JPH03269340A - Method and instrument for measuring adhesion of granular body - Google Patents

Method and instrument for measuring adhesion of granular body

Info

Publication number
JPH03269340A
JPH03269340A JP7093290A JP7093290A JPH03269340A JP H03269340 A JPH03269340 A JP H03269340A JP 7093290 A JP7093290 A JP 7093290A JP 7093290 A JP7093290 A JP 7093290A JP H03269340 A JPH03269340 A JP H03269340A
Authority
JP
Japan
Prior art keywords
fluidized bed
ucal
uobs
minimum fluidization
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7093290A
Other languages
Japanese (ja)
Other versions
JP2889640B2 (en
Inventor
Hiroyuki Tsujimoto
広行 辻本
Noriyoshi Kaya
彼谷 憲美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP2070932A priority Critical patent/JP2889640B2/en
Publication of JPH03269340A publication Critical patent/JPH03269340A/en
Application granted granted Critical
Publication of JP2889640B2 publication Critical patent/JP2889640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N2033/0091Powders

Abstract

PURPOSE:To surely execute inter-granule adhesion measurement with high reproducibility independently of the physical property of granular body by forming the fluidized bed of sample granular body by supplying fluidizing gas and finding out correlation of differential pressure between the upstream side and downstream side of the fluidized bed to the empty tower speed of the fluidized bed. CONSTITUTION:The instrument is provided with a differential pressure measuring means 6 for measuring the pressure difference DELTAP between the upstream side and downstream side of fluidized bed 1 of sample granular body. A computer C finds out the empty tower speed U of the fluidized bed 1 from U = F/A based upon the measured flow rate F of a flow meter 3 and a fluidized bed sectional area A inputted from an input device 7, finds out a measured minimum fluidization speed Uobs based upon correlation information between the emply tower speed U of the layer 1 and the pressure difference DELTAP, finds out a minimum fluidization speed calculation value Ucal from the equation I, and then finds out the inter-granule adhesion Fc of the sample granular body from the equation II based upon the speed Uobs and the value Ucal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉粒体を扱う上で重要な特性である付着力を
測定する方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for measuring adhesion, which is an important characteristic when handling powder or granular materials.

〔従来の技術〕[Conventional technology]

従来、第4図に示すように、二分割可能なケース(21
)、 (22)に試料粉粒体(23)を充填し、ケース
(21)、 (22)を分割してケース(21)、 (
22)内の試料粉粒体充填層を破断し、その時の最大応
力を計測器(24)で測定して、最大応力測定値に基づ
いて試料粉粒体(23)の粒子間の付着力を求めていた
Conventionally, as shown in Figure 4, a case that can be divided into two (21
), (22) are filled with sample powder (23), cases (21), (22) are divided into cases (21), (
22) rupture the packed layer of the sample granular material (23), measure the maximum stress at that time with a measuring device (24), and calculate the adhesion force between the particles of the sample granular material (23) based on the maximum stress measurement value. I was looking for it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術では下記欠点があった。 However, the above conventional technology has the following drawbacks.

(イ)ケース(21)、 (22)への試料粉粒体(2
3)の充填において圧密状態・のバラツキが生じやすく
、再現性が悪い。
(a) Sample powder (2) to cases (21) and (22)
3) In the filling process, variations in the compaction state tend to occur, and reproducibility is poor.

(0)  40〜50μm程度以上の大粒径の試料粉粒
体(23)や流動性の良過ぎる試料粉粒体(23)では
、ケース(21)、 (22)の分割に伴って試料粉粒
体充填層が崩れるために破断面が形成されず、測定が不
可能である。
(0) For sample powder (23) with a large particle size of about 40 to 50 μm or more or sample powder (23) with too good fluidity, the sample powder is divided into cases (21) and (22). Because the granule packed bed collapses, no fracture surface is formed, making measurement impossible.

(ハ)乾燥、造粒、コーティング等の高温処理における
粒子間の付着力を測定する場合、試料粉粒体充填層を均
等に加熱することが困難であるために、正確な測定が困
難である。また、湿潤粉体及び高湿度下、並びに、種々
のガス雰囲気下における粉粒体の付着力を測定すること
が困難である。
(c) When measuring the adhesion force between particles during high-temperature treatments such as drying, granulation, and coating, it is difficult to uniformly heat the sample powder packed bed, making accurate measurement difficult. . Furthermore, it is difficult to measure the adhesion of wet powder and powder under high humidity, and under various gas atmospheres.

本発明の目的は、再現性の良い粒子間付着力測定を粉粒
体の物性いかんにかかわらず確実に実行でき、かつ、高
温、高湿度下、並びに、種々のガス雰囲気下における粒
子間付着力測定を確実に精度良く実行できるようにする
点にある。
The purpose of the present invention is to be able to reliably measure the interparticle adhesion force with good reproducibility regardless of the physical properties of the powder and to measure the interparticle adhesion force under high temperature, high humidity, and various gas atmospheres. The purpose is to ensure that measurements are carried out with high precision.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による粉粒体の付着力測定方法の特徴手段は、 流動用ガスの供給により試料粉粒体の流動層を形成し、
その流動層の上流側と下流側の差圧ΔPを測定し、前記
流動層の空塔速度Uと前記差圧ΔPの相関を求め、その
U−ΔP相関に基づいて実測最小流動化速度Uobsを
求め、他方、最小流動化速度計算値Ucalを下記式(
1) φc:カルマンの形状係数 F(εmf):流動化開始時の空間率関数ρp:試料粉
粒体の密度 ρf:ガスの密度 χs■:体面積平均径(粒子径) g:重力係数 μ:ガスの粘度 により求め、 前記実測最小流動化速度Uobsと最小流動化速度計算
値Ucalに基づいて試料粉粒体の粒子間付着力Fcを
下記式(2) m:試料粉粒体の質量(1個当り) g:重力係数 により求めることにあり、その作用効果は次の通りであ
る。
The characteristic means of the method for measuring the adhesion force of powder or granular material according to the present invention is to form a fluidized bed of the sample powder or granular material by supplying a fluidizing gas,
Measure the differential pressure ΔP between the upstream and downstream sides of the fluidized bed, find the correlation between the superficial velocity U of the fluidized bed and the differential pressure ΔP, and calculate the actual minimum fluidization velocity Uobs based on the U-ΔP correlation. On the other hand, the minimum fluidization velocity calculation value Ucal is calculated using the following formula (
1) φc: Kalman's shape factor F (εmf): void ratio function at the start of fluidization ρp: density of sample powder ρf: gas density χs■: body area average diameter (particle diameter) g: gravity coefficient μ : Obtained from the viscosity of the gas, and based on the above-mentioned actual minimum fluidization speed Uobs and minimum fluidization speed calculation value Ucal, calculate the interparticle adhesion force Fc of the sample powder using the following formula (2): m: Mass of the sample powder ( (per piece) g: It is determined by the gravity coefficient, and its effects are as follows.

〔作 用〕[For production]

前記従来技術の欠点を解消できる粉粒体の付着力測定技
術について種々検討し、かつ、実験で確認したところ、
試料粉粒体の流動層を形成して得た空塔速度Uと差圧Δ
Pの相関から求めた実測最小流動化速度Uobs 、及
び、前記式(1)により求めた最小流動化速度計算値U
calに基づいて、上記式(2)により粉粒体の付着力
Fcを算出することが有効である事実を新しく見出した
のである。
After conducting various studies on adhesion force measurement techniques for powder and granular materials that can overcome the drawbacks of the prior art, and confirming this through experiments, we found that:
Superficial velocity U and differential pressure Δ obtained by forming a fluidized bed of sample powder
The measured minimum fluidization speed Uobs obtained from the correlation of P and the calculated minimum fluidization speed U obtained from the above formula (1)
We have newly discovered the fact that it is effective to calculate the adhesion force Fc of powder or granular material using the above equation (2) based on cal.

つまり、試料粉粒体を流動層にして空塔速度Uと差圧Δ
Pの相関を求めるのであるから、前述従来技術における
圧密状態のバラツキによる悪影響のような大きな測定誤
差の要因を無くせ、再現性の良い測定を実行できる。
In other words, the sample powder is made into a fluidized bed, and the superficial velocity U and the differential pressure Δ are
Since the correlation of P is determined, it is possible to eliminate the causes of large measurement errors such as the adverse effects caused by variations in the compaction state in the prior art described above, and it is possible to perform measurements with good reproducibility.

また、粉粒体の粒径が大きくても、流動性が良くても、
前述従来技術のように悪影響を受けること無く、精度の
高い測定を確実に実行できる。
In addition, even if the particle size of the powder or granular material is large or the fluidity is good,
Highly accurate measurements can be reliably performed without being adversely affected unlike the prior art described above.

さらに、流動用ガスの温度調節や湿度調節により粉粒体
の流動層を全体にわたって確実に所望の温度や湿度にで
きるから、高温や高湿度下での付着力の測定を容易確実
に精度良く実行できる。また、流動用ガスとして任意の
ガスを利用できるから、種々のガス雰囲気下における付
着力の測定を容易確実にかつ精度良く実行できる。
Furthermore, by adjusting the temperature and humidity of the fluidizing gas, the entire fluidized bed of powder and granules can be reliably maintained at the desired temperature and humidity, making it easy to measure adhesion forces under high temperature and high humidity conditions. can. Furthermore, since any gas can be used as the flow gas, adhesion force measurements under various gas atmospheres can be carried out easily, reliably, and with high precision.

〔発明の効果〕〔Effect of the invention〕

その結果、再現性の良い測定を粉粒体の物性にかかわら
ず確実に実行でき、高温や高湿度下や任意のガス雰囲気
における付着力の測定を容易確実に良好に実行できる、
−段と優れたかつ全く新規な粉粒体の付着力測定方法を
確立できた。
As a result, measurements with good reproducibility can be performed reliably regardless of the physical properties of the powder or granular material, and adhesion force measurements can be easily and reliably performed under high temperature, high humidity, or any gas atmosphere.
- We were able to establish a completely new and superior method for measuring the adhesion force of powder and granular materials.

請求項2に記載の付着力測定装置を提供することによっ
て、上述の優れた測定を自動的に容易に実行させること
ができる。
By providing the adhesion force measuring device according to claim 2, the above-mentioned excellent measurement can be automatically and easily carried out.

〔実施例〕〔Example〕

次に、第1図ないし第3図により実施例を示す。 Next, an embodiment will be shown with reference to FIGS. 1 to 3.

先ず、粉粒体の付着力測定装置について説明する。First, an apparatus for measuring adhesion force of powder or granular material will be explained.

第1図に示すように、試料粉粒体の流動層(1)を形成
するための容器(2)に、流量計(3)を形成するため
の容器(4)を接続し、流路(4)によるガス供給量を
変更するための流路(5)を設け、流動層(1)の上流
側と下流側の圧力差ΔPを測定する差圧測定手段(6)
を設けである。
As shown in FIG. 1, a container (4) for forming a flow meter (3) is connected to a container (2) for forming a fluidized bed (1) of sample powder, and a flow path ( A differential pressure measuring means (6) is provided with a flow path (5) for changing the gas supply amount according to 4), and measures the pressure difference ΔP between the upstream side and the downstream side of the fluidized bed (1).
This is provided.

段(6)を設けである。A stage (6) is provided.

入力器(7)、流量計(3)、差圧測定手段(6)から
の情報に基づいて、流路(5)の自動操作及び粉粒体の
付着力測定を実行するコンピュータ(C)、並びに、コ
ンピュータ(C)で算出された付着力を表示する表示器
(8)を設け、第2図に示すように、コンピュータ(C
)に下記各種手段を備えさせである。
a computer (C) that automatically operates the flow path (5) and measures the adhesion force of the powder based on information from the input device (7), the flowmeter (3), and the differential pressure measurement means (6); In addition, a display device (8) is provided to display the adhesion force calculated by the computer (C), and as shown in FIG.
) is equipped with the following various means.

(イ)人力器(7)からの測定開始指示に基づいて流路
(4)のガス供給量を変更するために流路(5)を変更
するために前記流量調節実行手段(9)。
(a) The flow rate adjustment execution means (9) for changing the flow path (5) in order to change the gas supply amount of the flow path (4) based on a measurement start instruction from the human power generator (7).

(0)  流量計(3)の測定流量11人入力器7)か
らの流動層断面積Aに基づいて流動層(1)の空塔速度
Uを下記式 により求めるU演算手段(lO)。
(0) U calculation means (lO) for calculating the superficial velocity U of the fluidized bed (1) based on the fluidized bed cross-sectional area A from the flow meter (3)'s measured flow rate 11 input unit 7) using the following formula.

(ハ)U演算手段(10)と差圧測定手段(6)からの
情報に基づいて流動層(1)の空塔速度Uと圧力差ΔP
の相関を記憶するU−ΔP相関記憶手段(11)。
(c) The superficial velocity U of the fluidized bed (1) and the pressure difference ΔP based on the information from the U calculation means (10) and the differential pressure measurement means (6)
U-ΔP correlation storage means (11) for storing the correlation of .

つまり、U−ΔP相関は、空塔速度Uを増大する場合に
は第3図(イ)に示す状態になり、空塔速度Uを減少す
る場合には第3図(ロ)に示す状態となる。
In other words, the U-ΔP correlation becomes the state shown in Fig. 3 (a) when the superficial velocity U is increased, and the state shown in Fig. 3 (b) when the superficial velocity U is decreased. Become.

に)U−ΔP相関記憶手段(11)からの情報に基づい
て実測最小流動化速度U obsを求めるU obs判
定手段(12)。
B) U obs determination means (12) for determining the actual minimum fluidization speed U obs based on the information from the U-ΔP correlation storage means (11).

つまり、U−ΔP相関は、第3図(イ)、(0)に示す
ように、空塔速度Uが低い範囲では空塔速度Uと差圧Δ
Pは一次関数で示される相関(直線A)になり、空塔速
度Uが高い範囲では空塔速度Uが変化しても差圧ΔPは
一定(直線B)になり、その直線AとBの交点に相当す
る空塔速度が実測最小流動化速度TJ obsと判定さ
れる。
In other words, as shown in Figure 3 (A) and (0), the U-ΔP correlation is the relationship between the superficial velocity U and the differential pressure Δ in the range where the superficial velocity U is low.
P becomes a correlation (straight line A) shown by a linear function, and in a range where the superficial velocity U is high, the differential pressure ΔP remains constant (straight line B) even if the superficial velocity U changes, and the relationship between straight lines A and B The superficial velocity corresponding to the intersection point is determined to be the actually measured minimum fluidization velocity TJ obs.

(ホ)入力器(7)からの下記設定値 φc:カルマンの形状係数 F(εmf):流動化開始時の空間率関数ρp:試料粉
粒体の密度 ρf:ガスの密度 χs■:体面積平均径(粒子径) g:重力係数 μ:ガスの粘度 に基づいて最小流動化速度計算値Ucalを下記式 により求めるUcal=φc2/18F(εmf)。
(e) The following setting values from the input device (7) φc: Kalman's shape factor F (εmf): Porosity function at the start of fluidization ρp: Density of sample powder ρf: Gas density χs■: Body area Average diameter (particle diameter) g: Gravity coefficient μ: Minimum fluidization velocity calculation value Ucal is determined by the following formula based on the viscosity of the gas Ucal = φc2/18F (εmf).

尚、ガスの密度ρfは、液浸法(ピクノメ1 一タ法など)により予め実測して設定する。The gas density ρf is determined by the immersion method (Pycnome 1 Set by actually measuring in advance using the one-tameter method, etc.

体面積平均径χsvは、平均粒子径が40〜50μm以
上であれば予め顕微鏡法により実測して、あるいは、重
力沈降法、コールタ−カウンター、ふるい分けなどの公
知手法により予め実測して設定する。
If the average particle diameter is 40 to 50 μm or more, the body area average diameter χsv is set by actually measuring in advance using a microscope, or by a known method such as gravity sedimentation, Coulter counter, or sieving.

カルマンの形状係数φcは、体面積平均径χsvと同様
の手法で予め実測した体積平均値Dpv、及び、ブレー
ン空気透過装置によりかツKOZen)’−Carma
n式により(空気透過法)、予め求められた粒子単位体
積当たりの比表面積Svに基づいて、下記式 により予め算出して設定する。
Karman's shape coefficient φc is determined by the volume average value Dpv measured in advance using the same method as the body area average diameter χsv, and by the Blaine air permeation device.
Based on the specific surface area Sv per particle unit volume determined in advance by the n formula (air permeation method), it is calculated and set in advance by the following formula.

流動化開始時の空間率関数F(εmf)は、下記Eru
gun式又はKozeny −Carman式により予
め算出して設定する。
The porosity function F (εmf) at the start of fluidization is expressed by the following Eru
It is calculated and set in advance using the gun formula or the Kozeny-Carman formula.

2 但し、εmfは流動化開始時の空間率であり、次のよう
にして予め算出される。つまり、密度ρpで重量Wの粉
粒体により断面積Aの流動層を形成させ、流動化時の流
動層の高さLbを実測し、下記式 により算出して設定する。
2 However, εmf is the void ratio at the start of fluidization, and is calculated in advance as follows. That is, a fluidized bed having a cross-sectional area A is formed using powder and granules having a density ρp and a weight W, and the height Lb of the fluidized bed during fluidization is actually measured and calculated and set using the following formula.

(へ)  Uobs判定手段(12)からの実測最小流
動化速度U obsとU cat=φc2/18F(ε
mf)からの最小流動化速度計算値U calに基づい
て試料粉粒体の粒子間付着力Fcを下記式m:試料粉粒
体の質量(1個当り) g:重力係数 により求めるFc演算−手段(14)。
(to) Actual minimum fluidization speed U obs and U cat = φc2/18F (ε
Based on the minimum fluidization velocity calculation value U cal from mf), calculate the interparticle adhesion force Fc of the sample powder using the following formula m: Mass of sample powder (per piece) g: Fc calculation calculated from gravity coefficient - Means (14).

次に、上記付着力測定装置による測定方法に3  A ついて説明する。Next, the measurement method using the above adhesion measuring device is explained in 3 steps. A explain about.

(a)  容器(2)に適量の試料粉粒体を投入する。(a) Pour an appropriate amount of sample powder into the container (2).

(b)入力器(7)によりA1φcXLb、 W、ρp
1ρf、 χsv Xg、μ、Dpvを設定する。
(b) A1φcXLb, W, ρp by input device (7)
1 Set ρf, χsv Xg, μ, and Dpv.

(C)入力器(7)により測定開始を指示する。(C) Instruct to start measurement using the input device (7).

(d)  流量調節手段(9)により流動層(1)の空
塔速度Uが自動的に変更される。
(d) The superficial velocity U of the fluidized bed (1) is automatically changed by the flow rate adjustment means (9).

(e)  U演算手段(10)、U−ΔP相関記憶手段
(11)、U obs判定手段(12)の作用で実測最
小流動化速度U obsが自動的に求められる。
(e) The actual minimum fluidization speed U obs is automatically determined by the functions of the U calculation means (10), the U-ΔP correlation storage means (11), and the U obs determination means (12).

(f)  Uca1判定手段(13)により最小流動化
速度計算値Ucalが自動的に算出される。
(f) The minimum fluidization velocity calculation value Ucal is automatically calculated by the Uca1 determination means (13).

(g) Fc演算手段により試料粉粒体の粒子間付着力
Fcが自動的に算出され、算出した粒子間付着力Fcが
表示器(8)により表示される。
(g) The interparticle adhesion force Fc of the sample powder is automatically calculated by the Fc calculation means, and the calculated interparticle adhesion force Fc is displayed on the display (8).

〔別実施例〕[Another example]

次に別実施例を説明する。 Next, another embodiment will be described.

本発明方法を実施するに、下記(イ)ないしくホ)項の
一部又は全部を人為的に実行してもよい。
In carrying out the method of the present invention, some or all of the following items (a) to e) may be performed manually.

(イ)空塔速度Uの変更及び演算。(a) Change and calculation of superficial velocity U.

(ロ)空塔速度Uと差圧ΔPの相関についての記録。(b) Records regarding the correlation between superficial velocity U and differential pressure ΔP.

(ハ)実測最小流動化速度U obsの判定。(c) Determination of the actually measured minimum fluidization speed U obs.

に)最小流動化速度計算値Ucalの演算。b) Calculation of the minimum fluidization velocity calculation value Ucal.

(ホ)付着力Fcの演算。(e) Calculation of adhesion force Fc.

空塔速度Uを求めるに、容器(2)内の流速を流速計で
直接に測定してもよく、その場合、U演算手段(10)
を省略できる。
To determine the superficial velocity U, the flow velocity inside the container (2) may be directly measured with a current meter, in which case the U calculation means (10)
can be omitted.

差圧ΔPを測定するに、差圧計で直接に差圧測定しても
よく、2個の圧力センサーによる測定圧の差を人為的に
又は差圧演算手段で自動的に求めてもよい。
To measure the differential pressure ΔP, the differential pressure may be directly measured using a differential pressure gauge, or the difference between the pressures measured by two pressure sensors may be determined manually or automatically using differential pressure calculation means.

流動用ガスは空気、窒素、その他適当に選択できる。The fluidizing gas can be appropriately selected from air, nitrogen, and others.

最小流動化速度計算値Ucalを求めるに際して、カル
マンの形状係数φcに代えて比表面積Sv、体積平均値
Dpvを代入した演算式を利用してもよく、流動化開始
時の空間率関数F(εmf)に代えて流動層断面積A、
試料粉粒体の密度ρp、流動化時の流動層の高さLb、
試料粉粒体■5 の重量Wを代入した演算式を利用してもよく、それら代
入式を請求項1の(1)式及びそれに相当する請求項2
の式は含むものとする。
When calculating the minimum fluidization velocity calculation value Ucal, an arithmetic expression in which specific surface area Sv and volume average value Dpv are substituted in place of Kalman's shape coefficient φc may be used, and the void ratio function F (εmf ) in place of the fluidized bed cross-sectional area A,
Density ρp of the sample powder, height Lb of the fluidized bed during fluidization,
An arithmetic expression in which the weight W of the sample granular material (5) may be substituted may be used, and these substitution expressions may be used as equation (1) of claim 1 and claim 2 corresponding thereto.
The expression shall be included.

表示器(2)によりFc7mgを表示してもよく、また
、Fcに代えてFc7mgを人為的に算出してもよく、
その場合を請求項1の(2)式は含むものとする。
Fc7mg may be displayed on the display (2), or Fc7mg may be calculated artificially instead of Fc,
Equation (2) of claim 1 shall include such a case.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の実施例を示し、第1図は
装置の概念図、第2図はブロック図、第3図(イ)、(
0)はU obs判定を説明するグラフである。 第4図は従来装置の概念図である。 (1)・・・・・・流動層、(2)・・・・・・容器、
(3)・・・・・・流量計、(4)・・・・・・流路、
(5)・・・・・・流路、(6)・・・・・・差圧測定
手段、(7)・・・・・・入力器、(8)・・・・・・
表示器、(9)・・・・・・流量調節手段、(10)・
・・66 ・・・U演算手段、(11)・・・・・・U−ΔP相関
記憶手段、(12)・・・・・・U obs判定手段、
(13〉・・・・・・Ucal演算手段、(14)・・
・・・・Fc演算手段。
1 to 3 show embodiments of the present invention, FIG. 1 is a conceptual diagram of the device, FIG. 2 is a block diagram, and FIGS.
0) is a graph explaining U obs determination. FIG. 4 is a conceptual diagram of a conventional device. (1)...Fluidized bed, (2)...Container,
(3)...Flowmeter, (4)...Flow path,
(5)...Flow path, (6)...Differential pressure measuring means, (7)...Input device, (8)...
Indicator, (9)...Flow rate adjustment means, (10).
66...U calculation means, (11)...U-ΔP correlation storage means, (12)...U obs determination means,
(13>...Ucal calculation means, (14)...
...Fc calculation means.

Claims (1)

【特許請求の範囲】 1、流動用ガスの供給により試料粉粒体の流動層を形成
し、その流動層の上流側と下流側の差圧ΔPを測定し、
前記流動層の空塔速度Uと前記差圧ΔPの相関を求め、
そのU−ΔP相関に基づいて実測最小流動化速度Uob
sを求め、 他方、最小流動化速度計算値Ucalを下記式(1) Ucal=φc^2/18F(εmf)×(ρp−ρf
)χsv^2・g/μ・・・(1)φc:カルマンの形
状係数 F(εmf):流動化開始時の空間率関数 ρp:試料粉粒体の密度 ρf:ガスの密度 χsv:体面積平均径(粒子径) g:重力係数 μ:ガスの粘度 により求め、 前記実測最小流動化速度Uobsと最小流動化速度計算
値Ucalに基づいて試料粉粒体の粒子間付着力Fcを
下記式(2) Fc=(Uobs−Ucal)/Ucal・・・(2)
m:試料粉粒体の質量(1個当り) g:重力係数 により求める粉粒体の付着力測定方法。 2、試料粉粒体の流動層(1)を形成するための容器(
2)に、流量計(3)を付設した流動用ガス供給のため
の流路(4)を接続し、その流路(4)によるガス供給
量を変更する流量調節手段(5)を設け、 前記流動層(1)の上流側と下流側の圧力差ΔPを測定
する差圧測定手段(6)を設け、入力器(7)からの測
定開始支持に基づいて前記流路(4)のガス供給量を変
更するために前記流量調節手段(5)を自動操作する流
量変更実行手段(9)を設け、 前記流量計(3)の測定流量F、入力器(7)からの流
動層断面積Aに基づいて前記流動層(1)の空塔速度U
を下記式 U=F/A により求めるU演算手段(10)を設け、 前記U演算手段(10)と差圧測定手段(6)からの情
報に基づいて前記流動層(1)の空塔速度Uと前記圧力
差ΔPの相関を記憶するU−ΔP相関記憶手段(11)
を設け、 そのU−ΔP相関記憶手段(11)からの情報に基づい
て実測最小流動化速度Uobsを求めるUobs判定手
段(12)を設け、 入力器(7)からの下記設定値 φc:カルマンの形状係数 F(εmf):流動化開始時の空間率関数 ρp:試料粉粒体の密度 ρf:ガスの密度 χsv:体面積平均径(粒子径) g:重力係数 μ:ガスの粘度 に基づいて最小流動化速度計算値Ucalを下記式 Ucal=φc^2/18F(εmf)×(ρp−ρf
)χsv^2・g/μにより求めるUcal演算手段(
13)を設け、前記Uobs判定手段(12)からの実
測最小流動化速度Uobsと前記Ucal演算手段(1
3)からの最小流動化速度計算値Ucalに基づいて試
料粉粒体の粒子間付着力Fcを下記式 Fc=(Uobs−Ucal)/Ucal×mgm:試
料粉粒体の質量(1個当り) g:重力係数 により求めるFc演算手段(14)を設け、そのFc演
算手段(14)により求められた粒子間付着力Fcを表
示する表示器(8)を設けてある粉粒体の付着力測定装
置。
[Claims] 1. Forming a fluidized bed of sample powder by supplying a fluidizing gas, and measuring the differential pressure ΔP between the upstream and downstream sides of the fluidized bed,
Determining the correlation between the superficial velocity U of the fluidized bed and the differential pressure ΔP,
Based on the U-ΔP correlation, the actual minimum fluidization speed Uob
On the other hand, calculate the minimum fluidization speed calculation value Ucal using the following formula (1) Ucal=φc^2/18F(εmf)×(ρp−ρf
) χsv^2・g/μ... (1) φc: Kalman's shape factor F (εmf): void ratio function at the start of fluidization ρp: density of sample powder ρf: gas density χsv: body area Average diameter (particle diameter) g: Gravity coefficient μ: Obtained from gas viscosity, and based on the above-mentioned actual minimum fluidization speed Uobs and minimum fluidization speed calculation value Ucal, the interparticle adhesion force Fc of the sample granular material is calculated using the following formula ( 2) Fc=(Uobs-Ucal)/Ucal...(2)
m: Mass of sample powder (per piece) g: Method for measuring adhesion of powder and granule determined by gravity coefficient. 2. Container for forming a fluidized bed (1) of sample powder (
2) is connected to a flow path (4) for supplying gas for flow equipped with a flow meter (3), and is provided with a flow rate adjustment means (5) for changing the amount of gas supplied by the flow path (4), A differential pressure measuring means (6) is provided for measuring the pressure difference ΔP between the upstream side and the downstream side of the fluidized bed (1), and the gas in the flow path (4) is adjusted based on the measurement start support from the input device (7). A flow rate change execution means (9) is provided for automatically operating the flow rate adjustment means (5) in order to change the supply amount, and the measured flow rate F of the flow meter (3) and the cross-sectional area of the fluidized bed from the input device (7) are provided. The superficial velocity U of the fluidized bed (1) based on A
U calculation means (10) is provided which calculates by the following formula U=F/A, and the superficial velocity of the fluidized bed (1) is calculated based on information from the U calculation means (10) and the differential pressure measurement means (6). U-ΔP correlation storage means (11) for storing the correlation between U and the pressure difference ΔP
and Uobs determination means (12) for determining the actual minimum fluidization speed Uobs based on the information from the U-ΔP correlation storage means (11), and the following set value φc from the input device (7): Kalman's Shape factor F (εmf): Porosity function at the start of fluidization ρp: Density of sample powder ρf: Gas density χsv: Body area average diameter (particle diameter) g: Gravity coefficient μ: Based on gas viscosity The minimum fluidization speed calculation value Ucal is calculated using the following formula Ucal=φc^2/18F(εmf)×(ρp−ρf
) Ucal calculating means (
13) is provided, and the actual minimum fluidization speed Uobs from the Uobs determination means (12) and the Ucal calculation means (1
Based on the minimum fluidization speed calculation value Ucal from 3), the interparticle adhesion force Fc of the sample powder is calculated using the following formula Fc=(Uobs-Ucal)/Ucal×mgm: Mass of sample powder (per piece) g: Measurement of adhesion force of powder and granular material provided with Fc calculation means (14) determined by the gravity coefficient and equipped with a display (8) for displaying the interparticle adhesion force Fc determined by the Fc calculation means (14). Device.
JP2070932A 1990-03-20 1990-03-20 Method and apparatus for measuring adhesion of powder and granular material Expired - Lifetime JP2889640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2070932A JP2889640B2 (en) 1990-03-20 1990-03-20 Method and apparatus for measuring adhesion of powder and granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2070932A JP2889640B2 (en) 1990-03-20 1990-03-20 Method and apparatus for measuring adhesion of powder and granular material

Publications (2)

Publication Number Publication Date
JPH03269340A true JPH03269340A (en) 1991-11-29
JP2889640B2 JP2889640B2 (en) 1999-05-10

Family

ID=13445781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2070932A Expired - Lifetime JP2889640B2 (en) 1990-03-20 1990-03-20 Method and apparatus for measuring adhesion of powder and granular material

Country Status (1)

Country Link
JP (1) JP2889640B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027345A1 (en) * 1997-11-26 1999-06-03 Universidad De Sevilla, Vicerrectorado De Investigacion Device and method for measuring cohesion in fine granular media
JP2007040770A (en) * 2005-08-02 2007-02-15 Sysmex Corp Powder measuring system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027345A1 (en) * 1997-11-26 1999-06-03 Universidad De Sevilla, Vicerrectorado De Investigacion Device and method for measuring cohesion in fine granular media
ES2131031A1 (en) * 1997-11-26 1999-07-01 Univ Sevilla Device and method for measuring cohesion in fine granular media
JP2007040770A (en) * 2005-08-02 2007-02-15 Sysmex Corp Powder measuring system and method
JP4642585B2 (en) * 2005-08-02 2011-03-02 シスメックス株式会社 Powder measuring system and powder measuring method

Also Published As

Publication number Publication date
JP2889640B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
Geldart Estimation of basic particle properties for use in fluid—particle process calculations
Kirchberg et al. Influence of particle shape and size on the wetting behavior of soft magnetic micropowders
Szekely et al. Flow maldistribution in packed beds: a comparison of measurements with predictions
NL7811939A (en) DEVICE FOR MEASURING THE DENSITY OF A FLUIDUM.
Spink et al. Gravity discharge rate of fine particles from hoppers
JPH1194604A (en) Mass flow measuring device and method therefor
CA2133343A1 (en) Measuring and monitoring the size of particulate material
US8423303B2 (en) Method for real time measurement of mass flow rate of bulk solids
Sobczyk Experimental study of the flow field disturbance in the vicinity of single sensor hot-wire anemometer
JPH03269340A (en) Method and instrument for measuring adhesion of granular body
Weimer et al. Application of a gamma-radiation density gauge for determining hydrodynamic properties of fluidized beds
JPH07509069A (en) Fluid flow measurement
Heertjes et al. The measurement of local mass flow rates and particle velocities in fluid—solids flow
Botterill et al. The open-channel flow of fluidized solids
Flude et al. Viscosity measurement by means of falling spheres compared with capillary viscometry
US4223557A (en) Flowmeter
Harwood et al. The flow of granular solids through circular orifices
JP3400395B2 (en) Particle size distribution measuring device
Guy et al. Effect of orifice size and heat-transfer rate on measured static pressures in a low-density arc-heated wind tunnel
RU2162596C2 (en) Method measuring density
JPS6338087B2 (en)
RU2156960C2 (en) Process of measurement of mass, flow rate and volume of gas while it is released from closed vessel and gear for its implementation
JPH09126855A (en) Method for measuring storage volume by gas
JPS5913942A (en) Method for measuring density of fluid by weighing
RU2207518C2 (en) Method of measurement of mass flow rate of powder-like medium