JP2001056282A - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device

Info

Publication number
JP2001056282A
JP2001056282A JP11335807A JP33580799A JP2001056282A JP 2001056282 A JP2001056282 A JP 2001056282A JP 11335807 A JP11335807 A JP 11335807A JP 33580799 A JP33580799 A JP 33580799A JP 2001056282 A JP2001056282 A JP 2001056282A
Authority
JP
Japan
Prior art keywords
particle size
size distribution
sensor
powder
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11335807A
Other languages
Japanese (ja)
Other versions
JP3400395B2 (en
Inventor
Yasushi Shimizu
泰 清水
Masami Hasegawa
正巳 長谷川
Koji Masaoka
功士 正岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOLT INDUSTRY CT OF JAPAN
Salt Industry Center of Japan.
Original Assignee
SOLT INDUSTRY CT OF JAPAN
Salt Industry Center of Japan.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLT INDUSTRY CT OF JAPAN, Salt Industry Center of Japan. filed Critical SOLT INDUSTRY CT OF JAPAN
Priority to JP33580799A priority Critical patent/JP3400395B2/en
Publication of JP2001056282A publication Critical patent/JP2001056282A/en
Application granted granted Critical
Publication of JP3400395B2 publication Critical patent/JP3400395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a particle size distribution measuring device capable of executing continuous measurement of particle sizes of salt crystals in a salt manufacturing process or the like by an in-line system. SOLUTION: A fixed quantity of crystals 2 is thrown into a sedimentation leg 5. A particle size distribution is obtained from a time range in which the crystals 2 sediment in liquid 4 and passes through a sensor 6 and from a measurement output of the sensor 6. The weight of the crystals 2 is measured by the sensor 6. Time ranges in which the crystals 2 classified in each particle size range pass through the sensor 6 are memorized. A correction formula obtained from a proportional relation between an integrated value of an output of the sensor 6 in the time range and an integrated value in the time range corresponding to a particle size range different therefrom is memorized. A calibration curve obtained from the relation between the integrated value of the measurement output in the time range and the crystal weight is memorized. The measurement output is integrated in the time range, and the integrated value is corrected by the correction formula, and a weight distribution in each particle size range is calculated by using the calibration curve from the integrated and corrected value. The weight distribution is corrected corresponding to the density of the liquid 4 detected by a differetial pressure gage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、沈降法により粉体
の粒径分布を計測する粒径分布測定装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle size distribution measuring device for measuring a particle size distribution of a powder by a sedimentation method.

【0002】[0002]

【従来の技術】従来、用いられてきた粒径分布測定法に
は、「化学製品のふるい分け試験方法」(JIS-K-0069)の
ように粉体をサンプリングした後に測定するものや、
「ファインセラミックス原料のレーザ回折・散乱法によ
る粒子径分布測定方法」(JIS-R-1629)のように粉体の懸
濁液のスラリー濃度に制約はあるものの直接測定できる
ものがある。
2. Description of the Related Art Conventionally, a particle size distribution measuring method that has been used includes a method of measuring after sampling a powder as in "Testing method for screening of chemical products" (JIS-K-0069),
As described in "Method for Measuring Particle Size Distribution of Fine Ceramics Raw Material by Laser Diffraction / Scattering Method" (JIS-R-1629), there are some which can directly measure the slurry concentration of the suspension of the powder, although there are restrictions.

【0003】また、沈降法は、「液相沈降法による粉体
の粒子径分布測定方法通則」(JIS-Z-8820)、「沈降質量
法による粉体の粒子径分布測定方法」(JIS-Z-8822)、
「ファインセラミックス粉末の液相沈降光透過法による
粒径分布測定方法」(JIS-R-1619)のように、サンプリン
グした粉体の粒子レイノルズ数がストークス域にある球
形の粒子を測定するのに用いられている。また、これら
の公定法では、一定の組成を有し計測する温度における
密度既知の液体が沈降脚に満たされている。
[0003] The sedimentation method is described in "General rules for measuring particle size distribution of powder by liquid phase sedimentation method" (JIS-Z-8820) and "Method of measuring particle size distribution of powder by sedimentation mass method" (JIS- Z-8822),
As in "Method for measuring particle size distribution of fine ceramics powder by liquid sedimentation light transmission method" (JIS-R-1619), it is necessary to measure spherical particles with Reynolds number in the Stokes region of sampled powder. Used. In these official methods, the sedimentation leg is filled with a liquid having a constant composition and a known density at the temperature to be measured.

【0004】[0004]

【発明が解決しようとする課題】しかし、「化学製品の
ふるい分け試験方法」のような測定では粉体をサンプリ
ングした後に測定しなけらばならず手間がかり、「ファ
インセラミックス原料のレーザ回折・散乱法による粒子
径分布測定方法」のような測定では粉体の懸濁液のスラ
リー濃度が高いと測定できないなどの欠点があった。さ
らに、沈降法による測定でインラインに適用できる事例
は見当たらない。
However, in the measurement such as the "screening method for chemical products", the measurement must be performed after sampling the powder, which is troublesome. However, there is a drawback that the measurement cannot be performed if the slurry concentration of the powder suspension is high, for example, in the method of "Method for Measuring Particle Size Distribution by Particles". Furthermore, there is no case that can be applied in-line in the measurement by the sedimentation method.

【0005】また、沈降法を用いた公定法では、サンプ
リングした粒子レイノルズ数がストークス域にあるよう
な粒子径が小さいもので球形以外の粒子に関する粒径分
布測定はできなかった。たとえば、塩化ナトリウム結晶
などの晶析により生じる結晶のように、粒子の形状が球
形でないものや粒子径が2000μm程度のアレン域のもの
を測定できないという欠点があった。また、沈降脚に満
たす液体に不純物が含まれたり、外気温の影響などによ
り液体の温度が変動することにより液体の性状が変化す
ると、測定誤差が大きくなるという欠点があった。
Further, in the official method using the sedimentation method, it is impossible to measure the particle size distribution of particles other than spherical particles having a small particle size such that the sampled particle has a Reynolds number in the Stokes region. For example, there is a drawback in that it is not possible to measure a crystal having a non-spherical particle shape or an allene region having a particle size of about 2000 μm, such as a crystal formed by crystallization such as a sodium chloride crystal. In addition, there is a drawback that if the properties of the liquid change due to impurities contained in the liquid filling the sedimentation legs or fluctuations in the temperature of the liquid due to the influence of the outside air temperature, the measurement error increases.

【0006】粉体を製造する工程で当該粉体の粒径分布
を測定する例として、塩化ナトリウムを工業的に生産す
る製塩工場において実施されている方法がある。製塩工
程では、原料海水をイオン交換膜電気透析槽により濃い
塩水であるかん水を製造し、このかん水を真空式蒸発缶
による蒸発法でさらに濃度を高めて塩化ナトリウム結晶
を製造している。蒸発缶で製造する塩化ナトリウム結晶
の粒径分布、およびこの分布の標準偏差を測定すること
は、品質管理上、また運転管理上重要であり、現在、塩
試験方法(財団法人塩事業センター、平成9年4月1
日、138〜141頁)に従い、ふるい分け法により測
定されている。しかし、この方法ではサンプリング、試
料の前処理および測定操作が煩雑であるだけでなく、そ
れらの作業に要する時間も膨大である。そのため、製塩
工場での粒径分布測定は1つの蒸発缶で1日当たり数回
しか行われておらず、これらのデータも品質評価に使用
されるのみで、工程へフィードバックして運転管理に活
用する目的には適用できていないのが現状であり、イン
ラインによる連続測定が可能な装置および方法が求めら
れている。本発明は、インラインによる連続測定が可能
な粒径分布測定装置を提供することを課題とする。な
お、沈降法において、粒子を沈降させる液体の組成ある
いは温度による密度変化の影響を低減することは特にイ
ンラインに適用する場合に有用であり、このような粒径
分布測定装置を提供することも課題とする。
As an example of measuring the particle size distribution of the powder in the step of producing the powder, there is a method implemented in a salt factory that industrially produces sodium chloride. In the salt production process, raw seawater is produced by using an ion-exchange membrane electrodialysis tank to produce brine, which is concentrated brine, and the brine is further concentrated by an evaporation method using a vacuum evaporator to produce sodium chloride crystals. Measuring the particle size distribution of sodium chloride crystals produced in an evaporator and the standard deviation of this distribution is important for quality control and operation control. At present, salt testing methods (Salt Business Center, April 1, 9
138-141). However, in this method, not only are sampling, sample pretreatment, and measurement operations complicated, but also the time required for these operations is enormous. For this reason, the particle size distribution measurement at a salt factory is performed only several times a day in one evaporator, and these data are used only for quality evaluation, and are fed back to the process and used for operation management. At present, it is not applicable to the purpose, and there is a demand for an apparatus and a method capable of continuous measurement in-line. SUMMARY OF THE INVENTION It is an object of the present invention to provide a particle size distribution measuring apparatus capable of performing in-line continuous measurement. In the sedimentation method, reducing the effect of density change due to the composition or temperature of the liquid that causes the particles to settle is particularly useful when applied in-line, and it is also an issue to provide such a particle size distribution measuring device. And

【0007】[0007]

【課題を解決するための手段】本発明請求項1記載の粒
径分布測定装置は、粉体の懸濁液が流れる主配管から一
定量の粉体をサンプリングするサンプリング手段と、該
サンプリングされた一定量の粉体を沈降する沈降脚と、
該沈降脚を沈降する粉体の重量または体積を測定するセ
ンサとを備え、前記沈降脚を沈降する前記粉体が前記セ
ンサを通過するのに要した時間範囲と該センサの測定出
力から該粉体の粒径分布を求めることを特徴とする。
According to a first aspect of the present invention, there is provided a particle size distribution measuring apparatus for sampling a fixed amount of powder from a main pipe through which a suspension of the powder flows, and A settling leg for settling a certain amount of powder,
A sensor for measuring the weight or volume of the powder settling on the settling leg, wherein the powder is measured based on a time range required for the powder settling on the settling leg to pass through the sensor and a measurement output of the sensor. It is characterized in that the particle size distribution of the body is obtained.

【0008】また、本発明請求項2記載の粒径分布測定
装置は、請求項1の構成を備え、沈降法を用いた粒径分
布測定装置において、各粒径範囲に分級した粉体が前記
沈降脚を沈降して前記センサを通過するのに要した時間
範囲と該センサの測定出力および粉体重量から予め求め
た検量線と補正式を用い、粒径分布を測定する粉体が沈
降脚を沈降して前記センサを通過するときの測定出力を
前記補正式にて補正した後、前記検量線により各粒径範
囲の重量分布を算出し粒径分布を求めることを特徴とす
る。
A particle size distribution measuring apparatus according to a second aspect of the present invention is provided with the configuration according to the first aspect, wherein in the particle size distribution measuring apparatus using a sedimentation method, the powder classified into each particle size range is used. Using a calibration curve and a correction formula previously determined from the time range required for the sedimentation leg to settle and pass through the sensor, the measurement output of the sensor, and the powder weight, the powder for measuring the particle size distribution is settled. After the measured output when sedimenting and passing through the sensor is corrected by the correction formula, the weight distribution of each particle size range is calculated by the calibration curve to obtain the particle size distribution.

【0009】また、本発明請求項3記載の粒径分布測定
装置は、一定量の粉体を沈降する沈降脚と、該沈降脚を
沈降する粉体の重量または体積を測定するセンサと、該
沈降脚に満たされた液体の密度を検出する密度検出手段
とを備え、前記沈降脚を沈降する前記粉体が前記センサ
を通過するのに要した時間範囲と該センサの測定出力と
前記密度検出手段で検出した密度から該粉体の粒径分布
を求めることを特徴とする。
Further, the particle size distribution measuring device according to claim 3 of the present invention comprises a sedimentation leg for sedimenting a certain amount of powder, a sensor for measuring the weight or volume of the powder sedimenting the sedimentation leg, Density detecting means for detecting the density of the liquid filled in the settling legs, a time range required for the powder that settles in the settling legs to pass through the sensor, a measurement output of the sensor, and the density detection. The particle size distribution of the powder is obtained from the density detected by the means.

【0010】また、本発明請求項4記載の粒径分布測定
装置は、請求項3の構成を備え、各粒径範囲に分級した
粉体が基準密度に調製した液体を満たした前記沈降脚を
沈降して前記センサを通過するのに要した時間範囲と該
センサの測定出力および粉体重量から予め求めた検量線
と補正式を用い、粒径分布を測定する粉体が沈降脚を沈
降して前記センサを通過するときの測定出力を前記補正
式にて補正した後、前記検量線により各粒径範囲の重量
分布を算出し粒径分布を求め、粒径分布を調製した粉体
について前記基準密度とそれ以外の密度で粒径分布を測
定することにより予め求めた密度補正式を用い、前記密
度検出手段で検出した密度と前記密度補正式に基づい
て、前記求めた粒径分布を補正して粒径分布を求めるこ
とを特徴とする。
The particle size distribution measuring device according to a fourth aspect of the present invention is provided with the configuration according to the third aspect, wherein the sedimentation leg in which the powder classified into each particle size range is filled with the liquid adjusted to the reference density. Using a calibration curve and a correction formula previously determined from the time range required to settle and pass through the sensor and the measurement output of the sensor and the powder weight, the powder for which the particle size distribution is to be settled down the settling legs. After the measurement output when passing through the sensor is corrected by the correction formula, the weight distribution of each particle size range is calculated by the calibration curve to determine the particle size distribution, and the particle size distribution is adjusted for the powder. Using the density correction formula obtained in advance by measuring the particle size distribution at the reference density and other densities, correcting the obtained particle size distribution based on the density detected by the density detecting means and the density correction formula. To obtain the particle size distribution.

【0011】また、本発明請求項5記載の粒径分布測定
装置は、請求項3または4の構成を備え、前記密度検出
手段が、前記沈降脚に満たされた液体について高さが異
なる2点間の圧力差を測定する差圧計により前記液体の
密度を検出することを特徴とする。
According to a fifth aspect of the present invention, there is provided a particle size distribution measuring apparatus according to the third or fourth aspect, wherein the density detecting means comprises two points having different heights for the liquid filled in the settling legs. The density of the liquid is detected by a differential pressure gauge that measures a pressure difference between the liquids.

【0012】したがって、本発明請求項1記載の粒径分
布測定装置は、自動でサンプリングして粒径分布の測定
を行うとともに、スラリー濃度が高い粉体の懸濁液の粒
径分布をインラインで測定することが可能となる。
Therefore, the particle size distribution measuring device according to the first aspect of the present invention automatically measures the particle size distribution by sampling automatically and in-line measures the particle size distribution of the suspension of the powder having a high slurry concentration. It becomes possible to measure.

【0013】また、本発明請求項2記載の粒径分布測定
装置は、請求項1と同様な作用効果が得られるととも
に、晶析により生じる結晶なども粒子の形状にかかわり
なく、粒径が大きい粉体の粒径分布を測定することが可
能となる。
The particle size distribution measuring device according to the second aspect of the present invention has the same effect as that of the first aspect, and also has a large particle size regardless of the shape of the particles, even if the crystals formed by crystallization are large. The particle size distribution of the powder can be measured.

【0014】また、本発明請求項3記載の粒径分布測定
装置は、インラインで測定する際に、沈降脚に満たす液
体として基準密度に調製した液体を準備する必要がな
く、液体の不純物や温度の影響による性状変化に関わり
なく粒径分布の測定を行うことができ、インラインで測
定するのに好適となる。
In the particle size distribution measuring apparatus according to the third aspect of the present invention, it is not necessary to prepare a liquid adjusted to a reference density as a liquid to be filled in the sedimentation leg when performing in-line measurement. The particle size distribution can be measured irrespective of the property change due to the influence of, which is suitable for in-line measurement.

【0015】また、本発明請求項4記載の粒径分布測定
装置は、請求項3と同様な作用効果が得られるととも
に、密度補正式を用いるので検量線は基準密度について
のもの一つだけでよく、構成が簡単になる。
Further, the particle size distribution measuring apparatus according to claim 4 of the present invention has the same effect as that of claim 3, and uses a density correction formula, so that the calibration curve is only one for the reference density. Well, the configuration is simple.

【0016】また、本発明請求項5記載の粒径分布測定
装置によれば、請求項3または4と同様な作用効果が得
られるとともに、沈降脚に満たされた液体について高さ
が異なる2点間の圧力差から密度を検出するので、沈降
脚に満たされた液体の平均的な密度を計測することがで
き、計測時における液体の不純物や温度の影響による性
状変化を密度測定値で表すことができ、さらに、粒径分
布の測定誤差を小さくすることができる。
According to the particle size distribution measuring device of the present invention, the same effect as that of the third or fourth aspect can be obtained, and the liquid filled in the sedimentation leg has different heights. Since the density is detected from the pressure difference between the two, it is possible to measure the average density of the liquid filled in the sedimentation leg, and to express the property change due to the influence of impurities and temperature of the liquid at the time of measurement with the density measurement value And the measurement error of the particle size distribution can be reduced.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態について説明する。図1は本発明請求項1記載
の粒径分布測定装置の一実施形態を示す図である。図に
おいて、1は晶析装置、2は晶析装置1より結晶として
析出される粉体としての塩の結晶、3は結晶2が均一に
分布する懸濁液、4は結晶2より比重が軽くかつ結晶2
を溶解しない液体、5は液体4で満たされ一定の高さを
有する沈降脚、6は沈降脚5の下部に設けられ液体4中
を沈降した結晶2の重量または体積を測定するセンサ、
7はセンサ6の下部に設けられ結晶2および液体4を排
出できる排出バルブ、8は沈降脚5およびセンサ6に液
体4を供給する液体供給装置、9は沈降脚5およびセン
サ6に洗浄液を供給する洗浄液供給装置、10は懸濁液
3が流れる主配管、11は主配管10から分岐して懸濁
液3が流れるバイパス、12は懸濁液3の流れを主配管
10とバイパス11とで変更できる流路変更用三方弁、
13は流路変更用三方弁12より下流側の主配管10に
設けられ一定量の結晶2を自動で沈降脚5に投入するサ
ンプリング手段としてのサンプリング用三方弁である。
また、Aはパーソナルコンピュータで構成された測定制
御部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a particle size distribution measuring device according to claim 1 of the present invention. In the figure, 1 is a crystallizer, 2 is a salt crystal as a powder precipitated as crystals from the crystallizer 1, 3 is a suspension in which the crystals 2 are uniformly distributed, and 4 is a specific gravity smaller than the crystals 2. And crystal 2
5, a sedimentation leg filled with the liquid 4 and having a certain height, 6 a sensor provided below the sedimentation leg 5 for measuring the weight or volume of the crystal 2 sedimented in the liquid 4,
7 is a discharge valve provided below the sensor 6 to discharge the crystal 2 and the liquid 4, 8 is a liquid supply device for supplying the liquid 4 to the sedimentation leg 5 and the sensor 6, and 9 is a cleaning liquid for supplying the sedimentation leg 5 and the sensor 6. The cleaning liquid supply device 10 is a main pipe through which the suspension 3 flows, 11 is a bypass branched from the main pipe 10 and the suspension 3 flows, and 12 is a flow of the suspension 3 through the main pipe 10 and the bypass 11. Three-way valve for changing the flow path that can be changed,
A sampling three-way valve 13 is provided in the main pipe 10 downstream of the three-way valve 12 for changing the flow path and serves as a sampling means for automatically feeding a certain amount of crystals 2 to the sedimentation leg 5.
A is a measurement control unit composed of a personal computer.

【0018】本装置では、晶析装置1にて結晶として析
出した結晶2は懸濁液3として主配管10を流れてい
る。測定時は、測定制御部Aにより、流路変更用三方弁
12およびサンプリング用三方弁13が切換制御され、
流路変更用三方弁12により懸濁液3の流路をバイパス
11に変更すると同時にサンプリング用三方弁13によ
り一定量の結晶2を沈降脚5に投入し、再び、流路変更
用三方弁12により懸濁液3の流れを主配管10に戻
す。これにより、投入された結晶2が液体4の中を重力
沈降して分級された後、センサ6を通過する。この際、
測定制御部Aは、結晶2がセンサ6を通過するのに要し
た時間範囲およびセンサ6の測定出力より粒径分布を求
める。測定が終了すると、排出バルブ7より結晶2およ
び液体4を排出し洗浄液供給装置9から洗浄液を供給し
て沈降脚5およびセンサ6を洗浄した後、液体供給装置
にて液体4を供給して沈降脚5に満たす。
In the present apparatus, the crystals 2 precipitated as crystals in the crystallizer 1 flow through the main pipe 10 as a suspension 3. At the time of measurement, the measurement control unit A controls switching of the three-way valve 12 for changing the flow path and the three-way valve 13 for sampling,
At the same time, the flow path of the suspension 3 is changed to the bypass 11 by the three-way valve 12 for changing the flow path, and at the same time, a certain amount of the crystal 2 is put into the sedimentation leg 5 by the three-way valve 13 for sampling. Thereby, the flow of the suspension 3 is returned to the main pipe 10. Thereby, the charged crystal 2 is gravity-sedimented in the liquid 4 and classified, and then passes through the sensor 6. On this occasion,
The measurement control unit A obtains a particle size distribution from the time range required for the crystal 2 to pass through the sensor 6 and the measurement output of the sensor 6. When the measurement is completed, the crystal 2 and the liquid 4 are discharged from the discharge valve 7 and the cleaning liquid is supplied from the cleaning liquid supply device 9 to clean the settling leg 5 and the sensor 6, and then the liquid 4 is supplied and settled by the liquid supply device. Fill legs 5

【0019】(本装置を用いた測定方法)図2は本発明
請求項2記載の粒径分布測定装置に対応して主に測定制
御部Aの詳細を示す図である。なお、測定制御部Aはパ
ーソナルコンピュータ等で構成されており、各種の演算
機能自体はパーソナルコンピュータにおいてCPUがプ
ログラムを実行することで実現できることは周知であ
り、また、記憶機能もRAMやハードディスク等の周知
な記憶装置で実現できるので、図2においては、測定制
御部Aの詳細を機能ブロック図で示してある。
(Measurement Method Using This Apparatus) FIG. 2 is a diagram mainly showing details of the measurement control unit A corresponding to the particle size distribution measurement apparatus according to the second aspect of the present invention. The measurement control unit A is constituted by a personal computer or the like, and it is well known that various arithmetic functions can be realized by executing a program in a personal computer by a CPU. Since it can be realized by a known storage device, FIG. 2 shows the details of the measurement control unit A in a functional block diagram.

【0020】図において、2〜13は図1と同様なもの
であり、信号14はセンサ6により結晶2の重量または
体積を測定した測定出力を示す。15は、ふるいなどに
より各粒径範囲に分級した結晶がセンサ6を通過するの
に要した時間範囲をあらかじめ測定した時間範囲デー
タ、16は分級した結晶がセンサ6を通過するのに要し
た時間範囲における測定出力の積分値とそれと異なる粒
径範囲に対応する時間範囲における積分値との比例関係
よりあらかじめ求めた補正式、17は分級した結晶がセ
ンサ6を通過するのに要した時間範囲における測定出力
の積分値と結晶重量の関係よりあらかじめ求めた検量
線、18は測定出力14を時間範囲データ15において
積分する積分計算部、データ19は積分計算部18より
出力される積分値、20は補正式16により積分値19
を補正する補正部、データ21は補正部20より出力さ
れる積分補正値、22は検量線17を用いて積分補正値
21から各粒径範囲の重量分布を算出し粒径分布を求め
る演算部である。
In the figure, reference numerals 2 to 13 are the same as those in FIG. 1, and a signal 14 indicates a measured output obtained by measuring the weight or volume of the crystal 2 by the sensor 6. Reference numeral 15 denotes time range data obtained by previously measuring a time range required for the crystals classified into respective particle size ranges to pass through the sensor 6 by a sieve or the like, and 16 denotes a time required for the classified crystals to pass the sensor 6. A correction equation previously determined from a proportional relationship between the integral value of the measured output in the range and the integral value in the time range corresponding to the particle size range different from the above, 17 represents the correction value in the time range required for the classified crystal to pass through the sensor 6. A calibration curve previously obtained from the relationship between the integrated value of the measured output and the crystal weight, 18 is an integral calculating section for integrating the measured output 14 in the time range data 15, data 19 is an integrated value output from the integral calculating section 18, and 20 is an integral value. The integral value 19 is obtained by the correction formula 16
, A data 21 is an integral correction value output from the corrector 20, and 22 is a calculation unit that calculates the weight distribution of each particle size range from the integral correction value 21 using the calibration curve 17 and obtains the particle size distribution. It is.

【0021】本装置では、まず、各粒径範囲に分級した
結晶を用いてセンサ6の測定出力を取得した。この結果
より、各粒径範囲に分級した結晶がセンサ6を通過する
のに要した時間範囲を時間範囲データ15として得ると
ともに、分級した結晶がセンサ6を通過するのに要した
時間範囲における積分値と結晶重量の関係から検量線1
7を求めた。
In the present apparatus, first, the measurement output of the sensor 6 was obtained using crystals classified into each particle size range. From this result, the time range required for the crystals classified into the respective particle size ranges to pass through the sensor 6 is obtained as time range data 15, and the integration in the time range required for the classified crystals to pass through the sensor 6 is obtained. Calibration curve 1
7 was sought.

【0022】(本装置を用いた測定例)ここで、粒子の
形状が球形でない測定例として、850μmから200
0μmのふるいを用いて6段階に分級した塩化ナトリウ
ム結晶粒子を試料結晶2として測定した結果を示す。
(Measurement Example Using This Apparatus) Here, as a measurement example in which the shape of the particles is not spherical, from 850 μm to 200 μm
The results obtained by measuring sodium chloride crystal particles classified into 6 stages using a 0 μm sieve as sample crystal 2 are shown.

【0023】本実施例では、内径50mmφ高さ3000mm
の沈降脚5を用い、センサ6として吸光度計を用いた。
塩化ナトリウム飽和水溶液を沈降脚5内に導入循環して
液を満たし、しばらく静置した後、サンプリング用三方
弁13を開き試料結晶を沈降脚5内に沈降させた。測定
は、サンプリング用三方弁13を開くとともに、AD変
換器にて吸光度計の出力電圧を変換して、データを測定
制御部Aであるノート型パソコンに0.02秒間隔で 600秒
間取得した。AD変換器は(株)キーエンス製のNR-11
0、吸光度計は東京光電(株)製のJT-6100 、ノート型
パソコンはNEC(株)製の PC-9821nfを使用した。な
お、実験はすべて室温にて実施した。
In this embodiment, the inner diameter is 50 mm and the height is 3000 mm.
, And an absorbance meter was used as the sensor 6.
A saturated aqueous solution of sodium chloride was introduced and circulated into the sedimentation leg 5 to fill the liquid, and was allowed to stand for a while. Then, the sampling three-way valve 13 was opened to allow the sample crystal to settle in the sedimentation leg 5. In the measurement, the sampling three-way valve 13 was opened, the output voltage of the absorbance meter was converted by the AD converter, and the data was acquired for 600 seconds at an interval of 0.02 seconds by the notebook computer as the measurement control unit A. The AD converter is NR-11 manufactured by Keyence Corporation.
0, the absorbance meter used was JT-6100 manufactured by Tokyo Koden Co., Ltd., and the notebook computer used was PC-9821nf manufactured by NEC Corporation. All experiments were performed at room temperature.

【0024】図3に分級した各試料結晶を個別に沈降脚
5に投入し沈降させた時の、吸光度計(センサ6)の測
定出力(電圧)を示す。この結果では、各測定出力の立
ち上がりに粒径の大小関係が見られるものの、その終了
時間は小さい粒径側の測定出力の立ち上がりと重複して
いた。この測定出力の重複により、分級した各試料結晶
を混合して沈降させたときセンサ6を通過するのに要し
た時間範囲における測定出力の積分値は各粒径範囲ごと
に互いに影響することとなり、この影響を次のように補
正式16として求めた。
FIG. 3 shows the measured output (voltage) of the absorptiometer (sensor 6) when the classified sample crystals are individually put into the sedimentation leg 5 and settled. In this result, although the magnitude relationship of the particle size is seen at the rise of each measurement output, the end time overlaps with the rise of the measurement output on the smaller particle size side. Due to the overlap of the measured outputs, the integrated values of the measured outputs in the time range required to pass through the sensor 6 when the classified sample crystals are mixed and settled have an influence on each other for each particle size range, This effect was obtained as a correction equation 16 as follows.

【0025】図4は補正式を求める方法の一例を示す図
で、図4(A) は分級した単一粒径の試料結晶2種の個別
の測定出力を測定時間を合わせて1つの座標上に重ねて
プロットしたもので、図4(B) は同2種の試料結晶を混
合した場合の測定出力を測定時間でプロットしたもので
ある。
FIG. 4 is a diagram showing an example of a method for obtaining a correction equation. FIG. 4A shows the individual measurement outputs of the two kinds of sample crystals having a single particle size classified on one coordinate by adjusting the measurement time. FIG. 4 (B) is a plot of the measurement output in the case where the same two types of sample crystals are mixed, with respect to the measurement time.

【0026】この例では、図4(A) において分級した結
晶がセンサ6を通過するのに要した時間範囲R1における
積分値S1(曲線L1と時間軸とで挟まれた部分の面積)
とそれと異なる時間範囲R2における補正積分値 S1'(曲
線L1の右半分と時間軸とで挟まれた斜線部分の面積)
が比例することから(S1'=A1×S1 : A1は定数。)、図
4(B) のように種々の粒径の結晶粒子が混合する試料の
粒径分布を測定する時に、時間範囲R1における本試料
(種々の粒径の結晶粒子が混合する試料)の積分値I1
(図4(B) の時間範囲R1の部分の曲線Lと時間軸とで挟
まれた部分の面積)から補正積分値 S1'(図4(A) のS1
の斜線部分の面積)を求めてこれが図4(B)の S1'(斜
線部分)と略等しいとした。また、同様に積分値S3(図
4(A) の曲線L3と時間範囲R3とで挟まれた部分)から
求めた補正積分値S3′′(図4(A) のS3中の斜線部分の
面積)も図4(B) のS3′′と略等しいとして、時間範囲
における本試料の積分値I2(時間範囲R2の部分の曲線L
と時間軸とで挟まれた部分の面積)から補正積分値 S1'
と補正積分値S3′′を引き算して小さい粒径側単独によ
る積分値S2を求めるものとした。
In this example, the integrated value S1 in the time range R1 required for the crystal classified in FIG. 4A to pass through the sensor 6 (the area between the curve L1 and the time axis).
And the corrected integrated value S1 'in the different time range R2 (the area of the hatched portion between the right half of the curve L1 and the time axis)
Is proportional (S1 ′ = A1 × S1: A1 is a constant). Therefore, as shown in FIG. 4B, when measuring the particle size distribution of a sample in which crystal particles of various particle sizes are mixed, the time range R1 Value I1 of this sample (sample in which crystal grains of various particle sizes are mixed)
From the area of the portion between the curve L and the time axis in the time range R1 in FIG. 4B, the corrected integrated value S1 '(S1 in FIG. 4A)
(The area of the hatched portion of FIG. 4) was obtained, and it was assumed that this was substantially equal to S1 ′ (the hatched portion) of FIG. 4 (B). Similarly, the corrected integrated value S3 ″ (the area of the hatched portion in S3 in FIG. 4A) obtained from the integrated value S3 (the portion between the curve L3 and the time range R3 in FIG. 4A). ) Is also substantially equal to S3 ″ in FIG. 4 (B), and the integrated value I2 of this sample in the time range (curve L in the time range R2) is obtained.
From the area between the time axis and the time axis)
And the corrected integral value S3 '' are subtracted to obtain an integral value S2 solely on the small particle size side.

【0027】このように、あらかじめ1種類の粒径範囲
(分級の基準となる粒径)の結晶粒子についての測定出
力の経時変化において、その粒径範囲の結晶粒子が通過
する時間範囲の積分値から、これと同じ時間範囲にこれ
と異なる粒径範囲の結晶粒子が通過する測定出力の積分
値を予測し、この予測した積分値を、粒径の異なる結晶
粒子を混合した場合の積分値から減算することにより、
該当粒径単独による積分値を求めようとしているので、
各粒径範囲において、これらの関係を整理し連立方程式
を解けば求めることができる。
As described above, when the measurement output of a crystal particle of one kind of particle size range (particle size serving as a classification standard) changes with time, the integral value of the time range in which the crystal particle of the particle size range passes is obtained. From the above, the integrated value of the measurement output through which the crystal particles having a different particle size range pass in the same time range is predicted, and the predicted integrated value is calculated from the integrated value obtained when the crystal particles having different particle sizes are mixed. By subtracting,
Since we are trying to find the integral value of the particle size alone,
In each particle size range, the relationship can be determined by organizing these relationships and solving simultaneous equations.

【0028】例えば、図4(B) のように3種類の粒径の
場合について説明すると、各粒径単独による積分値S1,
S2,S3は、時間範囲R1における本試料の積分値I1、時間
範囲R2における本試料の積分値I2、時間範囲R3における
本試料の積分値I3と、予め個々の粒径について判明して
いる係数A1,B1,B2,C1とによる、以下の連立方程式を
解くことにより求められる。
For example, the case of three types of particle sizes as shown in FIG. 4B will be described.
S2 and S3 are the integrated value I1 of the sample in the time range R1, the integrated value I2 of the sample in the time range R2, the integrated value I3 of the sample in the time range R3, and a coefficient that is previously known for each particle size. It can be obtained by solving the following simultaneous equations based on A1, B1, B2, and C1.

【0029】[0029]

【数1】 (Equation 1)

【0030】なお、係数A1は時間間隔R1とR2の重複部分
のS1の予測値(S1′ )とS1全体の比例係数、係数B1は
時間間隔R1とR2の重複部分のS2の予測値とS2全体の比例
係数、係数B2は時間間隔R2とR3の重複部分のS2の予測値
とS2全体の比例係数、係数C1は時間間隔R2とR3の重複部
分のS3の予測値とS3全体の比例係数である。
Note that the coefficient A1 is the predicted value of S1 (S1 ') of the overlapping portion of the time intervals R1 and R2 and the proportional coefficient of S1 as a whole, and the coefficient B1 is the predicted value of S2 of the overlapping portion of the time intervals R1 and R2 and S2 The overall proportional coefficient, coefficient B2, is the predicted value of S2 at the overlap of time intervals R2 and R3 and the proportional coefficient of S2, and coefficient C1 is the predicted value of S3 at the overlap of time intervals R2 and R3, and the proportional coefficient of S3. It is.

【0031】次に、分級した各々の試料結晶より求めた
結果を用いて、種々の粒径の結晶粒子が混合する試料結
晶の粒径分布を測定する。まず、液体4で満たされた沈
降脚5に投入された結晶2が、沈降脚5内を重力沈降し
て分級された後、センサ6を通過する。この際、センサ
6からの測定出力14を積分計算部18により時間範囲
データ15の時間範囲にて積分して積分値19を求め
る。しかし、ここで求めた積分値19は各粒径範囲に分
級した結晶の測定出力の重複により、誤差を含んでい
る。そこで、補正部20にて補正式16より積分値19
を補正し積分補正値21を求める。すなわち、前述のよ
うに各粒径単独による積分値に順次補正して積分補正値
21を求める。次に、演算部22にて検量線17を用い
て積分補正値21より各粒径範囲の重量分布を算出しこ
れより粒径分布を求める。
Next, using the results obtained from the classified sample crystals, the particle size distribution of the sample crystals in which the crystal particles having various particle sizes are mixed is measured. First, the crystal 2 charged into the sedimentation leg 5 filled with the liquid 4 passes through the sensor 6 after being classified by gravity sedimentation in the sedimentation leg 5. At this time, the measurement output 14 from the sensor 6 is integrated by the integration calculator 18 in the time range of the time range data 15 to obtain an integrated value 19. However, the integrated value 19 obtained here includes an error due to the overlap of the measurement outputs of the crystals classified into the respective particle size ranges. Therefore, the correction unit 20 calculates the integral value 19 from the correction expression 16.
And an integral correction value 21 is obtained. That is, as described above, the integral correction value 21 is obtained by sequentially correcting the integral value of each particle size alone. Next, the arithmetic unit 22 calculates the weight distribution of each particle size range from the integral correction value 21 using the calibration curve 17 and obtains the particle size distribution from the weight distribution.

【0032】ここで、本装置により測定した一例とし
て、塩化ナトリウム結晶の平均粒径と標準偏差につい
て、本発明請求項2の実施例による測定とふるいによる
測定を比較した結果を図5および図6に示す。この結果
より、両者の測定結果は非常に良く一致し、平均誤差が
平均粒径で19μm、標準偏差で15μmの結果を得た。
Here, as an example of the measurement by the present apparatus, the results obtained by comparing the average particle diameter and the standard deviation of sodium chloride crystals between the measurement according to the second embodiment of the present invention and the measurement using a sieve are shown in FIGS. Shown in From these results, the measurement results of the two were in good agreement with each other, and the average error was 19 μm in average particle diameter and 15 μm in standard deviation.

【0033】図7は本発明の他の実施形態の粒径分布測
定装置の要部を示す図である。図7において、符号2〜
22を付した要素は図1または図2と同様なものであ
り、詳細な説明は省略する。図7において、31aはサ
ンプリング用三方弁13の近傍位置で沈降脚5に取り付
けられた圧力計、31bはセンサ6の上部近傍位置で沈
降脚5に取り付けられた圧力計である。この圧力計31
a,31bはそれぞれ沈降脚5内の液体4の圧力を検出
し、この検出圧力の差圧が密度出力部31cで平均的な
密度に変換される。
FIG. 7 is a view showing a main part of a particle size distribution measuring apparatus according to another embodiment of the present invention. In FIG.
Elements denoted by 22 are the same as those in FIG. 1 or FIG. 2, and the detailed description is omitted. In FIG. 7, reference numeral 31a denotes a pressure gauge attached to the sedimentation leg 5 near the sampling three-way valve 13, and reference numeral 31b denotes a pressure gauge attached to the sedimentation leg 5 near the upper portion of the sensor 6. This pressure gauge 31
Each of a and 31b detects the pressure of the liquid 4 in the settling leg 5, and the differential pressure of the detected pressure is converted into an average density by the density output unit 31c.

【0034】このように、圧力計31a,31bおよび
密度出力部31cは密度検出手段としての差圧計31を
構成している。なお、この液体4の平均的な密度は、圧
力計31a,31bで検出される差圧と圧力計31a,
31b間の距離から得られることはいうまでもない。
As described above, the pressure gauges 31a and 31b and the density output section 31c constitute a differential pressure gauge 31 as a density detecting means. The average density of the liquid 4 is determined by the differential pressure detected by the pressure gauges 31a and 31b and the pressure gauges 31a and 31b.
Needless to say, it can be obtained from the distance between 31b.

【0035】そして、この実施形態においても、結晶2
は懸濁液3として主配管10を流れている。測定時は、
サンプリング用三方弁13により一定量の結晶2を沈降
脚5に投入する。投入された結晶2が液体4の中を重力
沈降して分級された後、センサ6を通過する。この際、
結晶2がセンサ6を通過するのに要した時間範囲とセン
サ6の測定出力および差圧計31の測定出力より計測し
た液体4の平均的な密度より粒径分布を求める。なお、
測定が終了すると、排出バルブ7より結晶2および液体
4を排出し洗浄液供給装置9から洗浄液を供給して沈降
脚5およびセンサ6を洗浄した後、液体供給装置にて液
体4を供給して沈降脚5に満たす。
In this embodiment, the crystal 2
Flows through the main pipe 10 as the suspension 3. At the time of measurement,
A certain amount of crystal 2 is introduced into the settling leg 5 by the sampling three-way valve 13. The charged crystal 2 passes through the sensor 6 after being classified by gravity settling in the liquid 4. On this occasion,
The particle size distribution is determined from the time range required for the crystal 2 to pass through the sensor 6 and the average density of the liquid 4 measured from the measurement output of the sensor 6 and the measurement output of the differential pressure gauge 31. In addition,
When the measurement is completed, the crystal 2 and the liquid 4 are discharged from the discharge valve 7 and the cleaning liquid is supplied from the cleaning liquid supply device 9 to clean the settling leg 5 and the sensor 6, and then the liquid 4 is supplied and settled by the liquid supply device. Fill legs 5

【0036】図7において、23は演算部22より出力
される粒径分布のデータ、24は粒径分布を調製した結
晶について基準密度とそれ以外の密度で粒径分布を測定
することにより予め求めた密度補正式、25は差圧計3
1の測定出力より計測した平均的な密度のデータ、26
は密度補正式24と密度データ25より粒径分布23に
密度補正を行う密度補正部である。
In FIG. 7, reference numeral 23 denotes the data of the particle size distribution output from the arithmetic unit 22, and reference numeral 24 denotes a value obtained in advance by measuring the particle size distribution of the crystal whose particle size distribution has been adjusted at the reference density and other densities. Density correction formula, 25 is differential pressure gauge 3
Average density data measured from the measurement output of No. 1, 26
Denotes a density correction unit for performing density correction on the particle size distribution 23 based on the density correction formula 24 and the density data 25.

【0037】本装置では、まず、各粒径範囲に分級した
結晶を用いて、基準密度におけるセンサ6の測定出力を
取得した。この結果より、前記の実施形態と同様に、各
粒径範囲に分級した結晶がセンサ6を通過するのに要し
た時間範囲を時間範囲データ15として測定するととも
に、分級した結晶がセンサ6を通過するのに要した時間
範囲における積分値と結晶重量の関係から検量線17を
求めた。
In the present apparatus, first, the measured output of the sensor 6 at the reference density was obtained using the crystals classified into the respective particle size ranges. From this result, similarly to the above embodiment, the time range required for the crystals classified into the respective particle size ranges to pass through the sensor 6 is measured as time range data 15, and the classified crystals pass through the sensor 6. The calibration curve 17 was determined from the relationship between the integral value and the crystal weight in the time range required for the measurement.

【0038】この際、塩化ナトリウム結晶粒子を測定し
た例では、時間範囲データ15には重複があり、分級し
た結晶がセンサ6を通過するのに要した時間範囲におけ
る積分値は各粒径範囲毎に互いに影響するため、前記の
実施形態と同様に、この影響を補正式16として求め
た。
At this time, in the example in which the sodium chloride crystal particles were measured, the time range data 15 overlapped, and the integrated value in the time range required for the classified crystals to pass through the sensor 6 was calculated for each particle size range. Therefore, as in the above-described embodiment, this influence was obtained as a correction equation 16.

【0039】続いて、粒径分布を調製した粉体を用い
て、基準密度とそれ以外の密度でセンサ6の測定出力1
4を収得した。この結果より検量線17と補正式16を
用いて粒径分布を算出し、基準密度で測定した粒径分布
とそれ以外の密度で測定した粒径分布との関係から密度
補正式24を求めた。
Subsequently, the measured output 1 of the sensor 6 was measured at the reference density and other densities using the powder whose particle size distribution was adjusted.
4 was obtained. From this result, the particle size distribution was calculated using the calibration curve 17 and the correction formula 16, and the density correction formula 24 was obtained from the relationship between the particle size distribution measured at the reference density and the particle size distribution measured at other densities. .

【0040】ここで、平均粒径800μm、標準偏差2
50μmの調製した結晶について、液体の密度1.2
0、1.25、1.30g/cm3 において、センサ6
の出力を測定したところ概ね図12のような結果がえら
れた。同図に示すように、出力(吸光度)の立ち上がり
時間およびピーク時間は密度が高くなるにしたがって遅
くなる傾向が見られる。しかし、吸光度の出力の全体の
積分値(曲線が囲む面積)は、密度が変化しても大きな
差は生じておらず、積分値と密度の相関関係は認められ
なかった。これにより、液体の密度の影響は、吸光度の
積分値に対するよりも沈降時間に対する方が大きく、そ
の出力は密度が高くなると時間的に遅れた波形となると
考えられる。
Here, the average particle size is 800 μm, and the standard deviation is 2
For the prepared crystals of 50 μm, the liquid density 1.2
At 0, 1.25 and 1.30 g / cm 3 , the sensor 6
When the output was measured, a result almost as shown in FIG. 12 was obtained. As shown in the figure, the rising time and peak time of the output (absorbance) tend to be slower as the density increases. However, there was no large difference in the integrated value of the absorbance output (the area surrounded by the curve) even when the density was changed, and no correlation was found between the integrated value and the density. Thus, it is considered that the influence of the density of the liquid is greater on the settling time than on the integrated value of the absorbance, and that the output becomes a time delayed waveform as the density increases.

【0041】そこで、密度1.20g/cm3 において
前記実施形態と同様に求めた検量線を、密度1.25、
1.30g/cm3 における粒径分布の推定に適用して
測定を行った。この測定例として、塩化ナトリウム結晶
粒子を結晶として、平均粒径が300μmから1300
μm、標準偏差が50μmづつ異なる3種類に調製した
結晶について、液体の密度1.20、1.25、1.3
0g/cm3 において、基準密度1.20g/cm3
測定した検量線と補正式により平均粒径と標準偏差を算
出した。そして、その結果を、ふるい分け法による測定
値に対して点綴すると図10および図11のようになっ
た。これにより、両者の関係はぞれぞれの密度で原点を
通る直線で良好に相関されることがわかる。そこで、こ
の関係より密度補正式を求めた。
Therefore, a calibration curve obtained at a density of 1.20 g / cm 3 in the same manner as in the above-described embodiment was obtained.
The measurement was performed by applying to estimation of the particle size distribution at 1.30 g / cm 3 . As an example of this measurement, sodium chloride crystal particles are used as crystals, and the average particle size is 300 μm to 1300 μm.
Liquids 1.20, 1.25, 1.3 for crystals prepared in three types with different μm and standard deviation of 50 μm each.
In 0 g / cm 3, and calculating the average particle diameter and the standard deviation by the correction equation calibration curve measured at the reference density 1.20 g / cm 3. Then, the results were stapled against the measured values by the sieving method, as shown in FIGS. 10 and 11. Thus, it is understood that the relationship between the two is favorably correlated with the straight line passing through the origin at each density. Therefore, a density correction equation was obtained from this relationship.

【0042】ここで、図10の相関式は次式(1)〜
(3)となった。
Here, the correlation equation in FIG.
(3).

【0043】[0043]

【数2】 (Equation 2)

【0044】また、図11の相関式は次式(4)〜
(6)となった。
In addition, the correlation equation in FIG.
(6).

【0045】[0045]

【数3】 (Equation 3)

【0046】これらの近似式において、その傾きは密度
が高くなると小さくなる傾向が見られ、上記近似式に基
づいて例えば密度ρ=1.25の場合について示す次式のよ
うに粒径の推定値Leから粒径の補正値Lcを求める
と、補正値の誤差および標準偏差の誤差も小さくなるこ
とがわかった。
In these approximations, the slope tends to decrease as the density increases. Based on the above approximation, for example, from the estimated value Le of the particle size as shown in the following expression for the case of density ρ = 1.25: It was found that when the correction value Lc of the particle diameter was obtained, the error of the correction value and the error of the standard deviation were also reduced.

【0047】[0047]

【数4】 (Equation 4)

【0048】そこで、前式(1)〜(6)から次式
(7)、(8)の密度補正式を作成した。
Therefore, the following equations (7) and (8) were prepared from the previous equations (1) to (6).

【0049】[0049]

【数5】 (Equation 5)

【0050】そして、前記のように、塩化ナトリウム結
晶粒子を結晶として、平均粒径が300μmから130
0μm、標準偏差が50づつ異なる3種類に調製した結
晶を、液体の密度1.20、1.25、1.30g/c
3 において、基準密度1.20g/cm3 についての
検量線と補正式により平均粒径と標準偏差を算出し、こ
れを密度補正式(7)、(8)で補正し、その補正値を
ふるい分け法による測定値に対して点綴すると、図8お
よび図9のようになった。このように、両者の測定結果
は非常に良く一致することがわかる。
Then, as described above, the sodium chloride crystal particles are used as crystals, and the average particle size is from 300 μm to 130 μm.
Crystals prepared in three types having a difference of 0 μm and a standard deviation of 50, respectively, were subjected to liquid densities of 1.20, 1.25, and 1.30 g / c.
At m 3 , the average particle diameter and the standard deviation were calculated from the calibration curve and the correction formula for the reference density of 1.20 g / cm 3 , and were corrected by the density correction formulas (7) and (8). FIG. 8 and FIG. 9 show the results obtained by dot stitching on the measured values obtained by the sieving method. Thus, it can be seen that the measured results of the two agree very well.

【0051】なお、実施形態における差圧計31は、沈
降脚5の内、沈降を開始する位置からセンサ6を通過す
る直前までの液体4についての平均的な密度を検出し
て、測定精度を高めている。すなわち、液体4中を沈降
する結晶2の速度は、その沈降過程の全ての密度の影響
を受けるが、この沈降過程のほぼ全過程での平均密度を
検出するので、密度による影響を十分に補正できる。
The differential pressure gauge 31 according to the embodiment detects the average density of the liquid 4 from the position at which sedimentation starts to just before passing through the sensor 6 in the sedimentation leg 5 to improve the measurement accuracy. ing. In other words, the speed of the crystal 2 which settles in the liquid 4 is affected by all the densities in the sedimentation process. Since the average density is detected in almost all the sedimentation processes, the influence of the density is sufficiently corrected. it can.

【0052】[0052]

【発明の効果】本発明請求項1記載の粒径分布測定装置
によれば、自動でサンプリングして粒径分布の測定を行
うとともに、スラリー濃度が高い懸濁液の粒径分布をイ
ンラインで測定することができる。
According to the particle size distribution measuring device according to the first aspect of the present invention, the particle size distribution is measured by automatically sampling, and the particle size distribution of the suspension having a high slurry concentration is measured in-line. can do.

【0053】また、本発明請求項2記載の粒径分布測定
装置によれば、晶析により生じる結晶なども粒子の形状
にかかわりなく、粒径が大きい結晶の粒径分布を測定す
ることができる。
Further, according to the particle size distribution measuring apparatus according to the second aspect of the present invention, it is possible to measure the particle size distribution of a crystal having a large particle size, regardless of the shape of the crystal formed by crystallization. .

【0054】また、本発明請求項3記載の粒径分布測定
装置によれば、インラインで測定する際に、沈降脚に満
たす液体として基準密度に調製した液体を準備する必要
がなく、液体の不純物や温度の影響による性状変化に関
わりなく粒径分布の測定を行うことができ、インライン
で測定するのに好適となる。
According to the particle size distribution measuring apparatus of the third aspect of the present invention, when measuring in-line, it is not necessary to prepare a liquid adjusted to a reference density as a liquid to be filled in the settling legs. The particle size distribution can be measured irrespective of the property change due to the influence of temperature or temperature, which is suitable for in-line measurement.

【0055】また、本発明請求項4記載の粒径分布測定
装置によれば、請求項3と同様な効果が得られるととも
に、密度補正式を用いるので検量線は基準密度について
のもの一つだけでよく、構成が簡単になる。
According to the particle size distribution measuring apparatus of the present invention, the same effect as that of the third aspect is obtained, and the calibration curve is only one for the reference density because the density correction formula is used. And the configuration becomes simple.

【0056】また、本発明請求項5記載の粒径分布測定
装置によれば、請求項3または4と同様な効果が得られ
るとともに、沈降脚に満たされた液体について高さが異
なる2点間の圧力差から密度を検出するので、沈降脚に
満たされた液体の平均的な密度を計測することができ、
計測時における液体の不純物や温度の影響による性状変
化を密度測定値で表すことができ、さらに、粒径分布の
測定誤差を小さくすることができる。
Further, according to the particle size distribution measuring apparatus of the present invention, the same effect as that of the third or fourth aspect can be obtained, and the height of the liquid filled in the settling legs is different between two points. Since the density is detected from the pressure difference, the average density of the liquid filled in the sedimentation leg can be measured,
Changes in properties due to the influence of impurities and temperature of the liquid at the time of measurement can be represented by density measurement values, and furthermore, measurement errors in the particle size distribution can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明請求項1記載の粒径分布測定装置の実施
例を説明する図である。
FIG. 1 is a view for explaining an embodiment of a particle size distribution measuring device according to claim 1 of the present invention.

【図2】本発明請求項2記載の粒径分布測定装置の実施
例を説明する図である。
FIG. 2 is a view for explaining an embodiment of a particle size distribution measuring device according to claim 2 of the present invention.

【図3】分級した塩化ナトリウム結晶粒子を結晶として
測定した結果を示す図である。
FIG. 3 is a diagram showing the results of measuring the classified sodium chloride crystal particles as crystals.

【図4】本発明請求項2の実施例において、補正式を求
める方法の一例を示す図である。
FIG. 4 is a diagram showing an example of a method for obtaining a correction equation in the embodiment of the present invention.

【図5】塩化ナトリウム結晶の平均粒径について、本発
明請求項2の実施例による測定とふるいによる測定を比
較した結果を示す図である。
FIG. 5 is a view showing a result of comparing the average particle diameter of sodium chloride crystals between the measurement according to the embodiment of the present invention and the measurement using a sieve.

【図6】塩化ナトリウム結晶の標準偏差について、本発
明請求項2の実施例による測定とふるいによる測定を比
較した結果を示す図である。
FIG. 6 is a diagram showing a result of comparing the standard deviation of sodium chloride crystals between the measurement by the embodiment of the present invention and the measurement by the sieve.

【図7】本発明請求項3乃至5に係る粒径分布測定装置
の要部を示す図である。
FIG. 7 is a view showing a main part of a particle size distribution measuring apparatus according to claims 3 to 5 of the present invention.

【図8】塩化ナトリウム結晶の平均粒径について、本発
明請求項3乃至5の実施例による測定とふるいによる測
定を比較した結果を示す図である。
FIG. 8 is a view showing the results of comparing the average particle diameter of sodium chloride crystals between the measurement according to the examples of claims 3 to 5 of the present invention and the measurement using a sieve.

【図9】塩化ナトリウム結晶の標準偏差について、本発
明請求項3乃至5の実施例による測定とふるいによる測
定を比較した結果を示す図である。
FIG. 9 is a diagram showing the results of comparison between the measurement according to the examples of claims 3 to 5 of the present invention and the measurement using a sieve with respect to the standard deviation of sodium chloride crystals.

【図10】塩化ナトリウム結晶の基準密度で算出した平
均粒径について、本発明請求項3乃至5の実施例による
測定とふるいによる測定を比較した結果を示す図であ
る。
FIG. 10 is a diagram showing a result of comparing the average particle diameter calculated based on the reference density of sodium chloride crystals with the measurement by the examples according to claims 3 to 5 of the present invention and the measurement by a sieve.

【図11】塩化ナトリウム結晶の基準密度で算出した標
準偏差について、本発明請求項3乃至5の実施例による
測定とふるいによる測定を比較した結果を示す図であ
る。
FIG. 11 is a graph showing the results of comparison between the measurement according to the examples of claims 3 to 5 of the present invention and the measurement using a sieve with respect to the standard deviation calculated based on the reference density of sodium chloride crystals.

【図12】塩化ナトリウム結晶についての密度の変化に
対する沈降速度の変化を示す測定結果を示す図である。
FIG. 12 is a graph showing measurement results showing changes in sedimentation velocity with respect to changes in density of sodium chloride crystals.

【符号の説明】[Explanation of symbols]

1…晶析装置、2…結晶(粉体)、3…懸濁液、4…液
体、5…沈降脚、6…センサ、7…排出バルブ、8…液
体供給装置、9…洗浄液供給装置、10…主配管、11
…バイパス、12…流路変更用三方弁、13…サンプリ
ング用三方弁、14…測定出力、15…時間範囲デー
タ、16…補正式、17…検量線、18…積分計算部、
19…積分値、20…補正部、21…積分補正値、22
…演算部、24…密度補正式、26…密度補正部、31
…差圧計
DESCRIPTION OF SYMBOLS 1 ... Crystallizer, 2 ... Crystal (powder), 3 ... Suspension, 4 ... Liquid, 5 ... Sedimentation leg, 6 ... Sensor, 7 ... Discharge valve, 8 ... Liquid supply device, 9 ... Cleaning liquid supply device, 10 ... Main piping, 11
... bypass, 12 ... three-way valve for changing flow path, 13 ... three-way valve for sampling, 14 ... measurement output, 15 ... time range data, 16 ... correction formula, 17 ... calibration curve, 18 ... integral calculation unit,
19: integral value, 20: correction unit, 21: integral correction value, 22
... Calculation unit, 24 ... Density correction formula, 26 ... Density correction unit, 31
… Differential pressure gauge

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粉体の懸濁液が流れる主配管から一定量
の粉体をサンプリングするサンプリング手段と、該サン
プリングされた一定量の粉体を沈降する沈降脚と、該沈
降脚を沈降する粉体の重量または体積を測定するセンサ
とを備え、 前記沈降脚を沈降する前記粉体が前記センサを通過する
のに要した時間範囲と該センサの測定出力から該粉体の
粒径分布を求めることを特徴とする粒径分布測定装置。
1. A sampling means for sampling a fixed amount of powder from a main pipe through which a suspension of powder flows, a settling leg for sinking the sampled fixed amount of powder, and a sinker for setting the settling leg. A sensor for measuring the weight or volume of the powder, the particle size distribution of the powder from the time range required for the powder to settle on the settling leg to pass through the sensor and the measurement output of the sensor. A particle size distribution measuring device characterized by being obtained.
【請求項2】 沈降法を用いた粒径分布測定装置におい
て、各粒径範囲に分級した粉体が前記沈降脚を沈降して
前記センサを通過するのに要した時間範囲と該センサの
測定出力および粉体重量から予め求めた検量線と補正式
を用い、 粒径分布を測定する粉体が沈降脚を沈降して前記センサ
を通過するときの測定出力を前記補正式にて補正した
後、前記検量線により各粒径範囲の重量分布を算出し粒
径分布を求めることを特徴とする請求項1記載の粒径分
布測定装置。
2. In a particle size distribution measuring apparatus using a sedimentation method, a time range required for powder classified into each particle size range to settle on the sedimentation leg and pass through the sensor, and measurement of the sensor Using a calibration curve and a correction formula obtained in advance from the output and the powder weight, after correcting the measurement output when the powder whose particle size is measured settles down the sedimentation leg and passes through the sensor, using the correction formula 2. The particle size distribution measuring apparatus according to claim 1, wherein a weight distribution in each particle size range is calculated by the calibration curve to obtain a particle size distribution.
【請求項3】 一定量の粉体を沈降する沈降脚と、該沈
降脚を沈降する粉体の重量または体積を測定するセンサ
と、該沈降脚に満たされた液体の密度を検出する密度検
出手段とを備え、 前記沈降脚を沈降する前記粉体が前記センサを通過する
のに要した時間範囲と該センサの測定出力と前記密度検
出手段で検出した密度から該粉体の粒径分布を求めるこ
とを特徴とする粒径分布測定装置。
3. A sedimentation leg that sediments a certain amount of powder, a sensor that measures the weight or volume of the powder that sediments the sedimentation leg, and a density detector that detects the density of a liquid filled in the sedimentation leg. Means, and the particle size distribution of the powder from the time range required for the powder settling on the settling leg to pass through the sensor, the measurement output of the sensor, and the density detected by the density detection means. A particle size distribution measuring device characterized by being obtained.
【請求項4】 各粒径範囲に分級した粉体が基準密度に
調製した液体を満たした前記沈降脚を沈降して前記セン
サを通過するのに要した時間範囲と該センサの測定出力
および粉体重量から予め求めた検量線と補正式を用い、 粒径分布を測定する粉体が沈降脚を沈降して前記センサ
を通過するときの測定出力を前記補正式にて補正した
後、前記検量線により各粒径範囲の重量分布を算出し粒
径分布を求め、 粒径分布を調製した粉体について前記基準密度とそれ以
外の密度で粒径分布を測定することにより予め求めた密
度補正式を用い、 前記密度検出手段で検出した密度と前記密度補正式に基
づいて、前記求めた粒径分布を補正して粒径分布を求め
ることを特徴とする請求項3記載の粒径分布測定装置。
4. The time range required for the powder classified into each particle size range to settle on the settling leg filled with the liquid prepared to the reference density and pass through the sensor, the measurement output of the sensor and the powder output. Using a calibration curve and a correction formula obtained in advance from the body weight, the measurement output when the powder whose particle size distribution is settled down the sedimentation leg and passed through the sensor was corrected by the correction formula, and then the calibration was performed. Calculate the weight distribution of each particle size range by the line to obtain the particle size distribution, and the density correction formula previously obtained by measuring the particle size distribution at the above-mentioned reference density and other densities for the powder having the prepared particle size distribution. 4. The particle size distribution measuring device according to claim 3, wherein the particle size distribution is obtained by correcting the obtained particle size distribution based on the density detected by the density detecting means and the density correction formula. .
【請求項5】 前記密度検出手段が、前記沈降脚に満た
された液体について高さが異なる2点間の圧力差を測定
する差圧計により前記液体の密度を検出することを特徴
とする請求項3または4記載の粒径分布測定装置。
5. The apparatus according to claim 1, wherein said density detecting means detects the density of the liquid filled in the settling leg by a differential pressure gauge which measures a pressure difference between two points having different heights. 5. The particle size distribution measuring device according to 3 or 4.
JP33580799A 1999-06-08 1999-11-26 Particle size distribution measuring device Expired - Fee Related JP3400395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33580799A JP3400395B2 (en) 1999-06-08 1999-11-26 Particle size distribution measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16114399 1999-06-08
JP11-161143 1999-06-08
JP33580799A JP3400395B2 (en) 1999-06-08 1999-11-26 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2001056282A true JP2001056282A (en) 2001-02-27
JP3400395B2 JP3400395B2 (en) 2003-04-28

Family

ID=26487387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33580799A Expired - Fee Related JP3400395B2 (en) 1999-06-08 1999-11-26 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3400395B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127790A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Method of measuring particle size distribution of particulate
CN102890043A (en) * 2012-09-13 2013-01-23 浙江轻机实业有限公司 Method for analyzing granularity of easily soluble materials
CN107121363A (en) * 2017-03-22 2017-09-01 华南理工大学 A kind of method of crystallization processes process particle size distribution prediction
CN109406329A (en) * 2017-08-17 2019-03-01 中国石油化工股份有限公司 Measure the suspension method of fluid-bed heat exchanger tubulation endoparticle distribution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127790A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Method of measuring particle size distribution of particulate
CN102890043A (en) * 2012-09-13 2013-01-23 浙江轻机实业有限公司 Method for analyzing granularity of easily soluble materials
CN107121363A (en) * 2017-03-22 2017-09-01 华南理工大学 A kind of method of crystallization processes process particle size distribution prediction
CN109406329A (en) * 2017-08-17 2019-03-01 中国石油化工股份有限公司 Measure the suspension method of fluid-bed heat exchanger tubulation endoparticle distribution
CN109406329B (en) * 2017-08-17 2021-08-03 中国石油化工股份有限公司 Suspension method for measuring particle distribution in tube of fluidized bed heat exchanger

Also Published As

Publication number Publication date
JP3400395B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
CN103512829B (en) A kind of method by muddy water density measure sediment concentration
EP2609402B1 (en) Multiphase flow metering
CN102589628A (en) Multiphase coriolis flowmeter
CN110726444A (en) Wet gas flow metering method and device based on Coriolis mass flowmeter
JP2001056282A (en) Particle size distribution measuring device
Czapla et al. Application of a recent FBRM-probe model to quantify preferential crystallization of DL-threonine
US6239600B1 (en) Microwave type concentration measuring apparatus
US9291489B2 (en) Method for the gravimetric mass metering of bulk solids and differential metering scale
US20220034697A1 (en) Wet gas flow rate metering method based on a coriolis mass flowmeter and device thereof
US20210404930A1 (en) Measuring density via pressure sensor in a conduit
US5524473A (en) Gas chromatograph flow calibrator
Wadsö et al. An improved method to validate the relative humidity generation in sorption balances
JP3085915B2 (en) Method and apparatus for analyzing sulfate ion content of salt
CN110199178B (en) Method for compensating for the Venturi effect on a pressure sensor in a flowing water
CN107957477B (en) Method for determining content of posaconazole by non-aqueous titration method
JPH03264821A (en) Method for processing output signal of composite sensor
JP3527476B2 (en) Inline powder moisture measurement system
CN109520971A (en) A kind of flow type turbidity transducer caliberating device
CN208359160U (en) Polyurethane mixing equipment high-precision measuring device
JPH03269340A (en) Method and instrument for measuring adhesion of granular body
FI123566B (en) Measurement of filterability
Davies Emerging technologies for measuring flow rate and density of bulk flows of particulate solids
RU38943U1 (en) TWO-CHANNEL DEVICE FOR MEASUREMENT AND REGISTRATION OF GRANULOMETRIC COMPOSITION OF PULP FLOWS
JP2004045116A (en) Apparatus for measuring moisture of carbon black and manufacturing equipment
Hunt Commercial flow measurement using electrical capacitance tomography

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030128

LAPS Cancellation because of no payment of annual fees