JP3085915B2 - Method and apparatus for analyzing sulfate ion content of salt - Google Patents

Method and apparatus for analyzing sulfate ion content of salt

Info

Publication number
JP3085915B2
JP3085915B2 JP1243897A JP1243897A JP3085915B2 JP 3085915 B2 JP3085915 B2 JP 3085915B2 JP 1243897 A JP1243897 A JP 1243897A JP 1243897 A JP1243897 A JP 1243897A JP 3085915 B2 JP3085915 B2 JP 3085915B2
Authority
JP
Japan
Prior art keywords
sample
diffuse reflection
salt
reflection intensity
sulfate ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1243897A
Other languages
Japanese (ja)
Other versions
JPH10206321A (en
Inventor
直人 吉川
Original Assignee
財団法人塩事業センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人塩事業センター filed Critical 財団法人塩事業センター
Priority to JP1243897A priority Critical patent/JP3085915B2/en
Publication of JPH10206321A publication Critical patent/JPH10206321A/en
Application granted granted Critical
Publication of JP3085915B2 publication Critical patent/JP3085915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩製品の硫酸イオ
ン含有量を分析する方法及び装置に関し、特に天日塩な
どの輸入塩を溶解し再製することにより製造した高純度
の塩製品の硫酸イオン含有量を迅速に分析するのに好適
な方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for analyzing a sulfate ion content of a salt product, and more particularly to a sulfate ion content of a high-purity salt product produced by dissolving and regenerating imported salt such as solar salt. The present invention relates to a method and an apparatus suitable for quickly analyzing an amount.

【0002】[0002]

【従来の技術】国内の製塩工場は、その製塩法により2
つのタイプに分けることができる。1つは、海水を原料
としてイオン交換膜電気透析法により海水を濃縮してか
ん水(濃い塩水)を得、これを蒸発缶でさらに濃縮して
塩の結晶を析出させる方法(イオン交換膜製塩法)であ
り、もう1つは外国から輸入した天日塩を原料とし、こ
れを水に溶解することによりかん水を得、これを蒸発缶
で濃縮し塩の結晶を析出させる方法(溶解再製製塩法)
である。
2. Description of the Related Art Domestic salt factories use a salt manufacturing method.
Can be divided into two types. One is a method in which seawater is concentrated by ion exchange membrane electrodialysis using seawater as a raw material to obtain brackish water (dense brine), which is further concentrated in an evaporator to precipitate salt crystals (a method for producing an ion-exchange membrane salt). The other is a method in which solar salt imported from a foreign country is used as a raw material, and this is dissolved in water to obtain brackish water, which is concentrated in an evaporator to precipitate salt crystals (dissolving and remanufacturing salt production method).
It is.

【0003】後者の溶解再製製塩法は、天日塩を水に溶
解した原かん水に薬品を加え、不純物であるカルシウム
イオン及びマグネシウムイオンを除去した精製かん水を
使用して製塩を行う。このような、再溶解と不純物除去
の処理により高純度な塩製品の生産が可能となるが、精
製かん水には製塩工程で完全には除去しきれていない硫
酸イオンが不純物として含まれており、この硫酸イオン
は塩の結晶化の工程で析出または塩に付着することによ
り塩製品に含有される。
In the latter method, salt is produced by adding a chemical to raw brackish water in which solar salt is dissolved in water, and using purified brackish water from which calcium ions and magnesium ions, which are impurities, have been removed. Such a process of re-dissolution and removal of impurities makes it possible to produce high-purity salt products, but purified brine contains sulfate ions that have not been completely removed in the salt production process as impurities. This sulfate ion is contained in the salt product by depositing or adhering to the salt in the salt crystallization step.

【0004】高純度塩製品にはいくつかのグレードがあ
り、グレードの高い塩製品において硫酸イオン含有量は
品質上重要な因子である。溶解再製製塩法による溶解再
製工場では、工程操作により製品品質に応じたつくり分
けを行っている。その操作を適確に行うためには、製品
の硫酸イオン含有量を分析して、迅速に工程操作にフィ
ードバックすることが必要となる。この塩製品の硫酸イ
オン含有量の分析は、従来はイオンクロマトグラフィー
法によって行われていた。
[0004] There are several grades of high purity salt products, and the sulfate content is an important factor in quality in high grade salt products. In the factory for dissolution and remanufacturing by the dissolution and remanufacturing method, manufacturing is performed according to the product quality by the process operation. In order to perform the operation properly, it is necessary to analyze the sulfate ion content of the product and quickly feed it back to the process operation. Analysis of the sulfate ion content of this salt product has been conventionally performed by an ion chromatography method.

【0005】[0005]

【発明が解決しようとする課題】イオンクロマトグラフ
ィー法による塩中の硫酸イオンの分析には、塩を天秤で
秤量し、メスフラスコに入れ、それに蒸留水を加えて溶
解し、その容量を一定にするといったサンプルの前処理
操作が不可欠であり、分析時間も1点あたり15分程度
必要である。また、分析機器を立ち上げてから、機器が
安定するまでに1時間程度の時間が必要であり、分析の
迅速性に問題がある。さらに、分析者には、分析機器に
付属している分離カラム等のメインテナンス操作、分析
方法についての専門知識と機器操作の習熟が要求され
る。
In the analysis of sulfate ions in salt by ion chromatography, the salt is weighed with a balance, placed in a volumetric flask, dissolved in distilled water, and the volume is kept constant. It is indispensable to perform a sample pre-processing operation, and the analysis time also requires about 15 minutes per point. In addition, it takes about one hour from the start of the analytical instrument until the instrument is stabilized, and there is a problem in the speed of analysis. In addition, the analyst is required to maintain the operation of the separation column and the like attached to the analytical instrument and to have expertise in the analytical method and familiarity with the instrument operation.

【0006】本発明は、このような従来技術の問題点に
鑑みてなされたもので、前処理操作を必要とせず短時間
で塩製品の硫酸イオン含有量を高精度に分析することの
できる方法及び装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and is a method capable of accurately analyzing the sulfate ion content of a salt product in a short time without requiring a pretreatment operation. And an apparatus.

【0007】[0007]

【課題を解決するための手段】硫酸イオンは1つの硫黄
原子(S)が4つの酸素原子(O)と結合したイオンで
ある。硫酸イオンの基準振動であるSO縮重伸縮振動
は、硫黄原子が1つの酸素原子の方に動き、それにとも
ない他の3つの酸素原子が硫黄原子の方に動くことによ
り起きる振動であり、その振動波数は1104cm-1
ある。
A sulfate ion is an ion in which one sulfur atom (S) is bonded to four oxygen atoms (O). The SO degenerate stretching vibration, which is the standard vibration of sulfate ions, is a vibration that occurs when a sulfur atom moves toward one oxygen atom and the other three oxygen atoms move toward a sulfur atom. The wave number is 1104 cm -1 .

【0008】本発明では、このSO縮重伸縮振動(11
04cm-1)に起因する測定波数(1110cm-1)及
び硫酸イオン含有量によらず拡散反射強度がほぼ一定な
参照波数(1240cm-1)とに着目した。そして、参
照波数を基準とした時の測定波数の拡散反射強度と硫酸
イオン含有量との間には相関関係があることから、これ
ら2つの波数で拡散反射強度測定を行うことで塩製品の
硫酸イオン含有量が測定できることを見い出した。ま
た、塩製品の粒径によっては拡散反射強度と硫酸イオン
含有量との関係が多少変化することを見い出し、粒径の
異なる塩製品に対しても粒径に応じた拡散反射強度と硫
酸イオン含有量との関係式を用いることで測定可能と
し、本発明を完成するに至った。
In the present invention, the SO degenerate stretching vibration (11
Attention was paid to a measured wave number (1110 cm -1 ) caused by the measured light wave number (04 cm -1 ) and a reference wave number (1240 cm -1 ) in which the diffuse reflection intensity is almost constant regardless of the sulfate ion content. Since there is a correlation between the diffuse reflection intensity of the measured wave number based on the reference wave number and the sulfate ion content, the diffuse reflection intensity measurement is performed at these two wave numbers to obtain the sulfuric acid of the salt product. It has been found that the ion content can be measured. It was also found that the relationship between the diffuse reflection intensity and the sulfate ion content slightly changed depending on the particle size of the salt product. By using a relational expression with the amount, measurement was possible, and the present invention was completed.

【0009】すなわち、本発明による塩の硫酸イオン含
有量分析方法は、塩に赤外線を照射し、参照波数での拡
散反射強度を基準とした測定波数での拡散反射強度によ
り硫酸イオン含有量を求めることを特徴とする。
That is, in the method for analyzing the sulfate ion content of a salt according to the present invention, the salt is irradiated with infrared rays, and the sulfate ion content is determined from the diffuse reflection intensity at the measurement wave number based on the diffuse reflection intensity at the reference wave number. It is characterized by the following.

【0010】ここで、測定波数は1110cm-1であ
り、参照波数は1240cm-1である。硫酸イオン含有
量C[mg/kg]は、参照波数での拡散反射強度を基
準とした測定波数での拡散反射強度A[−]と塩の粒径
分布に応じた定数a、bで表される次の〔数1〕に基づ
いて求めることができる。
Here, the measured wave number is 1110 cm -1 and the reference wave number is 1240 cm -1 . The sulfate ion content C [mg / kg] is represented by the diffuse reflection intensity A [-] at the measured wave number based on the diffuse reflection intensity at the reference wave number, and constants a and b according to the particle size distribution of the salt. Can be obtained based on the following [Equation 1].

【0011】[0011]

【数1】C=a+bA また、本発明による塩の硫酸イオン含有量分析装置は、
試料を入れる試料カップと、試料カップ中の試料に赤外
線を照射する赤外線照射手段と、試料による拡散反射光
を集光する集光手段と、測定波数1110cm-1におけ
る拡散反射強度及び参照波数1240cm-1における拡
散反射強度を測定する手段と、参照波数における拡散反
射強度と測定波数における拡散反射強度と試料の粒径分
布とに基づいて硫酸イオン含有量を演算するための演算
手段とを備えることを特徴とする。
C = a + bA Further, the apparatus for analyzing the sulfate ion content of a salt according to the present invention comprises:
A sample cup to put a sample, an infrared irradiation unit for irradiating infrared rays onto a sample in the sample cup, and focusing means for focusing the diffused light reflected by the sample, diffuse reflection intensity at the measuring wavenumber 1110 cm -1 and reference wave number 1240 cm - A means for measuring the diffuse reflection intensity at 1 and a calculation means for calculating the sulfate ion content based on the diffuse reflection intensity at the reference wave number, the diffuse reflection intensity at the measurement wave number, and the particle size distribution of the sample. Features.

【0012】測定波数1110cm-1における拡散反射
強度及び参照波数1240cm-1における拡散反射強度
は、例えばフーリエ変換赤外分光光度計(FT−IR)
により測定することができる。
[0012] diffuse reflection intensity at the diffuse reflection intensity and the reference wave number 1240 cm -1 in the measurement wavenumber 1110 cm -1, for example a Fourier transform infrared spectrophotometer (FT-IR)
Can be measured.

【0013】演算手段は、参照波数を基準とした時の測
定波数の拡散反射強度A[−]と、試料の粒径分布に応
じた定数a、bとで表される次式に基づいて硫酸イオン
含有量C[mg/kg]を演算するものとすることがで
きる。
The calculation means calculates the sulfuric acid based on the following equation expressed by the diffuse reflection intensity A [-] of the measured wave number based on the reference wave number and constants a and b corresponding to the particle size distribution of the sample. The ion content C [mg / kg] can be calculated.

【0014】C=a+bA 本発明によると、塩製品を天秤で秤量し、メスフラスコ
に入れ、蒸留水を加えて溶解し、その容量を一定にする
といった一連の前処理操作が全て不要になり、塩製品を
そのまま試料カップに入れて分析することができ、分析
時間を1分程度に短縮することができる。したがって、
溶解再製製塩法による溶解再製工場において、塩製品の
硫酸イオン含有量を迅速に工程操作にフィードバックし
て工程の最適化を行い、高度な製品管理を行うことが可
能となる。
C = a + bA According to the present invention, a series of pretreatment operations such as weighing a salt product with a balance, placing it in a volumetric flask, adding distilled water to dissolve the salt product, and keeping the volume constant, becomes unnecessary. The salt product can be put into a sample cup as it is for analysis, and the analysis time can be reduced to about 1 minute. Therefore,
In a melting and remanufacturing plant based on the melting and remanufacturing method, the sulfate ion content of the salt product is quickly fed back to the process operation to optimize the process and to perform advanced product management.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。ただし、この説明は、本発明が以下の実施
の形態に限定されることを意図するものではない。図1
は本発明による塩の硫酸イオン含有量分析装置の概要を
示す説明図であり、(a)は装置の全体構成を示す概略
図、(b)は試料から拡散反射光を発生させるための拡
散反射セルの模式図、(c)は試料ホルダーと試料カッ
プの模式図である。
Embodiments of the present invention will be described below. However, this description is not intended to limit the present invention to the following embodiments. FIG.
1 is an explanatory view showing an outline of a sulfate ion content analyzer of a salt according to the present invention, (a) is a schematic view showing an entire configuration of the apparatus, and (b) is a diffuse reflection for generating diffuse reflection light from a sample. FIG. 3C is a schematic diagram of a cell, and FIG. 3C is a schematic diagram of a sample holder and a sample cup.

【0016】図1(a)に示すように、分析装置は、試
料の拡散反射スペクトルを測定するための赤外分光光度
計10と、赤外分光光度計10の出力信号を演算処理し
て硫酸イオン含有量を算出するコンピュータ20とから
なる。赤外分光光度計10はフーリエ変換分光光度計と
するのが有利であり、内部に拡散反射セル30を備え
る。拡散反射セル30は、図1(b)に略示するよう
に、スライド式ホルダー31、スライド式ホルダー31
に取り付けられた試料カップ32、試料カップ32に入
れられた試料33に赤外線を照射するためのミラー系3
5a,35b,35c、及び試料からの拡散反射光を集
光するためのミラー系36a,36b,36cを備え
る。
As shown in FIG. 1 (a), the analyzer comprises an infrared spectrophotometer 10 for measuring a diffuse reflection spectrum of a sample, and an output signal of the infrared spectrophotometer 10 which is operated to process sulfuric acid. And a computer 20 for calculating the ion content. Advantageously, the infrared spectrophotometer 10 is a Fourier transform spectrophotometer, with a diffuse reflection cell 30 inside. As schematically shown in FIG. 1B, the diffuse reflection cell 30 includes a slide holder 31 and a slide holder 31.
Mirror 32 for irradiating the sample cup 32 attached to the sample and the sample 33 placed in the sample cup 32 with infrared rays
5a, 35b, and 35c, and mirror systems 36a, 36b, and 36c for condensing diffusely reflected light from the sample.

【0017】測定の際、測定試料を試料カップ32に入
れ、スパチュラ等ですりきって表面を均一状態にし、ス
ライド式ホルダー31に固定した後、赤外分光光度計1
0の拡散反射セル30にセットする。赤外分光光度計1
0の図示しない赤外線源から導かれた赤外線は、赤外線
照射ミラー系35a,35b,35cを介して試料カッ
プ32中の試料に照射される。試料33から拡散反射さ
れた赤外線は、集光ミラー系36a,36b,36cに
よって集光されて図示しない検出器で検出され、試料の
拡散反射スペクトルが測定される。コンピュータ20
は、予め定められた波数における拡散反射強度をもと
に、その拡散反射強度と硫酸イオン含有量との関係式か
ら硫酸イオン含有量を算出する。
At the time of measurement, a measurement sample is put into a sample cup 32, and the surface is made uniform with a spatula or the like, and is fixed to a slide holder 31.
0 is set in the diffuse reflection cell 30. Infrared spectrophotometer 1
The infrared light guided from an infrared light source 0 (not shown) is irradiated on the sample in the sample cup 32 via the infrared irradiation mirror systems 35a, 35b, and 35c. The infrared rays diffusely reflected from the sample 33 are condensed by the condenser mirror systems 36a, 36b, and 36c, detected by a detector (not shown), and the diffuse reflection spectrum of the sample is measured. Computer 20
Calculates the sulfate ion content from the relational expression between the diffuse reflection intensity and the sulfate ion content based on the diffuse reflection intensity at a predetermined wave number.

【0018】最初に、図1に示す分析装置に既知の種々
の硫酸イオン含有量を有する塩試料を装着し、その拡散
反射スペクトルを測定して、塩製品の硫酸イオン含有量
によって拡散反射強度が変化する測定波数、及び硫酸イ
オン含有量によって拡散反射強度が変化しない参照波数
について検討した。
First, a salt sample having various known sulfate ion contents is mounted on the analyzer shown in FIG. 1, and its diffuse reflection spectrum is measured. The diffuse reflection intensity is determined by the sulfate ion content of the salt product. The changing measurement wave number and the reference wave number at which the diffuse reflection intensity does not change with the sulfate ion content were examined.

【0019】拡散反射スペクトルの測定は以下の手順で
行った。まず、硫酸イオンをほとんど含有しない塩化ナ
トリウム試薬(純度99.99%)を基準試料としてバ
ックグラウンドスペクトルを測定した。次に、バックグ
ラウンドスペクトルを基準として測定試料の拡散反射ス
ペクトルを1点の試料につき3回ずつ測定した。測定試
料には、溶解再製工場の製品試料22点(平均粒径30
0〜350μm)を用いた。
The measurement of the diffuse reflection spectrum was performed according to the following procedure. First, a background spectrum was measured using a sodium chloride reagent (purity 99.99%) containing almost no sulfate ion as a reference sample. Next, the diffuse reflection spectrum of the measurement sample was measured three times for each sample based on the background spectrum. The measurement sample includes 22 product samples (average particle size 30
0-350 μm).

【0020】図2は、各試料に対して測定されたバック
グラウンドを基準とした拡散反射スペクトル、すなわち
試料の拡散反射スペクトルからバックグラウンドスペク
トルを差し引いたスペクトルである。図2から、硫酸イ
オンのSO縮重伸縮振動波数1104cm-1付近の拡散
反射強度は測定試料により大きく変化するが、1240
cm-1付近の拡散反射強度は製品試料によらずほぼ一定
であることが分かる。
FIG. 2 shows a diffuse reflection spectrum based on the background measured for each sample, that is, a spectrum obtained by subtracting the background spectrum from the diffuse reflection spectrum of the sample. From FIG. 2, it can be seen that the diffuse reflection intensity of the sulfate ion near the SO degenerate stretching vibration frequency of 1104 cm -1 greatly changes depending on the measurement sample.
It can be seen that the diffuse reflection intensity around cm -1 is almost constant regardless of the product sample.

【0021】そこで、1240cm-1を参照波数、拡散
反射強度ピークの極大値を示す1110cm-1を測定波
数として、参照波数を基準とした時の測定波数の拡散反
射強度、すなわち測定波数における拡散反射強度から参
照波数における拡散反射強度を差し引いた強度を算出し
た。図3は、こうして参照波数を基準として算出された
各試料の測定波数の拡散反射強度と、イオンクロマトグ
ラフィー法によって分析した各試料の硫酸イオン含有量
分析値との関係を示したものである。
Thus, the reference wave number is 1240 cm −1 , and the diffuse reflection intensity of the measured wave number with respect to the reference wave number, that is, the diffuse reflection at the measured wave number, is 1110 cm −1 , which indicates the maximum value of the diffuse reflection intensity peak, as the measured wave number. The intensity was calculated by subtracting the diffuse reflection intensity at the reference wave number from the intensity. FIG. 3 shows the relationship between the diffuse reflection intensity of the measured wave number of each sample calculated based on the reference wave number and the sulfate ion content analysis value of each sample analyzed by the ion chromatography method.

【0022】拡散反射強度と分析値との間には次の〔数
2〕に示す良好な相関関係(相関係数R=0.946)
が見られ、波数1240cm-1での拡散反射強度を基準
として波数1110cm-1での拡散反射強度を測定する
ことにより塩製品の硫酸イオン含有量を算出できること
が確かめられた。
A good correlation (correlation coefficient R = 0.946) shown in the following [Equation 2] between the diffuse reflection intensity and the analysis value.
Was observed, to be able to calculate the sulfate ion content of the salt product by measuring the diffuse reflection intensity at wave number 1110 cm -1 diffuse reflection intensity at wave number 1240 cm -1 as a reference was confirmed.

【0023】[0023]

【数2】C=−2.392+540.45A C:硫酸イオン含有量[mg/kg] A:拡散反射強度[−] ここで拡散反射強度Aは、1110cm-1の拡散反射強
度の値から1240cm-1の拡散反射強度の値を差し引
いた値を用いた。
C = −2.392 + 540.45 A C: Sulfate ion content [mg / kg] A: Diffuse reflection intensity [−] Here, the diffuse reflection intensity A is 1240 cm from the value of the diffuse reflection intensity of 1110 cm −1. The value obtained by subtracting the value of the diffuse reflection intensity of -1 was used.

【0024】次に、試料の粒径等、試料状態の分析精度
への影響について検討した。拡散反射法により粉体の拡
散反射強度を測定する場合、測定試料の粒径、形状、充
填密度により拡散反射強度が変化し、分析の誤差原因と
なることが考えられる。塩製品試料の場合、通常品の平
均粒径は300〜350μm程度であるが、塩ユーザー
は用途により大粒、微粒といった粒径の異なる塩製品を
要望する場合があり、通常品と粒径の異なる製品につい
て本発明の方法で分析を行う場合、一律に前記〔数2〕
を適用すると分析精度が低下することが考えられる。な
お、試料粒の形状については、ほぼ正六面体であるため
拡散反射強度への影響は小さい。また、充填量について
は粒径分布により空隙率は多少変化するが拡散反射強度
への影響は小さいと考えられる。
Next, the influence of the state of the sample, such as the particle size of the sample, on the analysis accuracy was examined. When measuring the diffuse reflection intensity of a powder by the diffuse reflection method, it is considered that the diffuse reflection intensity changes depending on the particle size, shape, and packing density of the measurement sample, which may cause an analysis error. In the case of a salt product sample, the average particle size of the normal product is about 300 to 350 μm, but salt users may demand salt products having different particle sizes such as large particles and fine particles depending on the application, and the particle size differs from the normal product. When a product is analyzed by the method of the present invention, the above [Equation 2]
It is considered that the analysis accuracy is reduced when is applied. It should be noted that the shape of the sample particles is almost regular hexahedron, and thus has little effect on the diffuse reflection intensity. As for the filling amount, the porosity slightly changes depending on the particle size distribution, but it is considered that the influence on the diffuse reflection intensity is small.

【0025】そこで、ここでは粒径の影響について検討
した。製品試料を粒径212〜250μm、300〜3
55μm、425〜500μmにふるい分けした3種類
の製品ふるい分け試料各22点について拡散反射スペク
トルの測定を行い、1240cm-1を参照波数、111
0cm-1を測定波数として拡散反射強度を算出した。図
4は、こうして算出された粒径でふるい分けされた塩試
料の拡散反射強度とイオンクロマトグラフィー法による
硫酸イオン含有量分析値との関係を示す図である。図
中、◇は粒径212〜250μmのふるい分け試料、□
は粒径300〜355μmのふるい分け試料、△は粒径
425〜500μmのふるい分け試料を表す。
Therefore, the effect of the particle size was examined here. The product sample has a particle size of 212 to 250 μm, 300 to 3
Diffuse reflection spectra were measured at 22 points for each of three types of product sieving samples sieved to 55 μm and 425 to 500 μm, and the reference wave number was 1240 cm −1 and 111
The diffuse reflection intensity was calculated using 0 cm -1 as the measurement wave number. FIG. 4 is a diagram showing the relationship between the diffuse reflection intensity of the salt sample sieved with the calculated particle size and the sulfate ion content analysis value by ion chromatography. In the figure, Δ represents a sieve sample having a particle size of 212 to 250 μm,
Represents a sieved sample having a particle size of 300 to 355 μm, and △ represents a sieved sample having a particle size of 425 to 500 μm.

【0026】その結果、硫酸イオン含有量[mg/k
g]をC、拡散反射強度[−]をAとするとき、粒径2
12〜250μmの試料に対しては相関係数R=0.9
32で下記〔数3〕の関係式が、粒径300〜355μ
mの試料に対しては相関係数R=0.956で下記〔数
4〕の関係式が、粒径425〜500μmの試料に対し
ては相関係数R=0.960で下記〔数5〕の関係式が
それぞれ成立することが判明した。
As a result, the sulfate ion content [mg / k
g] is C and the diffuse reflection intensity [−] is A, the particle size 2
Correlation coefficient R = 0.9 for samples between 12 and 250 μm
At 32, the following expression (Expression 3) indicates that the particle size is 300 to 355 μm.
m for a sample having a correlation coefficient of R = 0.956, and the following equation for a sample having a particle size of 425 to 500 μm. ] Have been found to hold.

【0027】[0027]

【数3】C=−10.892+486.0A## EQU3 ## C = -10.892 + 486.0A

【0028】[0028]

【数4】C=3.332+427.9A## EQU4 ## C = 3.332 + 427.9A

【0029】[0029]

【数5】C=−3.009+482.5A 図4を見ると明らかなように、粒径300〜355μm
の試料に対する関係式と粒径425〜500μmの試料
に対する関係式とはほぼ同一の直線とみることができ
る。これに対して粒径212〜250μmの試料の場
合、硫酸イオン含有量に対する拡散反射強度はそれらと
比較して低かった。したがって、本発明による塩の硫酸
イオン濃度の分析においては、特に粒径212〜250
μmの微粒の塩製品に対する分析においては、粒径に応
じた検量線を作成することが必要である。また、粒径3
00〜355μm、あるいは粒径425〜500μmの
塩製品についても、各々の粒径範囲の検量線を用いた方
が分析精度はさらに向上する。
C = −3.009 + 482.5A As apparent from FIG. 4, the particle size is 300 to 355 μm.
And the relational expression for the sample having a particle size of 425 to 500 μm can be regarded as substantially the same straight line. On the other hand, in the case of the sample having a particle size of 212 to 250 μm, the diffuse reflection intensity with respect to the sulfate ion content was lower than those. Therefore, in the analysis of the sulfate ion concentration of the salt according to the present invention, in particular, the particle size of 212 to 250
In the analysis of a salt product having a fine particle of μm, it is necessary to prepare a calibration curve according to the particle size. In addition, particle size 3
Even for salt products having a particle size of 00 to 355 µm or a particle size of 425 to 500 µm, the analysis accuracy is further improved by using a calibration curve in each particle size range.

【0030】このように、塩製品の粒径分布に応じた拡
散反射強度と硫酸イオン含有量との検量線さえ作成すれ
ば、拡散反射強度を用いてあらゆる粒径の塩製品に対し
て硫酸イオン含有量を高精度に分析することができる。
As described above, if only a calibration curve of the diffuse reflection intensity and the sulfate ion content according to the particle size distribution of the salt product is prepared, the sulfate ion can be applied to the salt products of all particle sizes using the diffuse reflection intensity. The content can be analyzed with high precision.

【0031】なお、〔数2〕の関係式を求めた試料の平
均粒径は300〜350μmであった。〔数2〕の傾き
と切片値が平均粒径がほぼ同じ試料に対する〔数4〕と
異なっているのは、〔数4〕の試料は予めふるい分けを
した試料であるのに対して〔数2〕の試料はふるい分け
をしていない試料であることによるものと考えられる。
The average particle size of the sample from which the relational expression of [Equation 2] was determined was 300 to 350 μm. The difference between the slope and intercept of [Equation 2] is different from that of [Equation 4] for a sample having almost the same average particle size. ] Is considered to be due to the fact that the sample is not sieved.

【0032】赤外線反射強度は、試料の粒径、形状、充
填密度により影響を受けるが、試料の粒径の分散が異な
ると試料カップへの充填密度が変化するため、その影響
が出ているものと考えられる。
The infrared reflection intensity is affected by the particle size, shape, and packing density of the sample, but if the dispersion of the particle size of the sample is different, the packing density in the sample cup changes. it is conceivable that.

【0033】以上説明したように、本発明の分析方法は
塩試料の前処理が不要であり、分析時間も1分程度と従
来のイオンクロマトグラフィー法に比較すると極めて高
速である。また、塩製品の粒径に応じた検量線を作成す
ることにより粒径の異なる塩製品に対しても有効であ
る。従って、本発明の硫酸イオン含有量分析装置を用い
ることにより、製塩工場(溶解再製工場)における高純
度の塩製品の硫酸イオン含有量の迅速で正確な分析が可
能となり、製品管理の効率化を図ることができる。さら
に、分析結果を迅速に工程操作にフィードバックするこ
とができるため、製品グレードに応じた工程操作の最適
化を図ることができる。
As described above, the analysis method of the present invention does not require pretreatment of a salt sample, and the analysis time is about 1 minute, which is extremely high as compared with the conventional ion chromatography method. Further, by preparing a calibration curve according to the particle size of the salt product, it is effective for salt products having different particle sizes. Therefore, by using the sulfate ion content analyzer of the present invention, it is possible to quickly and accurately analyze the sulfate ion content of a high-purity salt product in a salt factory (dissolution factory), thereby improving the efficiency of product management. Can be planned. Further, the analysis result can be quickly fed back to the process operation, so that the process operation can be optimized according to the product grade.

【0034】[0034]

【発明の効果】本発明によると、前処理を必要とするこ
となく塩の硫酸イオン含有量を迅速かつ高精度に分析す
ることが可能となる。
According to the present invention, it is possible to quickly and accurately analyze the sulfate ion content of a salt without requiring a pretreatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による硫酸イオン含有量分析装置の一例
の概略図。
FIG. 1 is a schematic view of an example of a sulfate ion content analyzer according to the present invention.

【図2】拡散反射法で測定した塩試料の拡散反射スペク
トルを示す図。
FIG. 2 is a view showing a diffuse reflection spectrum of a salt sample measured by a diffuse reflection method.

【図3】参照波数を基準として算出された各試料の測定
波数の拡散反射強度と、イオンクロマトグラフィー法に
よって分析した各試料の硫酸イオン含有量分析値との関
係を示す図。
FIG. 3 is a diagram showing the relationship between the diffuse reflection intensity of the measured wave number of each sample calculated on the basis of the reference wave number and the sulfate ion content analysis value of each sample analyzed by ion chromatography.

【図4】粒径でふるい分けされた塩試料の拡散反射強度
とイオンクロマトグラフィー法による硫酸イオン含有量
分析値との関係を示す図。
FIG. 4 is a diagram showing the relationship between the diffuse reflection intensity of a salt sample sieved by a particle size and a sulfate ion content analysis value by an ion chromatography method.

【符号の説明】[Explanation of symbols]

10…赤外分光光度計、20…コンピュータ、30…拡
散反射セル、31…スライド式ホルダー、32…試料カ
ップ、33…試料、35a〜35c…赤外線反射ミラー
系、36a〜36c…集光ミラー系
Reference Signs List 10: infrared spectrophotometer, 20: computer, 30: diffuse reflection cell, 31: slide holder, 32: sample cup, 33: sample, 35a to 35c: infrared reflection mirror system, 36a to 36c: condensing mirror system

フロントページの続き (56)参考文献 特開 平8−240527(JP,A) 特開 平6−288904(JP,A) J Raman Spectrosc Vol.19,No.7(1988)p497 −498 J Mol Struct Vol. 130,No.3/4(1985)p245−254 (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/61 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-8-240527 (JP, A) JP-A-6-288904 (JP, A) J Raman Spectrosc Vol. 19, No. 7 (1988) p497-498 J Mol Struct Vol. 3/4 (1985) p245-254 (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21/00-21/61 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】塩に赤外線を照射し、1240cm-1での
拡散反射強度を基準とした1110cm-1での拡散反射
強度A[−]と、塩の粒径分布に応じた定数a、bで表
される次式に基づいて硫酸イオン含有量C[mg/k
g]を求めることを特徴とする塩の硫酸イオン含有量分
析方法。 C=a+bA
[Claim 1] irradiating infrared rays onto salt, the diffusion reflection intensity A at 1110 cm -1 relative to the diffuse reflection intensity at 1240 cm -1 [-] and constants a, which according to the particle size distribution of the salt, b Sulfate ion content C [mg / k
g], wherein the sulfate ion content of the salt is analyzed. C = a + bA
【請求項2】試料を入れる試料カップと、前記試料カッ
プ中の試料に赤外線を照射する赤外線照射手段と、試料
による拡散反射光を集光する集光手段と、測定波数11
10cm-1における拡散反射強度及び参照波数1240
cm-1における拡散反射強度を測定する手段と、前記参
照波数における拡散反射強度と前記測定波数における拡
散反射強度と試料の粒径分布とに基づいて硫酸イオン含
有量を演算するための演算手段とを備え、前記演算手段
は、参照波数を基準とした時の測定波数の拡散反射強度
A[−]と、試料の粒径分布に応じた定数a、bとで表
される次式に基づいて硫酸イオン含有量C[mg/k
g]を演算することを特徴とする請求項4記載の塩の硫
酸イオン含有量分析装置。 C=a+bA
2. A sample cup in which a sample is placed, an infrared irradiation means for irradiating the sample in the sample cup with infrared light, a light collecting means for collecting light diffusely reflected by the sample, and a measuring wave number of 11.
Diffuse reflection intensity at 10 cm -1 and reference wave number 1240
means for measuring the diffuse reflection intensity at cm -1 , and arithmetic means for calculating the sulfate ion content based on the diffuse reflection intensity at the reference wave number, the diffuse reflection intensity at the measurement wave number, and the particle size distribution of the sample. And the calculating means is based on the following expression expressed by the diffuse reflection intensity A [-] of the measured wave number based on the reference wave number and constants a and b according to the particle size distribution of the sample. Sulfate ion content C [mg / k
g]. The apparatus for analyzing a sulfate ion content of a salt according to claim 4, wherein C = a + bA
JP1243897A 1997-01-27 1997-01-27 Method and apparatus for analyzing sulfate ion content of salt Expired - Fee Related JP3085915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1243897A JP3085915B2 (en) 1997-01-27 1997-01-27 Method and apparatus for analyzing sulfate ion content of salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1243897A JP3085915B2 (en) 1997-01-27 1997-01-27 Method and apparatus for analyzing sulfate ion content of salt

Publications (2)

Publication Number Publication Date
JPH10206321A JPH10206321A (en) 1998-08-07
JP3085915B2 true JP3085915B2 (en) 2000-09-11

Family

ID=11805318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243897A Expired - Fee Related JP3085915B2 (en) 1997-01-27 1997-01-27 Method and apparatus for analyzing sulfate ion content of salt

Country Status (1)

Country Link
JP (1) JP3085915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776645B1 (en) * 2016-04-08 2017-09-08 선문대학교 산학협력단 Wrist hanger apparatus for umbrella

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540170B2 (en) * 1999-02-24 2010-09-08 邦明 ▲高▼松 Process for producing ionized salt
DE60022811T2 (en) 1999-03-12 2006-07-13 Pfizer Products Inc., Groton Oral preparations for reducing the sensitivity of the tooth nerve and the dental bone containing potassium salts
JP2008116365A (en) * 2006-11-06 2008-05-22 Omron Corp Evaluation index calculation device, evaluation device, evaluation index calculation method, control program of evaluation index calculation device and recording medium with program recorded thereon
JP4956322B2 (en) * 2007-08-10 2012-06-20 東京電力株式会社 Method for analyzing ions in water tree
CN103674628A (en) * 2013-12-13 2014-03-26 攀枝花钢企欣宇化工有限公司 Measuring method for sulfate radical in gas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J Mol Struct Vol.130,No.3/4(1985)p245−254
J Raman Spectrosc Vol.19,No.7(1988)p497−498

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776645B1 (en) * 2016-04-08 2017-09-08 선문대학교 산학협력단 Wrist hanger apparatus for umbrella

Also Published As

Publication number Publication date
JPH10206321A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
CN102128790B (en) Method for measuring sulfate ions in scaled component of water vapor system in power station
Bradbury et al. Infrared studies of molecular configurations of DNA
JP3085915B2 (en) Method and apparatus for analyzing sulfate ion content of salt
EP2710355B2 (en) Method of detecting polymorphs using synchrotron radiation
Das et al. Application of an improved ion exchange technique for the measurement of δ 34 S values from microgram quantities of sulfur by MC-ICPMS
Bates et al. Infrared emission spectra of molten salts
Chen et al. [7] Structure and interactions of proteins in solution studied by small-angle neutron scattering
Martel et al. Physical characteristics of human transferrin from small angle neutron scattering
CN108362677A (en) A method of soil hydrolyzable nitrogen is quickly detected based on surface Raman enhancement technology
Kuś et al. Simultaneous determination of palladium and platinum as dithizonates by fifth-derivative spectrophotometry
Bothorel et al. Molecular optical anisotropy of n-alkanes and polyoxyethylene oligomers by depolarized Rayleigh scattering
Li et al. Optimizing the aspect ratio of cephalexin in reactive crystallization by controlling supersaturation and seeding policy
CN110261418B (en) Method for accurately determining content of beta-tricalcium phosphate in hydroxyapatite
Göcenler et al. Biomolecular solution X-ray scattering at n2STAR Beamline
CN110243850B (en) Method for determining hydroxyapatite content in beta-tricalcium phosphate through full-spectrum fine modification
JPH08240527A (en) System for measuring concentration of component in salt-making process
JP2950534B2 (en) Method and apparatus for analyzing potassium ion content of salt
JPH0763743A (en) Analyzing method for chlorine in quartz material
Summerfield et al. Neutron Scattering from a Solution of a Polymer in a Polymer. The Effect of Long-Range Heterogeneities
JP3220114B2 (en) Method for analyzing magnesium ion content in salt
Greene The solubility of barium nitrate in concentrated nitric acid
JP2820879B2 (en) Method and apparatus for determining particle concentration of suspension
JP2002257723A (en) Method and instrument for determining concentration of liquid sample
JPH0618508A (en) Method for determining boron in sulfuric acid
Gladney et al. Determination of uranium-235/uranium-238 ratio in natural waters by Chelex 100 ion exchange and neutron activation analysis

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees