.
JP 2005-37054 A JP 2001-59689 A

図14の中の網掛け図形は、熱交換器1を蒸発器として用いた場合に各偏平チューブ4を流れる冷媒の量を象徴化して示したものである。そこに示されるように、冷媒流出口8に近い方の偏平チューブ4には多くの冷媒が流れ、冷媒流出口8から離れるに従って冷媒流量が減少する傾向がある。すなわち冷媒の偏流が生じる傾向がある。冷媒流量が多い偏平チューブ4と冷媒流量が少ない偏平チューブ4とでは熱交換量に大きな差があるので、偏流が生じた場合、偏流がなく均一に冷媒が流れた場合に比べて著しく熱交換効率が低下してしまう。図15のように、冷媒流入口7と冷媒流出口8が同じ側にある場合でも同じことが言える。   The shaded figure in FIG. 14 symbolizes and shows the amount of refrigerant flowing through each flat tube 4 when the heat exchanger 1 is used as an evaporator. As shown therein, a large amount of refrigerant flows through the flat tube 4 closer to the refrigerant outlet 8, and the refrigerant flow rate tends to decrease as the distance from the refrigerant outlet 8 increases. That is, there is a tendency for the refrigerant to drift. There is a large difference in the amount of heat exchange between the flat tube 4 with a high refrigerant flow rate and the flat tube 4 with a low refrigerant flow rate. Therefore, when a drift occurs, the heat exchange efficiency is significantly higher than when the refrigerant flows evenly without a drift. Will fall. The same applies to the case where the refrigerant inlet 7 and the refrigerant outlet 8 are on the same side as shown in FIG.

本発明は上記の点に鑑みなされたものであり、パラレルフロー型熱交換器において、冷媒流出口に対する位置の如何に関わらず、偏平チューブ内の冷媒の流量に大きな差がつかないようにして、熱交換効率を向上させることを目的とする。   The present invention has been made in view of the above points, and in a parallel flow type heat exchanger, regardless of the position with respect to the refrigerant outlet, so as not to make a large difference in the flow rate of the refrigerant in the flat tube, The purpose is to improve the heat exchange efficiency.

上記目的を達成するために本発明は、間隔を置いて平行に配置された2本のヘッダパイプと、前記2本のヘッダパイプの間に所定ピッチで複数配置された偏平チューブとを備え、前記偏平チューブは垂直方向に冷媒を流通させる冷媒通路を内部に有し、この冷媒通路を前記ヘッダパイプの内部に連通させた熱交換器において、前記2本のヘッダパイプの一方に冷媒流出口を設けるとともに、前記偏平チューブの中で、前記冷媒流出口に近い偏平チューブの内部流路抵抗を、冷媒流出口から遠い偏平チューブの内部流路抵抗に比べ、相対的に大とすることにより、偏平チューブ間の冷媒流量差の縮小を図ることを特徴としている。   In order to achieve the above object, the present invention includes two header pipes arranged in parallel at a distance, and a plurality of flat tubes arranged at a predetermined pitch between the two header pipes, The flat tube has a refrigerant passage for allowing the refrigerant to circulate in the vertical direction, and a refrigerant outlet is provided in one of the two header pipes in a heat exchanger in which the refrigerant passage communicates with the inside of the header pipe. In addition, the flat tube has a relatively large internal flow resistance near the refrigerant outlet in the flat tube compared to the internal flow resistance of the flat tube far from the refrigerant outlet. It is characterized in that the refrigerant flow rate difference between them is reduced.

この構成によると、熱交換器の冷媒流出口側に冷媒の流れが偏らず、熱交換器全体にわたり冷媒流量が均一化するので、熱交換器全体がムラなく放熱(吸熱)に関わることになり、熱交換効率が向上する。   According to this configuration, the flow of the refrigerant is not biased toward the refrigerant outlet of the heat exchanger, and the flow rate of the refrigerant is uniform over the entire heat exchanger. Therefore, the entire heat exchanger is involved in heat dissipation (heat absorption) without unevenness. , Heat exchange efficiency is improved.

上記構成の熱交換器において、前記偏平チューブ内の冷媒通路の断面積を変えて内部流路抵抗に差を生じさせることが好ましい。   In the heat exchanger having the above-described configuration, it is preferable that the cross-sectional area of the refrigerant passage in the flat tube is changed to cause a difference in internal flow resistance.

このような構成にすれば、内部流路抵抗を精密に異ならせることができる。   With such a configuration, the internal channel resistance can be accurately varied.

上記構成の熱交換器において、前記偏平チューブに塑性変形を与えて前記冷媒通路の断面積を変えることが好ましい。   In the heat exchanger having the above configuration, it is preferable that the flat tube is plastically deformed to change the cross-sectional area of the refrigerant passage.

このような構成にすれば、偏平チューブの冷媒通路断面積を簡単に変えることができる。   With such a configuration, the refrigerant passage cross-sectional area of the flat tube can be easily changed.

上記構成の熱交換器において、偏平チューブは内部に複数の冷媒通路を有するものであり、その冷媒通路の数を変えて内部流路抵抗に差を生じさせることが好ましい。   In the heat exchanger having the above configuration, the flat tube has a plurality of refrigerant passages therein, and it is preferable to change the number of the refrigerant passages to cause a difference in the internal flow passage resistance.

このような構成にすれば、内部流路抵抗の差を簡単に得ることができる。   With such a configuration, a difference in internal flow path resistance can be easily obtained.

上記構成の熱交換器において、前記複数の冷媒通路のうち、選択されたものをプラグで閉塞して冷媒通路の数を変えることが好ましい。   In the heat exchanger configured as described above, it is preferable that a selected one of the plurality of refrigerant passages is closed with a plug to change the number of refrigerant passages.

このような構成にすれば、冷媒通路の数を簡単に変えることができる。   With this configuration, the number of refrigerant passages can be easily changed.

本発明によると、パラレルフロー型熱交換器において、冷媒流出口がどの位置に設けられていたとしても、各偏平チューブの冷媒流量を均一化することで、熱交換器の熱交換効率を向上させることができる。   According to the present invention, in the parallel flow type heat exchanger, the heat exchange efficiency of the heat exchanger is improved by equalizing the refrigerant flow rate in each flat tube, regardless of the position of the refrigerant outlet. be able to.

以下本発明の第1実施形態を図1、2に基づき説明する。図1は熱交換器の概略構造を示す垂直断面図、図2は偏平チューブの水平断面図である。なお図14、15に示した従来構造の熱交換器と機能的に共通する要素には図14、15で用いたのと同じ符号を付し、説明は省略する。第2実施形態以下の実施形態についても同様とする。   A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a vertical sectional view showing a schematic structure of a heat exchanger, and FIG. 2 is a horizontal sectional view of a flat tube. Elements that are functionally common to the heat exchanger having the conventional structure shown in FIGS. 14 and 15 are denoted by the same reference numerals as those used in FIGS. The same applies to the second and following embodiments.

熱交換器1は、図14のものと同様、冷媒流入口7と対角の位置に冷媒流出口8を有する。偏平チューブ4の中で、冷媒流出口8に近い偏平チューブ4の内部流路抵抗は、冷媒流出口8から遠い偏平チューブ4の内部流路抵抗に比べ、相対的に大とされている。そのため、図1の網掛け図形に見られるように、冷媒流出口8から離れた位置にある偏平チューブ4の冷媒流量が増し、冷媒流出口8に近い偏平チューブ4の冷媒流量との差が小さくなっている。これにより、熱交換器1の冷媒流出口8側に冷媒の流れが偏らず、熱交換器1全体にわたり冷媒流量が均一化するので、熱交換器1全体がムラなく放熱(吸熱)に関わることになり、熱交換効率が向上する。   As in the case of FIG. 14, the heat exchanger 1 has a refrigerant outlet 8 at a position diagonal to the refrigerant inlet 7. In the flat tube 4, the internal flow resistance of the flat tube 4 close to the refrigerant outlet 8 is relatively large compared to the internal flow resistance of the flat tube 4 far from the refrigerant outlet 8. Therefore, as can be seen from the shaded figure in FIG. 1, the refrigerant flow rate of the flat tube 4 located away from the refrigerant outlet 8 increases, and the difference between the refrigerant flow rate of the flat tube 4 close to the refrigerant outlet 8 is small. It has become. As a result, the refrigerant flow is not biased toward the refrigerant outlet 8 side of the heat exchanger 1 and the refrigerant flow rate is made uniform over the entire heat exchanger 1, so that the entire heat exchanger 1 is involved in heat dissipation (heat absorption) without unevenness. As a result, the heat exchange efficiency is improved.

偏平チューブ4の内部流路抵抗に差を生じさせるにあたり、第1実施形態では、偏平チューブ4内の冷媒通路5の断面積を変えるという手法を採用している。図2において、図の左側が冷媒流入口7の側、図の右側が冷媒流出口8の側であるが、左右方向に並ぶ偏平チューブ4の内部には、それぞれ6個の冷媒通路5が一列に並ぶ形で形成されている(6個というのは単なる例示にすぎず、任意の数の冷媒通路を設けることができる)。その冷媒通路5の断面積は、冷媒流出口8から遠い偏平チューブ4に設けられたものに比べ、冷媒流出口8に近い偏平チューブ4に設けられたものは相対的に小さくなっている。言い換えると、1本の偏平チューブ4に形成された冷媒通路5の総断面積(本実施形態では6個の冷媒通路5の断面積の合計)を比較した場合、冷媒流出口8から遠い偏平チューブ4に比べ、冷媒流出口8に近い偏平チューブ4の方が相対的に小さくなっている。   In order to make a difference in the internal flow path resistance of the flat tube 4, in the first embodiment, a method of changing the cross-sectional area of the refrigerant passage 5 in the flat tube 4 is adopted. In FIG. 2, the left side of the figure is the refrigerant inlet 7 side, and the right side of the figure is the refrigerant outlet 8 side, but six refrigerant passages 5 are arranged in a row in the flat tubes 4 arranged in the left-right direction. (Six is merely an example, and an arbitrary number of refrigerant passages can be provided). The cross-sectional area of the refrigerant passage 5 is relatively smaller than that provided in the flat tube 4 close to the refrigerant outlet 8 than that provided in the flat tube 4 far from the refrigerant outlet 8. In other words, when the total cross-sectional area of the refrigerant passage 5 formed in one flat tube 4 (in this embodiment, the total cross-sectional area of the six refrigerant passages 5) is compared, the flat tube far from the refrigerant outlet 8 Compared to 4, the flat tube 4 close to the refrigerant outlet 8 is relatively small.

これにより、冷媒流出口8に近い偏平チューブ4は相対的に内部流路抵抗が大きく、冷媒流出口8から遠い偏平チューブ4は相対的に内部流路抵抗が小さくなり、偏平チューブ4間の冷媒流量差が縮小する。断面積比をどのようにするかは実験を通じて決定するのがよい。冷媒通路5の断面積を異ならせるのは、偏平チューブ4の押出成型金型を取り替えることで可能となる。   Accordingly, the flat tube 4 close to the refrigerant outlet 8 has a relatively large internal flow resistance, and the flat tube 4 far from the refrigerant outlet 8 has a relatively small internal flow resistance, so that the refrigerant between the flat tubes 4 can be reduced. The flow rate difference is reduced. It is better to determine how to obtain the cross-sectional area ratio through experiments. It is possible to change the cross-sectional area of the refrigerant passage 5 by replacing the extrusion mold of the flat tube 4.

図2では、冷媒流入口7に最も近い偏平チューブ4から冷媒流出口8に最も近い偏平チューブ4まで、偏平チューブ4の1本毎に冷媒通路5の断面積を縮小しているが、この方式は絶対的なものではない。冷媒通路断面積の等しい偏平チューブ4を任意本数連続させた後、冷媒通路断面積を一段と縮小した偏平チューブ4を任意本数連続させることを繰り返す構成であっても良い。   In FIG. 2, the sectional area of the refrigerant passage 5 is reduced for each of the flat tubes 4 from the flat tube 4 closest to the refrigerant inlet 7 to the flat tube 4 closest to the refrigerant outlet 8. Is not absolute. The configuration may be such that after an arbitrary number of flat tubes 4 having the same refrigerant passage cross-sectional area are continued, an arbitrary number of flat tubes 4 whose refrigerant passage cross-sectional area is further reduced are continued.

本発明の第2実施形態を図3に示す。図3は偏平チューブの水平断面図である。なお図3において、図の左側が冷媒流入口7の側、図の右側が冷媒流出口8の側である。   A second embodiment of the present invention is shown in FIG. FIG. 3 is a horizontal sectional view of the flat tube. In FIG. 3, the left side of the figure is the refrigerant inlet 7 side, and the right side of the figure is the refrigerant outlet 8 side.

第2実施形態では、個々の偏平チューブ4の冷媒通路5の断面積は共通であるが、冷媒通路5の数が偏平チューブ4毎に異なっている。すなわち、冷媒流出口8から最も遠い偏平チューブ4は6個の冷媒通路5を有するのに対し、冷媒流出口8に最も近い偏平チューブ4では冷媒通路5が2個しかない。中間の偏平チューブ4は、冷媒流出口8に近づくにつれ冷媒通路5の数が減る形で、5個、4個、3個の冷媒通路5を有する。冷媒通路5の数を変えるのは、偏平チューブ4の押出成型金型を取り替えることで可能となる。   In the second embodiment, the sectional areas of the refrigerant passages 5 of the individual flat tubes 4 are the same, but the number of the refrigerant passages 5 is different for each flat tube 4. That is, the flat tube 4 farthest from the refrigerant outlet 8 has six refrigerant passages 5, whereas the flat tube 4 closest to the refrigerant outlet 8 has only two refrigerant passages 5. The intermediate flat tube 4 has five, four, and three refrigerant passages 5 such that the number of refrigerant passages 5 decreases as the refrigerant outlet port 8 is approached. The number of refrigerant passages 5 can be changed by replacing the extrusion mold of the flat tube 4.

上記のように構成することにより、冷媒流出口8に近い偏平チューブ4は相対的に内部流路抵抗が大きく、冷媒流出口8から遠い偏平チューブ4は相対的に内部流路抵抗が小さくなり、熱交換器1全体で冷媒流量が均一化する。これにより熱交換器1全体がムラなく放熱(吸熱)に関わることになり、熱交換効率が向上する。   By configuring as described above, the flat tube 4 close to the refrigerant outlet 8 has a relatively large internal channel resistance, and the flat tube 4 far from the refrigerant outlet 8 has a relatively small internal channel resistance, The refrigerant flow rate becomes uniform throughout the heat exchanger 1. As a result, the entire heat exchanger 1 is involved in heat dissipation (heat absorption) without unevenness, and heat exchange efficiency is improved.

図3では、冷媒流入口7に最も近い偏平チューブ4から冷媒流出口8に最も近い偏平チューブ4まで、偏平チューブ4の1本毎に冷媒通路5の数を少なくしているが、この方式は絶対的なものではない。冷媒通路5の数の等しい偏平チューブ4を任意本数連続させた後、冷媒通路5の数を一段と減らした偏平チューブ4を任意本数連続させることを繰り返す構成であっても良い。   In FIG. 3, the number of refrigerant passages 5 is reduced for each of the flat tubes 4 from the flat tube 4 closest to the refrigerant inlet 7 to the flat tube 4 closest to the refrigerant outlet 8. It is not absolute. The configuration may be such that after an arbitrary number of flat tubes 4 having the same number of refrigerant passages 5 are made continuous, an arbitrary number of flat tubes 4 having the number of refrigerant passages 5 further reduced are made continuous.

第1実施形態と第2実施形態の技術内容は排他的・択一的ではないので、両者を同時に実施しても構わない。   Since the technical contents of the first embodiment and the second embodiment are not exclusive or alternative, both may be performed simultaneously.

本発明の第3実施形態を図4、5に示す。図4はヘッダパイプと偏平チューブとの接続部の拡大断面図、図5は偏平チューブの水平断面図である。   A third embodiment of the present invention is shown in FIGS. 4 is an enlarged cross-sectional view of a connection portion between the header pipe and the flat tube, and FIG. 5 is a horizontal cross-sectional view of the flat tube.

第3実施形態は、第1実施形態と同じく、冷媒通路5の断面積を変えて内部流路抵抗に差を生じさせる。冷媒通路5の断面積を変えるのは次のようにして行う。すなわち図示しない工具で冷媒通路5を挟みつけ、図5に示すように塑性変形部9を形成して冷媒通路5の断面積を縮小する。ここでは6個ある冷媒通路5のうち、2個の断面積を縮小している。このようにすることで、1本の偏平チューブ4に設けられた冷媒通路5の総断面積(図5では6個の冷媒通路5の断面積の合計)を小さくする。塑性変形部9の塑性変形量と、塑性変形させる冷媒通路5の数を適切に設定することにより、内部流路抵抗を所望量だけ増大させることができる。   As in the first embodiment, the third embodiment changes the cross-sectional area of the refrigerant passage 5 to cause a difference in the internal flow resistance. The cross-sectional area of the refrigerant passage 5 is changed as follows. That is, the coolant passage 5 is sandwiched with a tool (not shown), and a plastic deformation portion 9 is formed as shown in FIG. 5 to reduce the cross-sectional area of the coolant passage 5. Here, of the six refrigerant passages 5, two cross-sectional areas are reduced. By doing so, the total sectional area of the refrigerant passages 5 provided in one flat tube 4 (the total sectional area of the six refrigerant passages 5 in FIG. 5) is reduced. By appropriately setting the plastic deformation amount of the plastic deformation portion 9 and the number of refrigerant passages 5 to be plastically deformed, the internal flow path resistance can be increased by a desired amount.

冷媒通路5の塑性変形は、ヘッダパイプ2または3の内部に突き出した偏平チューブ4の中で、ヘッダパイプとの溶着に影響を与えない箇所を選んで行う。ヘッダパイプ2または3から外に出た箇所を選ぶのは、偏平チューブ4とコルゲートフィン6の溶着に悪影響を与えるおそれがあり、好ましくない。   The plastic deformation of the refrigerant passage 5 is performed by selecting a portion of the flat tube 4 protruding into the header pipe 2 or 3 that does not affect the welding with the header pipe. It is not preferable to select a portion that goes out of the header pipe 2 or 3 because it may adversely affect the welding of the flat tube 4 and the corrugated fin 6.

本発明の第4実施形態を図6、7に示す。図6はヘッダパイプと偏平チューブとの接続部の拡大断面図、図7は偏平チューブの水平断面図である。   A fourth embodiment of the present invention is shown in FIGS. FIG. 6 is an enlarged cross-sectional view of the connection portion between the header pipe and the flat tube, and FIG. 7 is a horizontal cross-sectional view of the flat tube.

第4実施形態は、第1実施形態と同じく、冷媒通路5の断面積を変えて内部流路抵抗に差を生じさせる。冷媒通路5の断面積を変えるのは次のようにして行う。すなわち所定断面のプラグ10を冷媒通路5に押し込み、冷媒通路5の断面積を縮小する。このようにすることで、1本の偏平チューブ4に設けられた冷媒通路5の総断面積(図5では6個の冷媒通路5の断面積の合計)を小さくする。ここでは角形断面の冷媒通路4に断面X形のプラグ10が押し込まれている。プラグ10の断面形状と、それを押し込む冷媒通路5の数を適切に設定することにより、内部流路抵抗を所望量だけ増大させることができる。   As in the first embodiment, the fourth embodiment changes the cross-sectional area of the refrigerant passage 5 to cause a difference in the internal flow resistance. The cross-sectional area of the refrigerant passage 5 is changed as follows. That is, the plug 10 having a predetermined cross section is pushed into the refrigerant passage 5 to reduce the cross-sectional area of the refrigerant passage 5. By doing so, the total sectional area of the refrigerant passages 5 provided in one flat tube 4 (the total sectional area of the six refrigerant passages 5 in FIG. 5) is reduced. Here, a plug 10 having an X cross section is pushed into the refrigerant passage 4 having a square cross section. By appropriately setting the cross-sectional shape of the plug 10 and the number of refrigerant passages 5 into which the plug 10 is pushed, the internal flow resistance can be increased by a desired amount.

本発明の第5実施形態を図8、9に示す。図8はヘッダパイプと偏平チューブとの接続部の拡大断面図、図9は偏平チューブの水平断面図である。   A fifth embodiment of the present invention is shown in FIGS. FIG. 8 is an enlarged cross-sectional view of the connection portion between the header pipe and the flat tube, and FIG. 9 is a horizontal cross-sectional view of the flat tube.

第5実施形態は、第2実施形態と同じく、冷媒通路5の数を変えて内部流路抵抗に差を生じさせる。冷媒通路5の数を変えるのは次のようにして行う。すなわち隣接する2個の冷媒通路5にU字形のプラグ11を挿入し、これら2個の冷媒通路5を閉塞する。プラグ11の数を増やせば、閉塞される冷媒通路5の数を多くすることができる。なお図ではプラグ11の断面が円形になっているが、冷媒通路5の形に合わせた角形断面にすれば閉塞度が一層向上する。   In the fifth embodiment, as in the second embodiment, the number of refrigerant passages 5 is changed to cause a difference in internal flow path resistance. The number of refrigerant passages 5 is changed as follows. That is, a U-shaped plug 11 is inserted into two adjacent refrigerant passages 5 to close the two refrigerant passages 5. If the number of plugs 11 is increased, the number of refrigerant passages 5 to be blocked can be increased. In the drawing, the cross section of the plug 11 is circular. However, if the cross section is a square cross section that matches the shape of the refrigerant passage 5, the degree of blockage is further improved.

本発明の第6実施形態を図10、11に示す。図10はヘッダパイプと偏平チューブとの接続部の拡大断面図、図11は偏平チューブの水平断面図である。   A sixth embodiment of the present invention is shown in FIGS. FIG. 10 is an enlarged cross-sectional view of the connection portion between the header pipe and the flat tube, and FIG. 11 is a horizontal cross-sectional view of the flat tube.

第6実施形態は、第5実施形態と同じく、プラグにより冷媒通路5の数を減らして行く。ここで用いるプラグ12は冷媒通路5の形に合わせた角形断面のものであり、一端にフランジ12aを有している。このプラグ12を用いれば、冷媒通路5を1個ずつ閉塞して行くことができる。   In the sixth embodiment, as in the fifth embodiment, the number of refrigerant passages 5 is reduced by plugs. The plug 12 used here has a rectangular cross section adapted to the shape of the refrigerant passage 5, and has a flange 12a at one end. If this plug 12 is used, the refrigerant passages 5 can be closed one by one.

第4実施形態から第6実施形態までのプラグ10、11、12は、金属でも、あるいは合成樹脂やセラミックでも、製造することができる。   The plugs 10, 11, and 12 from the fourth embodiment to the sixth embodiment can be made of metal, synthetic resin, or ceramic.

第1実施形態から第6実施形態までの手法は、図12に示す、冷媒流入口7と冷媒流出口8が同じ側にある熱交換器1にも適用することができる。また図13にはヘッダパイプ3の両端に冷媒流入口7があり、ヘッダパイプ2の中央に冷媒流出口8があるという熱交換器1が示されているが、この熱交換器1にも第1実施形態から第6実施形態までの手法を適用することができる。   The methods from the first embodiment to the sixth embodiment can be applied to the heat exchanger 1 shown in FIG. 12 where the refrigerant inlet 7 and the refrigerant outlet 8 are on the same side. FIG. 13 shows the heat exchanger 1 having the refrigerant inlet 7 at both ends of the header pipe 3 and the refrigerant outlet 8 at the center of the header pipe 2. The methods from the first embodiment to the sixth embodiment can be applied.

第1実施形態から第6実施形態において、偏平チューブ4同士の間にコルゲートフィン6が配置されている構成としたが、フィンの種類はコルゲートフィンに限られない。ストレートフィンやスリットフィンなど別の種類のフィンを配置してもよい。また、複数のヘッダパイプ(例えば、上部ヘッダパイプと下部ヘッダパイプの2本のヘッダパイプ)と複数の偏平チューブのみからなり、フィンを備えない熱交換器に対しても本発明は適用可能である。   In 1st Embodiment to 6th Embodiment, it was set as the structure by which the corrugated fin 6 is arrange | positioned between the flat tubes 4, However, The kind of fin is not restricted to a corrugated fin. Other types of fins such as straight fins and slit fins may be arranged. Further, the present invention can be applied to a heat exchanger that includes only a plurality of header pipes (for example, two header pipes including an upper header pipe and a lower header pipe) and a plurality of flat tubes and does not include fins. .

以上、本発明の各実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   As mentioned above, although each embodiment of the present invention was described, the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.

本発明はパラレルフロー型熱交換器に広く利用可能である。     The present invention is widely applicable to parallel flow heat exchangers.

第1実施形態に係る熱交換器の概略構造を示す垂直断面図Vertical sectional view showing a schematic structure of a heat exchanger according to the first embodiment 第1実施形態に係る熱交換器の偏平チューブの水平断面図Horizontal sectional view of the flat tube of the heat exchanger according to the first embodiment 第2実施形態に係る熱交換器の偏平チューブの水平断面図Horizontal sectional view of the flat tube of the heat exchanger according to the second embodiment 第3実施形態に係る熱交換器のヘッダパイプと偏平チューブとの接続部の拡大断面図The expanded sectional view of the connection part of the header pipe and flat tube of the heat exchanger which concerns on 3rd Embodiment. 第3実施形態に係る熱交換器の偏平チューブの水平断面図Horizontal sectional view of the flat tube of the heat exchanger according to the third embodiment 第4実施形態に係る熱交換器のヘッダパイプと偏平チューブとの接続部の拡大断面図The expanded sectional view of the connection part of the header pipe and flat tube of the heat exchanger which concerns on 4th Embodiment 第4実施形態に係る熱交換器の偏平チューブの水平断面図Horizontal sectional view of the flat tube of the heat exchanger according to the fourth embodiment 第5実施形態に係る熱交換器のヘッダパイプと偏平チューブとの接続部の拡大断面図The expanded sectional view of the connection part of the header pipe and flat tube of the heat exchanger which concerns on 5th Embodiment 第5実施形態に係る熱交換器の偏平チューブの水平断面図Horizontal sectional view of flat tube of heat exchanger according to fifth embodiment 第6実施形態に係る熱交換器のヘッダパイプと偏平チューブとの接続部の拡大断面図The expanded sectional view of the connection part of the header pipe and flat tube of the heat exchanger which concerns on 6th Embodiment 第6実施形態に係る熱交換器の偏平チューブの水平断面図Horizontal sectional view of the flat tube of the heat exchanger according to the sixth embodiment 本発明を実施可能な他の形態の熱交換器の概略構造を示す垂直断面図Vertical sectional view showing a schematic structure of a heat exchanger of another embodiment capable of implementing the present invention 本発明を実施可能なさらに他の形態の熱交換器の概略構造を示す垂直断面図Vertical sectional view showing a schematic structure of a heat exchanger according to still another embodiment in which the present invention can be implemented. 従来の熱交換器の概略構造を示す垂直断面図Vertical sectional view showing the schematic structure of a conventional heat exchanger 従来の他の熱交換器の概略構造を示す垂直断面図Vertical sectional view showing the schematic structure of another conventional heat exchanger

符号の説明Explanation of symbols

1 熱交換器
2、3 ヘッダパイプ
4 偏平チューブ
5 冷媒通路
6 コルゲートフィン
7 冷媒流入口
8 冷媒流出口
9 塑性変形部
10、11、12 プラグ
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2, 3 Header pipe 4 Flat tube 5 Refrigerant passage 6 Corrugated fin 7 Refrigerant inflow port 8 Refrigerant outflow port 9 Plastic deformation part 10, 11, 12 Plug

Claims (5)

間隔を置いて平行に配置された2本のヘッダパイプと、前記2本のヘッダパイプの間に所定ピッチで複数配置された偏平チューブとを備え、前記偏平チューブは垂直方向に冷媒を流通させる冷媒通路を内部に有し、この冷媒通路を前記ヘッダパイプの内部に連通させた熱交換器において、
前記2本のヘッダパイプの一方に冷媒流出口を設けるとともに、前記偏平チューブの中で、前記冷媒流出口に近い偏平チューブの内部流路抵抗を、冷媒流出口から遠い偏平チューブの内部流路抵抗に比べ、相対的に大とすることにより、偏平チューブ間の冷媒流量差の縮小を図ることを特徴とする熱交換器。
A refrigerant comprising two header pipes arranged in parallel at intervals and a plurality of flat tubes arranged at a predetermined pitch between the two header pipes, wherein the flat tubes circulate a refrigerant in a vertical direction. In a heat exchanger having a passage inside and communicating this refrigerant passage with the inside of the header pipe,
A refrigerant outlet is provided in one of the two header pipes, and an inner flow resistance of the flat tube close to the refrigerant outlet in the flat tube is set to an internal flow resistance of the flat tube far from the refrigerant outlet. A heat exchanger characterized in that the refrigerant flow rate difference between the flat tubes is reduced by making it relatively large compared to the above.
前記偏平チューブ内の冷媒通路の断面積を変えて内部流路抵抗に差を生じさせることを特徴とする請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein a difference is produced in the internal flow path resistance by changing a cross-sectional area of the refrigerant passage in the flat tube. 前記偏平チューブに塑性変形を与えて前記冷媒通路の断面積を変えることを特徴とする請求項2に記載の熱交換器。 The heat exchanger according to claim 2, wherein the flat tube is plastically deformed to change a cross-sectional area of the refrigerant passage. 前記偏平チューブは内部に複数の冷媒通路を有するものであり、その冷媒通路の数を変えて内部流路抵抗に差を生じさせることを特徴とする請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein the flat tube has a plurality of refrigerant passages therein, and the number of the refrigerant passages is changed to cause a difference in internal flow path resistance. 前記複数の冷媒通路のうち、選択されたものをプラグで閉塞して冷媒通路の数を変えることを特徴とする請求項4に記載の熱交換器。 The heat exchanger according to claim 4, wherein the number of the refrigerant passages is changed by closing a selected one of the plurality of refrigerant passages with a plug.
JP2007236123A 2007-09-12 2007-09-12 Heat exchanger Pending JP2009068742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236123A JP2009068742A (en) 2007-09-12 2007-09-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236123A JP2009068742A (en) 2007-09-12 2007-09-12 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009068742A true JP2009068742A (en) 2009-04-02

Family

ID=40605192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236123A Pending JP2009068742A (en) 2007-09-12 2007-09-12 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2009068742A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017921A (en) * 2010-07-08 2012-01-26 Hino Motors Ltd Heat exchanger and intake air cooling system of engine using the same
JP2013002758A (en) * 2011-06-17 2013-01-07 Denso Corp Cooling device for vehicle
JP2015055415A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger
WO2015093619A1 (en) * 2013-12-21 2015-06-25 京セラ株式会社 Heat exchanger member and heat exchanger
JP2016211837A (en) * 2015-04-30 2016-12-15 株式会社デンソー Evaporator
CN106683830A (en) * 2017-03-06 2017-05-17 常熟市友邦散热器有限责任公司 Non-uniform oil duct sheet type radiator
JP2018044707A (en) * 2016-09-14 2018-03-22 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2018048799A (en) * 2016-09-16 2018-03-29 東芝ライフスタイル株式会社 refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059689A (en) * 1999-08-20 2001-03-06 Zexel Valeo Climate Control Corp Tube for heat exchanger
JP2001304775A (en) * 2000-04-26 2001-10-31 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2005037054A (en) * 2003-07-15 2005-02-10 Sanyo Electric Co Ltd Heat exchanger for refrigerant cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059689A (en) * 1999-08-20 2001-03-06 Zexel Valeo Climate Control Corp Tube for heat exchanger
JP2001304775A (en) * 2000-04-26 2001-10-31 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2005037054A (en) * 2003-07-15 2005-02-10 Sanyo Electric Co Ltd Heat exchanger for refrigerant cycle device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017921A (en) * 2010-07-08 2012-01-26 Hino Motors Ltd Heat exchanger and intake air cooling system of engine using the same
JP2013002758A (en) * 2011-06-17 2013-01-07 Denso Corp Cooling device for vehicle
JP2015055415A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger
WO2015093619A1 (en) * 2013-12-21 2015-06-25 京セラ株式会社 Heat exchanger member and heat exchanger
JPWO2015093619A1 (en) * 2013-12-21 2017-03-23 京セラ株式会社 Heat exchange member and heat exchanger
EP3091323A4 (en) * 2013-12-21 2017-11-15 Kyocera Corporation Heat exchanger member and heat exchanger
US10697707B2 (en) 2013-12-21 2020-06-30 Kyocera Corporation Heat exchange member and heat exchanger
US10677537B2 (en) 2015-04-30 2020-06-09 Denso Corporation Evaporator
JP2016211837A (en) * 2015-04-30 2016-12-15 株式会社デンソー Evaporator
CN107532861B (en) * 2015-04-30 2020-10-13 株式会社电装 Evaporator with a heat exchanger
CN107532861A (en) * 2015-04-30 2018-01-02 株式会社电装 Evaporator
JP2018044707A (en) * 2016-09-14 2018-03-22 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2018048799A (en) * 2016-09-16 2018-03-29 東芝ライフスタイル株式会社 refrigerator
JP7032055B2 (en) 2016-09-16 2022-03-08 東芝ライフスタイル株式会社 refrigerator
CN106683830A (en) * 2017-03-06 2017-05-17 常熟市友邦散热器有限责任公司 Non-uniform oil duct sheet type radiator

Similar Documents

Publication Publication Date Title
JP2009068742A (en) Heat exchanger
JP5486782B2 (en) Evaporator
WO2014091536A1 (en) Flat tube heat exchange apparatus
JP2007078298A (en) Heat exchanger
KR100740180B1 (en) Finned heat exchanger and method of manufacturing the same
JP7202469B2 (en) Microchannel flat tube and microchannel heat exchanger
ITRM970402A1 (en) HEAT EXCHANGER FOR AIR CONDITIONER
JP2010038477A (en) Porous tube for heat exchange
JP2020201020A (en) Heat exchanger
JP6375897B2 (en) Heat exchanger
JP5053153B2 (en) Heat exchanger
JP6160385B2 (en) Laminate heat exchanger
WO2016175193A1 (en) Heat exchanger
JP2010243076A (en) Coolant heat exchanger
JP2010255864A (en) Flat tube and heat exchanger
JP2005180714A (en) Heat exchanger and inner fin used by it
JP2002318086A (en) Heat exchanger tube
KR101656176B1 (en) Watercooled heat exchanger with counter flow type
KR20050104072A (en) Heat exchanger
JP5574737B2 (en) Heat exchanger
KR20110078520A (en) Fin-tube heat exchanger with different fin geometry and fin number at seperated row
JP2010107055A (en) Heat exchanger
JP2017219279A (en) Heat exchanger
JP2011158130A (en) Heat exchanger
CN104422199A (en) Micro-channel heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090805

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110518

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110524

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A02 Decision of refusal

Effective date: 20111018

Free format text: JAPANESE INTERMEDIATE CODE: A02