JP2001050923A - Hydrogen-gas detecting element - Google Patents

Hydrogen-gas detecting element

Info

Publication number
JP2001050923A
JP2001050923A JP2000152831A JP2000152831A JP2001050923A JP 2001050923 A JP2001050923 A JP 2001050923A JP 2000152831 A JP2000152831 A JP 2000152831A JP 2000152831 A JP2000152831 A JP 2000152831A JP 2001050923 A JP2001050923 A JP 2001050923A
Authority
JP
Japan
Prior art keywords
sensitive layer
hydrogen gas
oxide
gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000152831A
Other languages
Japanese (ja)
Other versions
JP4532671B2 (en
Inventor
Akira Katsuki
章 勝木
Kiyoshi Fukui
清 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2000152831A priority Critical patent/JP4532671B2/en
Publication of JP2001050923A publication Critical patent/JP2001050923A/en
Application granted granted Critical
Publication of JP4532671B2 publication Critical patent/JP4532671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hydrogen-gas detecting element whose sensitivity tends not to deteriorate, even when it is exposed to hydrogen at a high concentration. SOLUTION: In this hydrogen-gas detecting element, a sensitive layer 2 which covers a noble metal wire 1 and which is formed of a semiconductor composed mainly of indium oxide is formed, 0.4 to 10 mol% of the oxide of at least one kind of a metal selected from among lanthanide metals is added to the sensitive layer 2, and a dense silica this film 3 is formed on the surface of the sensitive layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素ガス検知素子
に関し、特に、貴金属線を覆って、酸化インジウム半導
体を主成分とする半導体から形成される感応層を設けて
ある半導体式のガス検知素子に関する。このような水素
ガス検知素子は主に、還元剤やキャリアガス、燃料等と
して水素ガスを使用する化学工場、半導体製造工場、電
気自動車用水素燃料電池、エンジンシステム等における
ガス漏洩等を監視する目的で使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen gas sensing element, and more particularly to a semiconductor type gas sensing element having a sensitive layer formed of a semiconductor containing indium oxide semiconductor as a main component and covering a noble metal wire. About. Such a hydrogen gas detecting element is mainly used for monitoring gas leakage and the like in a chemical factory, a semiconductor manufacturing factory, a hydrogen fuel cell for electric vehicles, an engine system, and the like that use hydrogen gas as a reducing agent, a carrier gas, and a fuel. Used in.

【0002】[0002]

【従来の技術】従来、この種の水素ガス検知素子として
は、貴金属線を覆って、酸化スズ半導体を主成分とする
半導体から形成される感応層を設けてあるガス検知素子
が知られており、前記感応層にランタン系金属酸化物の
少なくとも一種以上を添加して低濃度における水素ガス
選択性を向上させた水素ガス検知素子の開発が試みられ
ている。
2. Description of the Related Art Heretofore, as this type of hydrogen gas detecting element, a gas detecting element provided with a sensitive layer formed of a semiconductor mainly composed of a tin oxide semiconductor over a noble metal wire is known. Attempts have been made to develop a hydrogen gas detecting element in which at least one lanthanum-based metal oxide is added to the sensitive layer to improve the selectivity of hydrogen gas at low concentrations.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の水素ガ
ス検知素子は、100ppm以下の低濃度の水素ガスを
高感度に検知することが見出されており、水素ガス漏洩
の初期的な検知に効果を発揮するものとして期待されて
いる。というのも、水素ガスは、分子半径が小さく極め
て小さなピンホール等からも漏洩し易いという性質があ
り、また、水素ガスの爆発下限界が4%(Vol)と低
い上に爆発ガス濃度領域が広いため、ガス爆発の早期警
戒が必要となるからである。しかしながら、このような
水素ガス検知素子は、一旦高濃度の水素ガスに晒されて
しまうと、感度が劣化してしまうという欠点があった。
具体的には、上述の水素ガス検知素子は100ppm以
下の水素ガス濃度においては、高い感度で選択性良く働
く優れたセンサであるが、500ppm以上の水素ガス
に暴露されると感度が低下して劣化してしまうという実
験結果が得られている。
It has been found that the above-mentioned conventional hydrogen gas detecting element detects high-concentration hydrogen gas of 100 ppm or less with high sensitivity, and is used for initial detection of hydrogen gas leakage. It is expected to be effective. This is because hydrogen gas has a property that it has a small molecular radius and easily leaks from an extremely small pinhole, etc. In addition, the lower limit of hydrogen gas explosion is as low as 4% (Vol), and the explosive gas concentration region is low. Because of its large size, early warning of gas explosion is required. However, such a hydrogen gas detecting element has a drawback that once it is exposed to a high concentration of hydrogen gas, the sensitivity is deteriorated.
Specifically, the above-described hydrogen gas detection element is an excellent sensor that works with high sensitivity and high selectivity at a hydrogen gas concentration of 100 ppm or less, but the sensitivity decreases when exposed to hydrogen gas of 500 ppm or more. An experimental result of deterioration has been obtained.

【0004】従って、本発明の目的は、上記欠点に鑑
み、湿度安定性が高く、高濃度の水素に暴露されても感
度の劣化しにくい水素ガス検知素子を得ることにある。
[0004] Accordingly, an object of the present invention is to provide a hydrogen gas detecting element which has high humidity stability and is hardly deteriorated in sensitivity even when exposed to a high concentration of hydrogen in view of the above-mentioned drawbacks.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明の水素ガス検知素子の特徴構成は、貴金属線を
覆って、酸化インジウムを主成分とする半導体から形成
される感応層を設けてあるガス検知素子であって、前記
感応層にランタニド金属から選ばれる少なくとも一種以
上の金属の酸化物を0.4〜10mol%添加してある
とともに、前記感応層に緻密なシリカ薄膜、あるいは、
水素選択透過性のシリカ薄膜、あるいは、化学蒸着処理
によるシリカ薄膜を形成してある点にある。また、前記
感応層が、前記感応層にランタニド金属から選ばれる少
なくとも一種以上の金属の酸化物を0.4〜10mol
%添加してある酸化インジウムの焼結体であり、前記シ
リカ薄膜が、ヘキサメチルジシロキサンガス中で、前記
貴金属線に電流を流し、350℃〜550℃で25分〜
25時間の条件下で化学蒸着処理により形成された物で
あることが望ましい。
In order to achieve this object, a feature of the hydrogen gas detecting element of the present invention is to provide a sensitive layer formed of a semiconductor containing indium oxide as a main component so as to cover a noble metal wire. A gas sensing element, wherein at least 0.4 to 10 mol% of an oxide of at least one metal selected from lanthanide metals is added to the sensitive layer, and a dense silica thin film, or
The point is that a silica thin film having a hydrogen selective permeability or a silica thin film formed by a chemical vapor deposition process is formed. Further, the sensitive layer contains 0.4 to 10 mol of an oxide of at least one metal selected from lanthanide metals in the sensitive layer.
% Of indium oxide, wherein the silica thin film is passed through the noble metal wire in hexamethyldisiloxane gas at 350 ° C. to 550 ° C. for 25 minutes to
It is desirable that the substrate be formed by a chemical vapor deposition process under a condition of 25 hours.

【0006】〔作用効果〕酸化スズ半導体等を主材とす
る感応層にシリカ薄膜を蒸着させる技術が知られており
(特開昭56−168542号公報参照)、そのような
薄膜を緻密に形成することにより、前記感応層が水素ガ
ス以外のガスと接触するのを制限し、水素ガス選択性を
高める技術が実用化されている(特公昭61−3142
2号公報参照)。しかしながら、特定の組成の感応層に
関しては、緻密な薄膜を形成する技術は知られているも
のの、緻密な薄膜を形成するためには、薄膜を形成すべ
き基材の性質等が、その薄膜の性質に大きく影響する場
合があり、その感応層の種類により種々検討を要し、水
素ガスだけを選択的に透過するようなシリカ薄膜を得る
ことは困難であり、得られたシリカ薄膜の性質について
も予測しがたい。
[Operation and effect] A technique of depositing a silica thin film on a sensitive layer mainly composed of a tin oxide semiconductor or the like is known (see JP-A-56-168542), and such a thin film is formed densely. Accordingly, a technique for restricting the sensitive layer from contacting with a gas other than hydrogen gas and increasing the selectivity of hydrogen gas has been put into practical use (Japanese Patent Publication No. 61-3142).
No. 2). However, with respect to a sensitive layer having a specific composition, although a technique for forming a dense thin film is known, in order to form a dense thin film, the properties of a base material on which the thin film is to be formed, etc. The properties may be greatly affected, and various studies are required depending on the type of the sensitive layer. It is difficult to obtain a silica thin film that selectively transmits only hydrogen gas. Is also hard to predict.

【0007】しかしながら、今般本発明者らは、前記シ
リカ薄膜の機能に着目し、水素ガスの曝露に対して耐久
性を発揮すると思われる、たとえば、Ce(セリウ
ム)、Pr(プラセオジム)、Tb(テルビウム)等の
ランタンニド金属から選ばれる少なくとも一種以上の金
属の酸化物を0.4〜10atm%添加してある酸化イ
ンジウムを主成分とする感応層を有するガス検知素子を
用いて、鋭意検討した結果、酸化インジウム半導体を主
材とする水素選択性を有する感応層に緻密なシリカ薄膜
を形成すると、そのガス検知素子が、先述の水素ガス選
択性を発揮するという新知見を得た。
[0007] However, the present inventors have paid attention to the function of the silica thin film, and are thought to exhibit durability against exposure to hydrogen gas. For example, Ce (cerium), Pr (praseodymium), Tb ( As a result of diligent study using a gas sensing element having a sensitive layer containing indium oxide as a main component to which 0.4 to 10 at% of an oxide of at least one metal selected from lanthanide metals such as terbium) is added. When a dense silica thin film is formed on a hydrogen-selective sensitive layer mainly composed of an indium oxide semiconductor, a new finding is obtained that the gas sensing element exhibits the above-described hydrogen gas selectivity.

【0008】つまり、このような水素ガス検知素子は、
前記感応層の水素ガス選択性の高さをさらに向上させつ
つも、さらに、高濃度水素ガスに対する耐久性も向上し
た高性能な検知素子となるのである。ここで、前記シリ
カ薄膜としては、水素ガスを選択的に透過するものとし
て形成してあると、水素ガス検知の際の選択性を高くす
ることができて有効であるとともに、化学蒸着処理によ
って形成すると、さらに、高濃度ガスによって劣化する
のを有効に予防できる。さらに、前記シリカ薄膜が、ヘ
キサメチルジシロキサンガス中で、前記貴金属線に電流
を流し、350℃〜550℃の条件下で25分〜25時
間の条件下で化学蒸着処理により形成された物であれ
ば、いずれの特性も同時に高くできるため、極めて安定
性に優れたガス検知素子を提供することができるように
なった。
That is, such a hydrogen gas detecting element is
The high-performance sensing element further improves the hydrogen gas selectivity of the sensitive layer and also has improved durability against high-concentration hydrogen gas. Here, when the silica thin film is formed so as to selectively transmit hydrogen gas, the selectivity at the time of detecting hydrogen gas can be increased, which is effective and formed by a chemical vapor deposition process. Then, it is possible to further effectively prevent deterioration due to the high concentration gas. Further, the silica thin film is formed by passing a current through the noble metal wire in a hexamethyldisiloxane gas and performing a chemical vapor deposition process at 350 ° C. to 550 ° C. for 25 minutes to 25 hours. If so, any of the characteristics can be simultaneously improved, so that a gas sensing element having extremely excellent stability can be provided.

【0009】尚、上述の作用が得られるのは、以下のよ
うな理由によると考えられる。前記感応層にシリカの薄
膜を形成すると、図32(模式図)に示すように、酸化
インジウムの焼結表面の性状に対応してシリカの結晶が
通常多孔質である前記感応層の孔を閉塞するように成長
し、あるいは、前記感応層の外表面に極めて細かな多孔
質構造を有する薄膜を形成し、分子篩の機能を持った緻
密な層を形成する。分子サイズの大きなエタノール等の
ガスは、シリカの緻密な層を通過できず、主に水素ガス
のみが、そのシリカの薄膜を透過して感応層に達する。
感応層に達した水素ガスは、酸化インジウムと接触し、
その表面吸着酸素と反応して水分子と自由電子とを生成
する。この際生じた自由電子が、水素検知出力として測
定される訳であるが、生じた水分子は、前記感応層を透
過して外部に放出されることになるため、前記シリカ薄
膜の感応層側では、吸着酸素不足になる。すると、前記
シリカ薄膜の感応層側では、酸素ガスのシリカ薄膜透過
速度が水素ガスの場合よりも遅いことから遅れがちにな
って、ガス状酸素濃度も低下するため、水素分子と吸着
酸素との反応にガス状酸素が悪影響を与えにくくなり、
微量の水素ガスであっても確実に自由電子を発生させる
ことになって、確実なガス検知が行えるようになるので
ある。また、インジウムの酸化数は、3価のもののみが
安定なものとして知られており、還元された状態では安
定に存在しにくいと考えられるため、水素ガスによる還
元作用を受けたとしてもすぐに元の酸化数に戻りやすい
ため、安定な挙動を示すものと考えられる。更に、酸化
インジウムの格子酸素は、イオン性が大きいことが知ら
れており、表面吸着酸素が熱的にも安定であり、酸化活
性も低いことから水素の強い還元力に対して有利と考え
られる。
It is considered that the above-mentioned effects are obtained for the following reasons. When a silica thin film is formed on the sensitive layer, as shown in FIG. 32 (schematic diagram), silica crystals close the pores of the sensitive layer, which is usually porous, corresponding to the properties of the sintered surface of indium oxide. Or a thin film having an extremely fine porous structure is formed on the outer surface of the sensitive layer to form a dense layer having the function of a molecular sieve. A gas such as ethanol having a large molecular size cannot pass through the dense layer of silica, and only hydrogen gas mainly passes through the silica thin film to reach the sensitive layer.
The hydrogen gas that reaches the sensitive layer contacts the indium oxide,
It reacts with the surface adsorbed oxygen to generate water molecules and free electrons. The free electrons generated at this time are measured as a hydrogen detection output. However, since the generated water molecules pass through the sensitive layer and are released to the outside, the water side of the silica thin film is sensitive to the sensitive layer. Then, the adsorbed oxygen becomes insufficient. Then, on the sensitive layer side of the silica thin film, since the oxygen gas permeation rate of the silica thin film is slower than that of the hydrogen gas, the gas tends to be delayed, and the gaseous oxygen concentration also decreases. Gaseous oxygen is less likely to adversely affect the reaction,
Even with a small amount of hydrogen gas, free electrons are surely generated, so that reliable gas detection can be performed. In addition, the oxidation number of indium is known to be stable only when it is trivalent, and it is considered that it is unlikely to exist stably in a reduced state. Since the oxidation number easily returns to the original value, it is considered that the behavior is stable. Furthermore, lattice oxygen of indium oxide is known to have high ionicity, and surface adsorbed oxygen is thermally stable and has low oxidizing activity, so it is considered to be advantageous for strong reducing power of hydrogen. .

【0010】その結果、水素ガスに対して高い感度を有
しながらも、1000ppm以上の高濃度水素ガスに対
する暴露に対しても劣化が少なく、かつ、湿度依存性が
小さくまた、硫黄酸化物等によっても被毒しにくい水素
ガス検知素子を提供できた。これにより、広い濃度範囲
で、信頼性高くガス検知できるようになった。
As a result, while having high sensitivity to hydrogen gas, there is little deterioration even when exposed to high concentration hydrogen gas of 1000 ppm or more, and the humidity dependency is small. Also provided a hydrogen gas detection element that is hardly poisoned. This has made it possible to detect gas with high reliability over a wide concentration range.

【0011】さらに、このようにして得られた、ガス検
知素子は、広いガス濃度領域にわたって、水素ガス濃度
増加に対する出力増加率が高く維持される(水素ガス濃
度−出力のグラフにおける直線性が高い)ことがわか
り、広い濃度領域において正確なガス濃度を知るのに役
立てられる。
Further, in the gas sensing element thus obtained, the output increase rate with respect to the increase in the hydrogen gas concentration is maintained high over a wide gas concentration region (the linearity in the graph of hydrogen gas concentration-output is high). ), Which is useful for knowing an accurate gas concentration in a wide concentration range.

【0012】尚、上述のランタニド金属は、ほぼ同様の
効果を奏することが見込まれるが、セリウム、プラセオ
ジム、テルビウム、ネオジム、サマリウム、ユーロピウ
ム、ガドリニウム、ジスプロシウム、ホルミウム、エル
ビウム、イッテルビウム、ルテチウムから選ばれる少な
くとも一種の金属であれば、同様の効果が得られること
が実験的に確認されている。
The above-mentioned lanthanide metal is expected to have almost the same effect. It has been experimentally confirmed that a similar effect can be obtained with a kind of metal.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。市販の水酸化インジウム(In
(OH)3 )の微粉体を電気炉を用いて焼成することに
より酸化インジウムの粉体が得られる。この酸化インジ
ウムをさらに粉砕し、微粉体とし、1.3−ブタンジオ
ール等の分散媒を用いてペースト状にし、貴金属線1を
覆って球状に塗布し、乾燥後前記貴金属線1に電流を流
通させ、空気中で焼結し、感応層2のみからなる熱線型
半導体式ガス検知素子を得た。この熱線型半導体式ガス
検知素子に、ランタニド金属から選ばれる少なくとも一
種以上の金属の塩の溶液を含浸させ、乾燥・焼成して前
記感応層2に、各種金属を酸化物の形態で担持させる。
こうして出来た熱線型半導体式ガス検知素子を、例え
ば、ヘキサメチルジシロキサン(HMDS)の飽和蒸気
圧(35℃で約9Vol%)の環境において加熱する。
加熱は、貴金属線1に電流を流通させ、ジュール熱を発
生させることにより感応層2全体がヘキサメチルジシロ
キサンの分解温度以上になるように調整する。すると、
雰囲気のヘキサメチルジシロキサンが熱分解して感応層
2表面に緻密なシリカ薄膜3を形成し、水素ガス検知素
子として用いられるようになる(図1参照)。
Embodiments of the present invention will be described below with reference to the drawings. Commercially available indium hydroxide (In)
By firing the fine powder of (OH) 3 ) using an electric furnace, an indium oxide powder can be obtained. This indium oxide is further pulverized to form a fine powder, formed into a paste using a dispersion medium such as 1.3-butanediol, applied in a spherical shape covering the noble metal wire 1, and after drying, a current is passed through the noble metal wire 1. Then, sintering was performed in the air to obtain a hot-wire type semiconductor gas detection element including only the sensitive layer 2. The hot-wire semiconductor gas sensing element is impregnated with a solution of a salt of at least one metal selected from lanthanide metals, dried and calcined to cause the sensitive layer 2 to carry various metals in the form of oxides.
The hot-wire semiconductor gas detection element thus produced is heated in an environment of, for example, a saturated vapor pressure of hexamethyldisiloxane (HMDS) (about 9 vol% at 35 ° C.).
The heating is adjusted so that current flows through the noble metal wire 1 to generate Joule heat so that the entire sensitive layer 2 becomes higher than the decomposition temperature of hexamethyldisiloxane. Then
Hexamethyldisiloxane in the atmosphere is thermally decomposed to form a dense silica thin film 3 on the surface of the sensitive layer 2, which is used as a hydrogen gas detecting element (see FIG. 1).

【0014】この水素ガス検知素子を図2に示すブリッ
ジ回路に組み込み、ガス検知装置として用いた。このと
きセンサ出力(出力)は、以下の数式によって得られ
る。
This hydrogen gas detecting element was incorporated in a bridge circuit shown in FIG. 2 and used as a gas detecting device. At this time, the sensor output (output) is obtained by the following equation.

【0015】V=−E{rs/(rs+r0)−r1/
(r1+r2)} ここで、各変数は以下のとおりである。 V :センサ出力 E :ブリッジ電圧 rs :熱線型半導体式ガス検知素子Rsの抵抗 r0 :固定抵抗R0の抵抗 r1 :固定抵抗R1の抵抗 r2 :固定抵抗R2の抵抗
V = -E {rs / (rs + r0) -r1 /
(R1 + r2)} Here, each variable is as follows. V: sensor output E: bridge voltage rs: resistance of the hot-wire semiconductor gas detection element Rs r0: resistance of the fixed resistance R0 r1: resistance of the fixed resistance R1 r2: resistance of the fixed resistance R2

【0016】また、感度は、検知ガス共存空気中の出力
と、清浄空気中出力との差として求めた。尚、相対感度
として感度を表記する場合、ある特定条件下の感度出力
を1とした比をもって他の条件下における感度を示した
ものを指すこととしている。
The sensitivity was determined as the difference between the output in the air coexisting with the detected gas and the output in the clean air. When the sensitivity is expressed as the relative sensitivity, the ratio is defined as a ratio where the sensitivity output under a specific condition is set to 1 and the sensitivity under another condition is indicated.

【0017】[0017]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。 〔実施例1〕 市販の水酸化インジウム(In(OH)
3)((株)高純度化学研究所社製、純度99.99重量
%)の微粉体を電気炉を用いて600℃で4時間焼成す
ることにより酸化インジウムの粉体が得られる。この酸
化インジウムをさらに粉砕し、微粉体とし、1.3−ブ
タンジオール(分散媒)を用いてペースト状にし、貴金
属線としての白金線コイル(線径20μm)を覆って直
径0.50mmの球状に塗布し、乾燥後前記白金線コイ
ルに電流を流通させ、600℃で1時間空気中で焼結
し、熱線型半導体式ガス検知素子を得た。この熱線型半
導体式ガス検知素子に、硝酸セリウムの水溶液を含浸さ
せ、乾燥・焼成して前記酸化インジウムに対して種々の
濃度で酸化セリウム(Ce2 3)を添加させる。更
に、この熱線型半導体式ガス検知素子に、下記の条件
で、シリカ薄膜を蒸着した。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 Commercially available indium hydroxide (In (OH)
3 ) Indium oxide powder is obtained by baking fine powder (purity: 99.99% by weight, manufactured by Kojundo Chemical Laboratory Co., Ltd.) at 600 ° C. for 4 hours using an electric furnace. This indium oxide is further pulverized to a fine powder, made into a paste using 1.3-butanediol (dispersion medium), and covered with a platinum wire coil (wire diameter 20 μm) as a noble metal wire, and a spherical shape having a diameter of 0.50 mm. After drying, a current was passed through the platinum wire coil and sintering was performed at 600 ° C. for 1 hour in air to obtain a hot-wire type semiconductor gas detection element. The hot wire type semiconductor gas sensing element is impregnated with an aqueous solution of cerium nitrate, dried and fired, and cerium oxide (Ce 2 O 3 ) is added to the indium oxide at various concentrations. Further, a silica thin film was deposited on the hot-wire type semiconductor gas sensing element under the following conditions.

【0018】HMDS蒸着処理 処理温度 :550℃ 処理時間 :25分 HMDS蒸気圧:9Vol%(35℃) 感度測定電圧 :1.9V(5.6Ω)(480℃)HMDS vapor deposition treatment Processing temperature: 550 ° C Processing time: 25 minutes HMDS vapor pressure: 9 Vol% (35 ° C) Sensitivity measurement voltage: 1.9 V (5.6Ω) (480 ° C)

【0019】このようにして酸化セリウムの添加量が種
々に異なるガス検知素子を作成し、その感度特性を調べ
たところ、図3の様になった。
As described above, gas sensing elements having various added amounts of cerium oxide were prepared, and their sensitivity characteristics were examined. The results are as shown in FIG.

【0020】つまり、酸化セリウムが添加してある場合
には、2000ppm以上の高濃度の水素ガスに対して
も相対感度の増加率が高く、高い直線性が現れるので、
高精度に濃度決定が出来ることがわかる。また、この場
合、セリウムは4mol%程度まで添加しても、なおも
直線性が改善されることがわかった。
That is, when cerium oxide is added, the rate of increase in relative sensitivity is high even with a high concentration of hydrogen gas of 2000 ppm or more, and high linearity appears.
It can be seen that the concentration can be determined with high accuracy. Also, in this case, it was found that the linearity was still improved even when cerium was added up to about 4 mol%.

【0021】〔実施例2〕同様にして硝酸セリウムに代
え、硝酸プラセオジム、塩化テルビウムを用い、前記感
応層に酸化プラセオジム、酸化テルビウムを添加し、同
様に相対感度の水素ガス濃度依存性の直線性について調
べたところ、記載順に図4,5のようになった。図より
添加物の添加により、グラフの直線性が改善されている
ことが読みとれる。また、前記ランタニド金属が、ネオ
ジム、サマリウム、ユーロピウム、ガドリニウム、ジス
プロシウム、ホルミウム、エルビウム、イッテルビウ
ム、ルテチウムの場合を、それぞれの金属の塩化物を用
いて同様に調べたところ、図6〜14のようになり、酸
化ネオジム(Nd2 3 )、酸化サマリウム(Sm2
3 )、酸化ユーロピウム(Eu2 3 )、酸化ガドリニ
ウム(Gd2 3 )、酸化ジスプロシウム(Dy
2 3 )、酸化ホルミウム(Ho2 3 )、酸化エルビ
ウム(Er2 3 )、酸化イッテルビウム(Yb
2 3 )、酸化ルテチウム(Lu2 3 )について同様
の傾向がみられることがわかる。
Example 2 Similarly, cerium nitrate was used instead of cerium nitrate.
Praseodymium nitrate and terbium chloride
Add praseodymium oxide and terbium oxide to the reaction layer,
The linearity of the hydrogen gas concentration dependence of the relative sensitivity
The results are as shown in FIGS. From the figure
Addition of additives improves the linearity of the graph
You can read it. Further, the lanthanide metal is
Jim, Samarium, Europium, Gadolinium, Dis
Prosium, holmium, erbium, ytterbiu
And lutetium, use the chloride of each metal
6 to 14 and the results were as shown in FIG.
Neodymium (NdTwoOThree), Samarium oxide (SmTwoO
Three), Europium oxide (Eu)TwoOThree), Gadolinium oxide
Um (GdTwoOThree), Dysprosium oxide (Dy
TwoOThree), Holmium oxide (Ho)TwoOThree), Oxidized Elbi
Um (Er)TwoOThree), Ytterbium oxide (Yb
TwoOThree), Lutetium oxide (Lu)TwoOThreeSame for
It can be seen that the tendency is observed.

【0022】〔比較例1〕同様にして硝酸セリウムに代
え、硝酸ランタンを用い、前記感応層に酸化ランタン
(La2 3 )を添加し、同様に相対感度の水素ガス濃
度依存性の直線性について調べたところ、図15のよう
になった。図より添加物の添加によっても、ランタノイ
ド金属のうちランタンでは直線性の改善効果がほとんど
ないことがわかり、直線性の改善効果はランタニド金属
に特有のものであることがわかる。
Comparative Example 1 Similarly, lanthanum nitrate was used in place of cerium nitrate, and lanthanum oxide (La 2 O 3 ) was added to the sensitive layer. As a result, the result was as shown in FIG. From the figure, it can be seen that even with the addition of the additive, lanthanum among the lanthanoid metals has little effect of improving the linearity, and that the effect of improving the linearity is unique to the lanthanide metal.

【0023】〔実施例3〕実施例1,2で得た各ガス検
知素子について、水素、メタノール、エタノール感度の
添加物量依存性を調べたところ、表1のようになった。
Example 3 Table 1 shows the dependence of the sensitivity of hydrogen, methanol and ethanol on the amount of additives for each of the gas detecting elements obtained in Examples 1 and 2.

【0024】[0024]

【表1】 [Table 1]

【0025】表より、高い水素感度が得られていること
がわかる。尚、水素自動車等メタノールを水素に転換し
て用いる燃料供給システムでは、水素のメタノールに対
する選択性は、2000ppmメタノール感度が、10
0ppm感度よりも低いことが望まれるので、0.04
〜10mol%程度の添加量が特に好ましいことが読み
とれる。また、先と同様の理由から、プラセオジムの添
加量は、0.04〜2mol%、テルビウムの添加量
は、0.04〜0.4mol%が特に好ましいことがわ
かる。
From the table, it can be seen that high hydrogen sensitivity was obtained. Incidentally, in a fuel supply system such as a hydrogen vehicle that uses methanol by converting it to hydrogen, the selectivity of hydrogen to methanol is as high as 2000 ppm.
Since it is desired to be lower than 0 ppm sensitivity, 0.04
It can be seen that an addition amount of about 10 to 10 mol% is particularly preferable. Further, for the same reason as above, it is understood that the addition amount of praseodymium is particularly preferably 0.04 to 2 mol%, and the addition amount of terbium is particularly preferably 0.04 to 0.4 mol%.

【0026】〔実施例4〕実施例1で得た酸化セリウム
添加量が0.04,0.2,1,4mol%の各ガス検
知素子について、高濃度水素の暴露に対する耐久性を調
べたところ、記載順に図16〜19のようになった。
尚、水素ガスの曝露条件は、1%の水素ガスに10分間
であり、ガス感度の回復度合いは、前記暴露試験後30
分間通常環境下の通電状態を維持した後のガス感度によ
って調べた。複数回行う場合は水素ガスの暴露から、3
0分間の通電までの操作を同様に複数回行った。
Example 4 The durability of each gas sensing element obtained in Example 1 to which 0.04, 0.2, 1.4 mol% of cerium oxide was added, against exposure to high-concentration hydrogen was examined. 16 to 19 in the order of description.
The hydrogen gas exposure conditions were 1% hydrogen gas for 10 minutes, and the degree of gas sensitivity recovery was 30 minutes after the exposure test.
It was examined by gas sensitivity after maintaining the energized state under normal environment for 5 minutes. When performing multiple times, 3
The operation up to the 0 minute energization was performed a plurality of times in the same manner.

【0027】その結果、いずれの添加量においても高濃
度の水素を暴露しても、感度の変化はほとんどみられ
ず、信頼性の高いガス検知が行えることがわかった。
As a result, even when a high concentration of hydrogen was exposed at any amount of addition, it was found that there was almost no change in sensitivity, and highly reliable gas detection could be performed.

【0028】〔実施例5〕酸化セリウムに代え、酸化プ
ラセオジム、酸化テルビウム、酸化ネオジム、酸化サマ
リウム、酸化ユーロピウム、酸化ガドリニウム、酸化ジ
スプロシウム、酸化ホルミウム、酸化エルビウム、酸化
イッテルビウム、酸化ルテチウムを用い、実施例4と同
様に高濃度水素の暴露に対するガス検知素子の耐久性を
調べたところ、図20〜30の様になった。尚、図20
〜30において添加物の添加量は2mol%とした。そ
の結果、他のランタニド金属についてもセリウム同様の
効果を発揮していることがわかり、ランタニド金属につ
いては同様の効果が期待できることがわかる。
Example 5 In place of cerium oxide, praseodymium oxide, terbium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, dysprosium oxide, holmium oxide, erbium oxide, ytterbium oxide, and lutetium oxide were used. When the durability of the gas detection element against exposure to high-concentration hydrogen was examined in the same manner as in Example 4, the results were as shown in FIGS. Note that FIG.
In ~ 30, the amount of the additive was 2 mol%. As a result, it can be seen that other lanthanide metals also exhibit the same effect as cerium, and that the same effect can be expected with lanthanide metals.

【0029】〔比較例2〕同様にして酸化インジウム半
導体を主成分とする感応層に前記添加物を加えることな
く形成した熱線型半導体式ガス検知素子を作成し、この
ガス検知素子についても高濃度の水素ガスに暴露させた
ときのガス感度の変化を調べた。また、暴露後のガス感
度の回復についても調べた。その結果、図31の様にな
った。
[Comparative Example 2] A hot-wire type semiconductor gas sensing element was formed in the same manner as above except that the above-mentioned additive was not added to the sensitive layer mainly containing an indium oxide semiconductor. The change in gas sensitivity when exposed to hydrogen gas was investigated. The recovery of gas sensitivity after exposure was also investigated. As a result, the result was as shown in FIG.

【0030】つまり、高濃度の水素ガスに曝露された後
には、水素感度が大きく低下していることがわかる。従
って、このような高濃度水素の暴露に対する高い耐久性
は、ランタニド金属酸化物の添加によるものであること
がわかる。
That is, it can be seen that the hydrogen sensitivity is greatly reduced after exposure to a high concentration of hydrogen gas. Therefore, it can be seen that such high durability against exposure to high concentration hydrogen is due to the addition of the lanthanide metal oxide.

【0031】〔別実施形態〕以下に別実施形態を説明す
る。先の実施の形態では、ペーストを作成するための酸
化インジウムを得るのに市販の水酸化インジウムを焼成
したが、塩化インジウム等のインジウム塩水溶液からア
ンモニア等による加水分解を経て、水酸化インジウムの
沈殿物を得るとともに、水洗、乾燥、焼成により、酸化
インジウムを得るようにしても良い。また、先の実施の
形態では、シリカ薄膜を形成するのにHMDSを用いた
が、ハロシラン(SiXx 4-x )、アルキルシラン
(Rx SiH4-x )、アルキルハロシラン(Rx SiX
4-x )、シリルアルコキシド(RO)x Si(OH)4-
x (ただしXはハロゲン、Rはアルキル基であり、xは
1〜4の整数であり、X、Rともに複数種混在してもか
まわない。)等、他のケイ素化合物を用いることも出来
る。この様な場合、HMDSとは条件は異なるとは思わ
れるが、前述の条件と類似の条件下で緻密なシリカ薄膜
が得られると予想されるからである。尚、本発明におい
て貴金属線は白金線コイルに限らず白金とパラジウムの
合金、他の貴金属類を採用してもかまわない。
[Another Embodiment] Another embodiment will be described below.
You. In the previous embodiment, the acid used to make the paste
Of commercially available indium hydroxide to obtain indium chloride
However, the solution was infused from an aqueous solution of indium salt such as indium chloride.
Of indium hydroxide through hydrolysis by ammonia, etc.
Oxidation by washing, drying and baking while obtaining a precipitate
Indium may be obtained. In addition,
In the embodiment, HMDS was used to form a silica thin film.
Is a halosilane (SiXxH4-x), Alkyl silane
(RxSiH4-x), Alkylhalosilanes (RxSix
4-x), Silyl alkoxide (RO)xSi (OH)Four-
x(Where X is a halogen, R is an alkyl group, and x is
Is an integer of 1 to 4;
I don't know. ) Can be used.
You. In such a case, it seems that the condition is different from HMDS
However, under conditions similar to those described above, a dense silica thin film
Is expected to be obtained. In the present invention,
Precious metal wire is not limited to platinum wire coil
Alloys and other precious metals may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素ガス検知素子の一部断面斜視図FIG. 1 is a partial cross-sectional perspective view of a hydrogen gas detecting element.

【図2】ガス検知装置の回路説明図FIG. 2 is a circuit diagram of a gas detection device.

【図3】種々の酸化セリウム添加量の感応層を有するガ
ス検知素子の感度の水素ガス濃度依存性を示すグラフ
FIG. 3 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas detection element having a sensitive layer to which various amounts of cerium oxide are added.

【図4】種々の酸化プラセオジム添加量の感応層を有す
るガス検知素子の感度の水素ガス濃度依存性を示すグラ
FIG. 4 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas detection element having a sensitive layer with various amounts of praseodymium oxide added.

【図5】種々の酸化テルビウム添加量の感応層を有する
ガス検知素子の感度の水素ガス濃度依存性を示すグラフ
FIG. 5 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas detection element having a sensitive layer to which various amounts of terbium oxide are added.

【図6】種々の酸化ネオジム添加量の感応層を有するガ
ス検知素子の感度の水素ガス濃度依存性を示すグラフ
FIG. 6 is a graph showing the hydrogen gas concentration dependency of the sensitivity of a gas detection element having a sensitive layer to which various amounts of neodymium oxide are added.

【図7】種々の酸化サマリウム添加量の感応層を有する
ガス検知素子の感度の水素ガス濃度依存性を示すグラフ
FIG. 7 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas detection element having a sensitive layer with various amounts of added samarium oxide.

【図8】種々の酸化ユーロピウム添加量の感応層を有す
るガス検知素子の感度の水素ガス濃度依存性を示すグラ
FIG. 8 is a graph showing the hydrogen gas concentration dependency of the sensitivity of a gas detection element having a sensitive layer to which various amounts of europium oxide are added.

【図9】種々の酸化ガドリニウム添加量の感応層を有す
るガス検知素子の感度の水素ガス濃度依存性を示すグラ
FIG. 9 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas detection element having a sensitive layer to which various amounts of gadolinium oxide are added.

【図10】種々の酸化ジスプロシウム添加量の感応層を
有するガス検知素子の感度の水素ガス濃度依存性を示す
グラフ
FIG. 10 is a graph showing the hydrogen gas concentration dependency of the sensitivity of a gas detection element having a sensitive layer to which various amounts of dysprosium oxide are added.

【図11】種々の酸化ホルミウム添加量の感応層を有す
るガス検知素子の感度の水素ガス濃度依存性を示すグラ
FIG. 11 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas detection element having a sensitive layer to which various amounts of holmium oxide are added.

【図12】種々の酸化エルビウム添加量の感応層を有す
るガス検知素子の感度の水素ガス濃度依存性を示すグラ
FIG. 12 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas detection element having a sensitive layer with various amounts of erbium oxide added.

【図13】種々の酸化イッテルビウム添加量の感応層を
有するガス検知素子の感度の水素ガス濃度依存性を示す
グラフ
FIG. 13 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas detection element having a sensitive layer to which various amounts of ytterbium oxide are added.

【図14】種々の酸化ルテチウム添加量の感応層を有す
るガス検知素子の感度の水素ガス濃度依存性を示すグラ
FIG. 14 is a graph showing the hydrogen gas concentration dependency of the sensitivity of a gas detection element having a sensitive layer with various amounts of lutetium oxide added.

【図15】種々の酸化ランタン添加量の感応層を有する
ガス検知素子の感度の水素ガス濃度依存性を示すグラフ
FIG. 15 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas detection element having a sensitive layer to which various amounts of lanthanum oxide are added.

【図16】酸化セリウム添加量0.04mol%の感応
層を有するガス検知素子の感度の高濃度水素ガス暴露耐
久性を示すグラフ
FIG. 16 is a graph showing the durability of a gas detection element having a sensitive layer containing 0.04 mol% of cerium oxide to high-concentration hydrogen gas exposure.

【図17】酸化セリウム添加量0.2mol%の感応層
を有するガス検知素子の感度の高濃度水素ガス暴露耐久
性を示すグラフ
FIG. 17 is a graph showing the durability of high-concentration hydrogen gas exposure to the sensitivity of a gas detection element having a sensitive layer containing 0.2 mol% of cerium oxide.

【図18】酸化セリウム添加量1mol%の感応層を有
するガス検知素子の感度の高濃度水素ガス暴露耐久性を
示すグラフ
FIG. 18 is a graph showing the durability of a gas detection element having a sensitive layer containing 1 mol% of cerium oxide to high-concentration hydrogen gas exposure.

【図19】酸化セリウム添加量4mol%の感応層を有
するガス検知素子の感度の高濃度水素ガス暴露耐久性を
示すグラフ
FIG. 19 is a graph showing the durability of high-concentration hydrogen gas exposure to sensitivity of a gas detection element having a sensitive layer containing 4 mol% of cerium oxide.

【図20】酸化プラセオジム添加量2mol%の感応層
を有するガス検知素子の感度の高濃度水素ガス暴露耐久
性を示すグラフ
FIG. 20 is a graph showing the high-concentration hydrogen gas exposure durability of a gas detection element having a sensitive layer containing 2 mol% of praseodymium oxide.

【図21】酸化テルビウム添加量2mol%の感応層を
有するガス検知素子の感度の高濃度水素ガス暴露耐久性
を示すグラフ
FIG. 21 is a graph showing the durability of a gas sensing element having a sensitive layer containing 2 mol% of terbium oxide to high-concentration hydrogen gas exposure.

【図22】酸化ネオジム添加量2mol%の感応層を有
するガス検知素子の感度の高濃度水素ガス暴露耐久性を
示すグラフ
FIG. 22 is a graph showing the durability of a gas detection element having a sensitive layer containing 2 mol% of neodymium oxide to high-concentration hydrogen gas exposure.

【図23】酸化サマリウム添加量2mol%の感応層を
有するガス検知素子の感度の高濃度水素ガス暴露耐久性
を示すグラフ
FIG. 23 is a graph showing the durability of a gas detection element having a sensitive layer with an added amount of samarium oxide of 2 mol% to high-concentration hydrogen gas exposure.

【図24】酸化ユーロピウム添加量2mol%の感応層
を有するガス検知素子の感度の高濃度水素ガス暴露耐久
性を示すグラフ
FIG. 24 is a graph showing the high-concentration hydrogen gas exposure durability of a gas detection element having a sensitive layer containing 2 mol% of europium oxide.

【図25】酸化ガドリニウム添加量2mol%の感応層
を有するガス検知素子の感度の高濃度水素ガス暴露耐久
性を示すグラフ
FIG. 25 is a graph showing the durability of a gas detection element having a sensitive layer containing 2 mol% of gadolinium oxide to exposure to high-concentration hydrogen gas.

【図26】酸化ジスプロシウム添加量2mol%の感応
層を有するガス検知素子の感度の高濃度水素ガス暴露耐
久性を示すグラフ
FIG. 26 is a graph showing the durability of a gas detection element having a sensitive layer containing 2 mol% of dysprosium oxide to exposure to high-concentration hydrogen gas.

【図27】酸化ホルミウム添加量2mol%の感応層を
有するガス検知素子の感度の高濃度水素ガス暴露耐久性
を示すグラフ
FIG. 27 is a graph showing the durability of a gas sensing element having a sensitive layer containing 2 mol% of holmium oxide to high-concentration hydrogen gas exposure.

【図28】酸化エルビウム添加量2mol%の感応層を
有するガス検知素子の感度の高濃度水素ガス暴露耐久性
を示すグラフ
FIG. 28 is a graph showing the durability of a gas detection element having a sensitive layer containing 2 mol% of erbium oxide to exposure to high-concentration hydrogen gas.

【図29】酸化イッテルビウム添加量2mol%の感応
層を有するガス検知素子の感度の高濃度水素ガス暴露耐
久性を示すグラフ
FIG. 29 is a graph showing the high-concentration hydrogen gas exposure durability of a gas detection element having a sensitive layer containing 2 mol% of ytterbium oxide;

【図30】酸化ルテチウム添加量2mol%の感応層を
有するガス検知素子の感度の高濃度水素ガス暴露耐久性
を示すグラフ
FIG. 30 is a graph showing the durability of a gas detection element having a sensitive layer containing 2 mol% of lutetium oxide to exposure to high-concentration hydrogen gas.

【図31】酸化セリウム無添加感応層を有するガス検知
素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
FIG. 31 is a graph showing the durability of a gas detection element having a cerium oxide-free sensitive layer to high-concentration hydrogen gas exposure.

【図32】シリカ薄膜によるガス選択性の向上を説明す
る模式図
FIG. 32 is a schematic view illustrating an improvement in gas selectivity by a silica thin film.

【符号の説明】[Explanation of symbols]

1 貴金属線 2 感応層 3 シリカ薄膜 1 Noble metal wire 2 Sensitive layer 3 Silica thin film

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G046 AA05 BA02 BA09 BC03 BD03 BE02 BF01 DB05 DD01 EA10 FB02 FE15 FE18  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G046 AA05 BA02 BA09 BC03 BD03 BE02 BF01 DB05 DD01 EA10 FB02 FE15 FE18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 貴金属線を覆って、酸化インジウムを主
成分とする半導体から形成される感応層を設けてあるガ
ス検知素子であって、前記感応層にランタニド金属から
選ばれる少なくとも一種以上の金属の酸化物を0.4〜
10mol%添加してあるとともに、緻密なシリカ薄膜
を形成してある水素ガス検知素子。
1. A gas sensing element provided with a sensitive layer formed of a semiconductor containing indium oxide as a main component and covering a noble metal wire, wherein the sensitive layer includes at least one metal selected from lanthanide metals. 0.4 ~
A hydrogen gas detection element to which 10 mol% is added and a dense silica thin film is formed.
【請求項2】 貴金属線を覆って、酸化インジウムを主
成分とする半導体から形成される感応層を設けてあるガ
ス検知素子であって、前記感応層にランタニド金属から
選ばれる少なくとも一種以上の金属の酸化物を0.4〜
10mol%添加してあるとともに、感応層に水素選択
透過性のシリカ薄膜を形成してある水素ガス検知素子。
2. A gas sensing element provided with a sensitive layer formed of a semiconductor containing indium oxide as a main component and covering a noble metal wire, wherein the sensitive layer includes at least one metal selected from lanthanide metals. 0.4 ~
A hydrogen gas detection element to which 10 mol% is added and a hydrogen selective permeable silica thin film is formed on a sensitive layer.
【請求項3】 貴金属線を覆って、酸化インジウムを主
成分とする半導体から形成される感応層を設けてあるガ
ス検知素子であって、前記感応層にランタニド金属から
選ばれる少なくとも一種以上の金属の酸化物を0.4〜
10mol%添加してあるとともに、感応層にシリカ薄
膜を化学蒸着処理によって形成してある水素ガス検知素
子。
3. A gas sensing element provided with a sensitive layer formed of a semiconductor containing indium oxide as a main component and covering a noble metal wire, wherein the sensitive layer includes at least one metal selected from lanthanide metals. 0.4 ~
A hydrogen gas detecting element to which 10 mol% is added and a silica thin film is formed on a sensitive layer by chemical vapor deposition.
【請求項4】 前記感応層が、前記感応層にランタニド
金属から選ばれる少なくとも一種以上の金属の酸化物を
0.4〜10mol%添加してある酸化インジウムの焼
結体であり、前記シリカ薄膜が、ヘキサメチルジシロキ
サンガス中で、前記貴金属線に電流を流し、350℃〜
550℃で25分〜25時間の条件下で化学蒸着処理に
より形成された物である請求項1〜3のいずれか1項に
記載の水素ガス検知素子。
4. The silica thin film, wherein the sensitive layer is a sintered body of indium oxide obtained by adding 0.4 to 10 mol% of an oxide of at least one metal selected from lanthanide metals to the sensitive layer. However, in hexamethyldisiloxane gas, a current is passed through the noble metal wire,
The hydrogen gas detection element according to any one of claims 1 to 3, wherein the hydrogen gas detection element is formed by chemical vapor deposition at 550 ° C for 25 minutes to 25 hours.
【請求項5】 前記ランタニド金属が、セリウム、プラ
セオジム、テルビウム、ネオジム、サマリウム、ユーロ
ピウム、ガドリニウム、ジスプロシウム、ホルミウム、
エルビウム、イッテルビウム、ルテチウムから選ばれる
少なくとも一種の金属である請求項1〜4のいずれかに
記載のガス検知素子。
5. The method according to claim 1, wherein the lanthanide metal is cerium, praseodymium, terbium, neodymium, samarium, europium, gadolinium, dysprosium, holmium,
The gas detection element according to claim 1, wherein the gas detection element is at least one metal selected from erbium, ytterbium, and lutetium.
JP2000152831A 1999-06-01 2000-05-24 Hydrogen gas detector Expired - Lifetime JP4532671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000152831A JP4532671B2 (en) 1999-06-01 2000-05-24 Hydrogen gas detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-153708 1999-06-01
JP15370899 1999-06-01
JP2000152831A JP4532671B2 (en) 1999-06-01 2000-05-24 Hydrogen gas detector

Publications (2)

Publication Number Publication Date
JP2001050923A true JP2001050923A (en) 2001-02-23
JP4532671B2 JP4532671B2 (en) 2010-08-25

Family

ID=26482249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152831A Expired - Lifetime JP4532671B2 (en) 1999-06-01 2000-05-24 Hydrogen gas detector

Country Status (1)

Country Link
JP (1) JP4532671B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028822A (en) * 2002-06-26 2004-01-29 New Cosmos Electric Corp Semiconductor type hydrogen gas detection element
JP2010256049A (en) * 2009-04-21 2010-11-11 Osaka Gas Co Ltd Gas sensor, and combustion equipment and gas alarm with the gas sensor
SG169230A1 (en) * 2002-08-02 2011-03-30 Idemitsu Kousan Co Ltd Sputtering target, sintered body, conductive film formed by using them, organic el device, and substrate used for the organic el device
JP2013224959A (en) * 2006-10-12 2013-10-31 Nextech Materials Ltd Hydrogen sensitive composite material, hydrogen gas sensor, and sensor for detecting hydrogen and other gases with improved baseline resistance
JP6437689B1 (en) * 2018-08-07 2018-12-12 新コスモス電機株式会社 MEMS type semiconductor gas detector
US10365259B2 (en) 2016-03-18 2019-07-30 Panasonic Intellectual Property Management Co., Ltd. Hydrogen sensor including pair of electrodes and metal oxide layer and method of detecting hydrogen with hydrogen sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679949A (en) * 1979-12-04 1981-06-30 Matsushita Electric Works Ltd Combustible gas detecting element
JPS59120945A (en) * 1982-12-28 1984-07-12 Shinkosumosu Denki Kk Hydrogen selective sensor and its production
JPS61223643A (en) * 1985-03-29 1986-10-04 Nohmi Bosai Kogyo Co Ltd Gaseous hydrogen detecting element and its production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028822A (en) * 2002-06-26 2004-01-29 New Cosmos Electric Corp Semiconductor type hydrogen gas detection element
SG169230A1 (en) * 2002-08-02 2011-03-30 Idemitsu Kousan Co Ltd Sputtering target, sintered body, conductive film formed by using them, organic el device, and substrate used for the organic el device
US8093800B2 (en) 2002-08-02 2012-01-10 Idemitsu Kosan Co., Ltd. Sputtering target, sintered article, conductive film fabricated by utilizing the same, organic EL device, and substrate for use therein
JP2013224959A (en) * 2006-10-12 2013-10-31 Nextech Materials Ltd Hydrogen sensitive composite material, hydrogen gas sensor, and sensor for detecting hydrogen and other gases with improved baseline resistance
JP2010256049A (en) * 2009-04-21 2010-11-11 Osaka Gas Co Ltd Gas sensor, and combustion equipment and gas alarm with the gas sensor
US10365259B2 (en) 2016-03-18 2019-07-30 Panasonic Intellectual Property Management Co., Ltd. Hydrogen sensor including pair of electrodes and metal oxide layer and method of detecting hydrogen with hydrogen sensor
JP6437689B1 (en) * 2018-08-07 2018-12-12 新コスモス電機株式会社 MEMS type semiconductor gas detector
JP2020024130A (en) * 2018-08-07 2020-02-13 新コスモス電機株式会社 Mems semiconductor type gas detection element

Also Published As

Publication number Publication date
JP4532671B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
EP3786627B1 (en) Mems type semiconductor gas detection element
JP3046353B2 (en) Tin oxide gas sensor
US20230273139A1 (en) Gas detection complex and method for producing same, gas sensor comprising gas detection complex and method for manufacturing same
JP4532671B2 (en) Hydrogen gas detector
JP4743375B2 (en) Flammable gas concentration measurement method
JP4916357B2 (en) Semiconductor gas detector
EP3751264A2 (en) Carbon dioxide gas sensor
KR100989611B1 (en) Highly sensitive and fast responding oxide semiconductor-type gas sensor using hierarchical structure and fabrication method thereof
JP5105284B2 (en) Ammonia concentration measuring sensor element, ammonia concentration measuring device, and ammonia concentration measuring method
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JP3929199B2 (en) HYDROGEN GAS DETECTION ELEMENT AND MANUFACTURING METHOD THEREOF
JP3075070B2 (en) Carbon monoxide gas sensor
JP5275099B2 (en) Hydrogen detection element and hydrogen detection sensor
Shi et al. InOx doped SnO2 nanostructure deposited on MEMS device by PE-ALD process for detection of NO2
JP3929355B2 (en) Semiconductor hydrogen gas detector
JPH11287781A (en) Hydrogen gas detection element and its manufacture
JP2005265546A (en) Hydrogen gas detecting material and hydrogen gas sensor using it
JP3901594B2 (en) Semiconductor hydrogen gas detector
JPH11287778A (en) Hydrogen gas detection element and its manufacture
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP6758060B2 (en) Hydrogen gas sensor
Srivastava et al. Effect of SiO^ sub 2^ Overlayer on WO^ sub 3^ Sensitivity to Ammonia
TWI295371B (en) Stabilization method for signal of resistive oxygen sensor using cerium oxide
JP3669807B2 (en) Carbon monoxide detection sensor
JPH053897B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Ref document number: 4532671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term