JP3929355B2 - Semiconductor hydrogen gas detector - Google Patents

Semiconductor hydrogen gas detector Download PDF

Info

Publication number
JP3929355B2
JP3929355B2 JP2002154023A JP2002154023A JP3929355B2 JP 3929355 B2 JP3929355 B2 JP 3929355B2 JP 2002154023 A JP2002154023 A JP 2002154023A JP 2002154023 A JP2002154023 A JP 2002154023A JP 3929355 B2 JP3929355 B2 JP 3929355B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
gas
sensitivity
hydrogen
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002154023A
Other languages
Japanese (ja)
Other versions
JP2003344342A (en
Inventor
清 福井
章 勝木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2002154023A priority Critical patent/JP3929355B2/en
Publication of JP2003344342A publication Critical patent/JP2003344342A/en
Application granted granted Critical
Publication of JP3929355B2 publication Critical patent/JP3929355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被検知ガスと接触自在に設けられ、酸化インジウム粒子を主成分とする金属酸化物半導体を用いて形成した感応層と、前記感応層により覆われた貴金属線とを有し、前記感応層の表面には、水素選択透過性のシリカ薄膜を形成してある半導体式水素ガス検知素子に関する。
【0002】
【従来の技術】
一般に、半導体式ガス検知素子の応答特性や性能はそれに用いられた材料の物理化学的な物性に大きく依存しており、ガス検知素子開発においてはガス検知素子材料の選択が極めて重要である。
【0003】
従来、半導体式ガス検知素子としては、被検知ガスと接触自在に設けられ、ガス感応材料として酸化スズ(SnO2)等の金属酸化物を主成分とする半導体を用いて形成した感応層と、前記感応層により覆われた貴金属線とを有するものが知られている。
【0004】
そして、前記感応層の表面には、シリカの緻密な被覆層(シリカ薄膜)を形成させることにより、分子サイズの小さい水素ガスだけを容易に透過させる、いわゆる、「分子ふるい」の機能を持たせたものがあった。これにより水素ガスに対し極めて高い感度と選択性を持つガス検知素子(半導体式水素ガス検知素子)が作られていた。
【0005】
図1に、このようなガス検知素子Rsを用いた水素ガスの検知メカニズムの概念図を示す。
【0006】
空気中には種々のガスが存在しており、分子サイズの大きいガス(一酸化炭素、エタノール、メタン、ブタン等)はシリカ薄膜3を通過できない。しかし、水素ガスはシリカ薄膜3を容易に通過して内部の酸化スズを主成分とする感応層2と接触し、感応層2表面の負電荷を持った吸着酸素と反応して水分子と自由電子を生成する。この時、生成した水分子はシリカ薄膜を透過して外部へ放出され、自由電子は感応層2中の酸化スズ結晶中に移動してその伝導度を増加させる。
【0007】
一方、空気中には、酸素分子は約21vol%存在しており、前記ガス検知素子1内部との間には高い圧力差が生じている。この高い圧力差(濃度差)により、酸素分子は緻密なシリカ薄膜3を通過する。しかし、酸素分子がシリカ薄膜を通過する際に拡散制限を受けるため、感応層2の反応表面に酸素分子の供給が遅れ、水素ガスの酸化反応の速度に追いつけないため、感応層2に存在する表面吸着酸素が効率よく低下する。これにより空気中の水素ガス濃度が低い場合であっても高い水素感度が得られる。
【0008】
このような半導体式水素ガス検知素子により、効率よく水素ガスを検知することが可能となっており、2000ppm以下の水素ガス検知においても使用可能となる。
【0009】
一方、ガス感応材料として、上述した酸化スズに代わって、酸化インジウム(In23)を用いたガス検知素子がある。このガス検知素子は、高濃度の水素ガス中においても安定であるため、vol%オーダーの高濃度水素ガス検知に向いていることが知られている。また、この感応層に、例えば、酸化セリウム(CeO2)を添加すると、ガス感度曲線の直線性が改善され、良好に高濃度水素ガス検知を行うことができる。
【0010】
【発明が解決しようとする課題】
水素ガスは分子半径が小さいため漏洩し易く、その爆発下限界(LEL)が4vol%と低く、また、爆発ガス濃度領域が広いためガス爆発が起こりやすいので非常に危険である。従って、水素ガス検知においては、例えば、水素の爆発下限界(LEL)の1/10から1/4の濃度(即ち、0.4〜1vol%)において信頼性良く検知できることが要求される。そのためには、水素ガスに対する高い選択性や感度曲線の直線性、あるいは、揮発性化合物等の被毒性ガスに対する耐被毒性が要求される。
【0011】
化学工場や半導体製造工場等の現場では高濃度の水素ガスが漏洩する可能性もあり、検知に使用されるガス検知素子は、そのような高い水素ガス濃度に晒された場合であっても耐性を有することが要求される。
【0012】
vol%オーダーの高濃度水素ガス検知には、接触燃焼式ガスセンサがあるが、ガス選択性やシリコン系の揮発性化合物や二酸化硫黄などによる被毒により感度低下し易く信頼性から大きな問題となる。
【0013】
一方、上述した半導体式水素ガス検知素子は2000ppm以下の水素ガス検知に使用可能な優れた水素ガス選択性センサであるが、2000ppmより高い濃度の水素ガス検知には向かない。これは、以下の理由により説明される。
【0014】
上述したように、酸素分子がシリカ薄膜を通過する際に拡散制限を受けるため、感応層表面への酸素分子の供給が遅れ、その結果、感応層に存在する表面吸着酸素量は低下する。この時、高い酸化活性を有する酸化スズ表面に存在する吸着酸素ばかりでなく格子酸素まで反応に参加することが考えられ、これにより、表面の酸化スズの組成が化学量論から大きくずれ、例えば、4価から2価のスズに還元されたり、表面の結晶の微細構造も大きく変化することになる。このように、水素ガス濃度が少し高くなる(例えば、ガス濃度1000〜2000ppm)と、感応層表面の酸化スズが強く還元され、その結果、後の水素ガス検知に供した場合には、この半導体式水素ガス検知素子の水素ガスに対する感度が低下する。
このように、上述した半導体式水素ガス検知素子は、高濃度の水素ガスに晒されると不可逆的な感度低下を引き起こすため、高濃度の水素ガス検知に適用するには不十分である。
【0015】
また、ガス感応材料の主成分として酸化インジウムを用い、酸化セリウムを添加したガス検知素子は、酸化セリウム添加によりガス感度曲線の直線性が改善されるものの、さらに十分な信頼性を確保するには、より改善された直線性が要求される。
【0016】
従って、本発明の目的は、少なくともLEL濃度程度までの水素ガスが検知可能であり、感度低下が起こり難く、ガス感度曲線の直線性が優れ、被毒性ガスに対する優れた耐性を有し、湿度変化に対して殆ど影響されない半導体式水素ガス検知素子を提供することにある。
【0017】
【課題を解決するための手段】
この目的を達成するための本発明の特徴構成は、
被検知ガスと接触自在に設けられ、酸化インジウム粒子を主成分とする金属酸化物半導体を用いて形成した感応層と、前記感応層により覆われた貴金属線とを有し、前記感応層の表面には、水素選択透過性のシリカ薄膜を形成してある半導体式水素ガス検知素子であって、
前記感応層に、マンガン酸化物を1〜4at%、或いは、クロム酸化物を2〜4at%添加した点にあり、その作用効果は以下の通りである。
【0018】
〔作用効果〕
上述した従来のガス検知素子において、高濃度の水素ガスの影響を抑えるためには、
(1)第2の適当な物質(金属酸化物など)を添加し、酸化スズ表面の酸化活性あるいは水素ガスの酸化反応を制限するか、
(2)活性の低いガス感応材料(金属酸化物半導体)を選択する
ことが考えられる。
本発明においては、両者の方法を考慮して鋭意検討した結果、高濃度の水素に対し安定な挙動をする酸化インジウムをガス感応材料として採用し、さらに、その表面活性を、第2物質(金属酸化物)を添加することにより制御しLEL濃度付近の高濃度の水素ガスによる影響が少ないガス感応材料が得られることが判明した。以下に、ガス感応材料として酸化インジウムが有効である理由を述べる。
【0019】
従来、ガス感応材料として用いていたスズでは2価と4価の安定な価数(酸化数)が存在する。そのため、4価から2価のスズに還元され、その結果、表面の結晶の微細構造も大きく変化する等、不可逆的な感度劣化の原因になると考えられる。
【0020】
一方、本発明で用いるインジウムは安定な酸化数として3価しか存在せず酸化数のより低い還元状態がないため、還元されてもすぐに元の酸化数にもどり易いと考えられる。即ち、還元に対して酸化インジウムは酸化スズに比べより安定であると考えられる。従って、高濃度の水素ガスに対し安定な挙動をすると予想される。さらに、酸化インジウムは酸化スズに比べ格子酸素イオン(O2−)のイオン性が大きく、表面吸着酸素が熱的に安定であると考えられ、酸化活性も低く水素による強い還元に対して有利であると予想される。
以上の事から、酸化インジウムは、高濃度水素による影響の少ないガス感応材料として有効であると考えられる。
【0021】
そして、ガス感応材料として酸化インジウムを選択したガス検知素子において、酸化マンガン(MnO2)、或いは、酸化クロム(Cr23)を添加することにより、以下の有利な特性を有することが認められた。
【0022】
(水素ガス選択特性)
つまり、後述の実施例(a−1)におけるガス感度特性を調べた実験において、水素ガス、メタノール、エタノール、メタンガス、イソブタン、一酸化炭素を被検知ガスとして用いたところ、図4に示したように、本発明の半導体式水素ガス検知素子は、水素ガスと他の被検知ガスとは明らかに異なる感度曲線を有しており、水素ガスに対する高い選択性を有していると認められる。さらに、3〜4vol%の濃度の水素ガスも検知可能であり、少なくともLEL濃度程度までの水素ガスに対して良好なガス検知を行うことができると考えられる。
【0023】
(被毒ガス耐性)
後述の実施例(a−2)における被毒ガスに対する耐性を調べた実験において、代表的な被毒性ガスであるシロキサン化合物及び硫黄化合物に対し、1時間暴露した後のガス感度に及ぼす影響を調べたところ、図5に示すように、シロキサン化合物暴露後のガス感度は暴露前のセンサ出力に比べて僅かに上昇するのみであり、さらに、硫黄化合物暴露後のセンサ出力は暴露前のガス感度に比べて殆ど変化は認められない。そのため、本発明の半導体式水素ガス検知素子は、被毒性ガスに対して優れた耐性を有するガス検知素子であると認められた。
【0024】
(湿度依存性)
後述の実施例(a−3)における湿度に対するガス感度の影響を調べた実験において、図6において、種々の湿度条件で、種々の濃度の水素ガスやメタノールを被検知ガスとして測定したところ、全体的に安定したセンサ出力が得られた。そのため、本発明の半導体式水素ガス検知素子は、湿度変化に対して殆ど影響されないセンサ出力特性を有するガス検知素子であると認められた。
【0025】
(水素感度曲線の直線性)
後述の実施例(c)において、感応部への酸化マンガン添加量を種々変更して水素感度の変化を調べた実験を行ったところ、感応部に酸化マンガンを1.0〜4.0at%添加した場合に得られた水素感度曲線が、従来のガス検知素子(ガス感応材料に酸化インジウムを用い、酸化セリウムを添加したガス検知素子)に比べて直線性が良好に改善される結果が得られた(図8(b)参照)。
【0026】
さらに、後述の実施例(d)において、感応部への酸化クロム添加量を種々変更して水素感度の変化を調べた実験を行ったところ、感応部に酸化クロムを2.0〜4.0at%添加した場合に得られた水素感度曲線が、従来のガス検知素子に比べて直線性が良好に改善される結果が得られた(図9(b)参照)。
【0027】
(高濃度水素ガス暴露に対する耐性)
後述の実施例(f)において、感応部へマンガン酸化物、或いは、クロム酸化物を添加し、高濃度の水素ガスに暴露した後の水素ガスに対する感度変化を調べた実験を行った。その結果、感応層にマンガン酸化物を添加した半導体式水素ガス検知素子のガス感度は暴露前と比べてほぼ同様の挙動を示すことが判明し、感応層にクロム酸化物を添加した半導体式水素ガス検知素子のガス感度は、高感度化するように特性変化することが判明した。
つまり、本発明の半導体式水素ガス検知素子においては、高濃度の水素ガスに暴露した後においても、水素ガスに対する感度低下を引き起こすことがないため、高濃度の水素ガス検知に適したガス検知素子であると認められる。
【0028】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。尚、図面において従来例と同一の符号で表示した部分は同一又は相当の部分を示している。
【0029】
本発明に係る半導体式水素ガス検知素子は、次の手法により製造した。
まず、酸化インジウムを調製した。
ここでは、市販の水酸化インジウム(In(OH)3 )の微粉体を電気炉を用いて600℃で4時間焼成して酸化インジウムを得た。
【0030】
尚、他の調整方法とし、塩化インジウムから水溶液を作り、攪拌しながらアンモニア水溶液を滴下し、加水分解して得た水酸化インジウムの沈殿物を蒸留水で数回洗浄して塩素など余分なイオンを除去し、乾燥後600℃で4時間焼成し酸化インジウムを調製する方法を用いることもできる。
【0031】
得られた酸化インジウム半導体をさらに粉砕して微粉体とし、1.3−ブタンジオール等の分散楳を用いてペ−ストにした。図2に示すように、このペーストを貴金属線1(線径20μmの白金線コイル)に塗布して直径約0.50mmの球状とした後、乾燥させた。さらに、コイルに電流を流してそのジュ−ル熱で加熱し、600℃、1時間空気中で焼結して、感応層2のみからなる熱線型半導体式水素ガス検知素子Rsを得た。
【0032】
一方、市販の硝酸マンガン、硝酸クロムを所定濃度溶かした水溶液を作り、それぞれを上記で得られた酸化インジウムの焼結体に含浸し、空気中で乾燥した。その後、コイルに電流を流しそのジュ−ル熱で600℃、1時間空気中で焼成し、それらの酸化物として酸化インジウム焼結体に添加した。これにより、マンガン、クロムの各種金属を酸化物の形態で前記感応層2表面に担持させることができる。尚、比較のためセリウムを添加したガス検知素子も同様の手法で製造した。
【0033】
このようにして出来たガス検知素子を、例えば、珪素のシロキサン化合物の一つであるヘキサメチルジシロキサン(以後HMDSと呼ぶ)の飽和蒸気圧中(30〜35℃、約7〜9vol%)の環境において加熱する。加熱は、貴金属線1に電流を流通させ、ジュール熱を発生させることにより感応層2全体がヘキサメチルジシロキサンの分解温度以上になるように調整する。コイルのジュ−ル熱で約550℃に加熱し素子表面で所定の時間熱分解して感応層2表面に緻密なシリカ薄膜3(SiO2)を蒸着形成し、水素ガス検知素子として用いられるようになる。
即ち、この化学蒸着法により、分子サイズの小さい水素だけが通過し易い膜、いわゆる「分子ふるい」膜を上記感応層の表面とその近傍に形成させた。
【0034】
上述したように、貴金属線1において白金線コイルを例示したが、この白金線コイルは半導体を加熱するヒーターであるのと同時に電極の役割を持つ、ガス検知素子として最も簡単な構造を持つ。予想される如く、小電力で製造し易いため、使い易く生産コストも低い経済効果の大きい水素ガス検知素子である。
【0035】
この水素ガス検知素子を図3に示すブリッジ回路に組み込み、ガス検知装置として用いた。このときセンサ出力は、以下の数式によって得られる。
V=−E{rs/(rs+r0)−r1/(r1+r2)}
ここで、各変数は以下のとおりである。
V :センサ出力
E :ブリッジ電圧
rs :熱線型半導体式ガス検知素子Rsの抵抗
r0 :固定抵抗R0の抵抗
r1 :固定抵抗R1の抵抗
r2 :固定抵抗R2の抵抗
【0036】
また、ガス感度は、検知ガス共存空気中の出力と、清浄空気中出力との差として求めた。尚、相対感度として感度を表記する場合、ある特定条件下の感度出力を1とした比をもって他の条件下における感度を示したものを指すこととしている。
【0037】
【実施例】
以下に本発明の実施例を図面に基づいて説明する。
上述した方法により、酸化インジウムを主成分とする感応層2に酸化マンガン、或いは、酸化クロムを添加し、感応層2表面に緻密なシリカ薄膜3を形成した熱線型半導体式水素ガス検知素子Rsを製造し、以下の実験を行った。
尚、比較として、酸化インジウムを主成分とする感応層2に酸化セリウムを添加し、感応層2表面に緻密なシリカ薄膜3を形成した熱線型半導体式水素ガス検知素子Rs’を製造し、比較実験に供した。
【0038】
(a)本発明の熱線型半導体式水素ガス検知素子の諸特性
(a−1)水素ガス感度特性
図4に、酸化インジウムを主成分とする感応層2に酸化マンガンを添加してある本発明の熱線型半導体式水素ガス検知素子Rsを用い、種々のガス濃度(vol%)の被検知ガスを検知した時の結果を示した。
酸化マンガンは、0.5at%添加した場合を示し、被検知ガスは、水素ガス(H2)、メタノール(CH3OH)、エタノール(C25OH)、メタンガス(CH4)、イソブタン(i−C410)、一酸化炭素(CO)を用い、ガス検知時の温度は480℃であった。
【0039】
この結果、本発明の熱線型半導体式水素ガス検知素子Rsは、水素ガスにおいては、他の被検知ガスとは明らかに異なる感度曲線を有しているため、水素ガスに対する高い選択性を有していることが判明した。
【0040】
また、3〜4vol%の水素ガス濃度においても検知可能であり、感度低下が起こっていないことから、少なくともLEL濃度程度までの高濃度の水素ガスに対して良好なガス検知を行うことができることが判明した。
【0041】
(a−2)被毒ガスに対する耐性
図5に、前記熱線型半導体式水素ガス検知素子Rsの、代表的な被毒性ガスに対する影響を評価した図を示した。図5(a)はシロキサン化合物(HMDS:100ppm)、図5(b)は硫黄化合物(SO2:500ppm)に対し、1時間暴露した後、種々の濃度の水素ガスを測定した時のセンサ出力に及ぼす影響を調べた結果をそれぞれ示している。評価は、暴露前のセンサ出力と比較することにより行った。
【0042】
この結果、HMDS暴露後のガス感度は暴露前のセンサ出力に比べて僅かに上昇しており、SO2暴露後のセンサ出力は暴露前のセンサ出力に比べて殆ど変化は認められないことが判明した。
【0043】
従って、本発明の熱線型半導体式水素ガス検知素子Rsは、被毒性ガスに対して優れた耐性を有するガス検知素子である。
【0044】
(a−3)湿度依存性
図6に、前記熱線型半導体式水素ガス検知素子Rsの湿度に対する影響を調べた図を示した。被検知ガスとして、水素ガス(0.05、0.1、0.2、0.5、1.0、2.0vol%)、メタノール(0.2vol%)を使用した。
【0045】
この結果、水素ガスにおいては、低湿度側で多少のセンサ出力上昇が認められるが、全体的に安定したセンサ出力が得られることが判明した。
【0046】
従って、本発明の熱線型半導体式水素ガス検知素子Rsは、湿度変化に対して殆ど影響されないセンサ出力特性を有するガス検知素子である。
【0047】
上述した実験においては、本発明の熱線型半導体式水素ガス検知素子Rsの感応層2に酸化マンガンを添加してある場合を示したが、感応層2に酸化クロムを添加した場合においても上記実験と同様の傾向を示す実験結果が得られる。
【0048】
(b)比較実験:酸化セリウム添加による水素感度曲線の直線性改善効果
比較例に供するために製造した半導体式水素ガス検知素子Rs’を用いて以下の実験を行った。
前記半導体式水素ガス検知素子Rs’は、酸化インジウムの焼結体に酸化セリウムを2.0〜5.0at%まで添加割合を種々変更することにより製造した。酸化セリウムのそれぞれの割合における水素感度比(5000ppm/10000ppm)の変化を求め、水素感度曲線の直線性を調べた。
【0049】
ここで、水素感度曲線が直線性を示すと、水素ガス濃度の変化に伴う感度変化はほぼ一定となる。
【0050】
尚、硝酸セリウム水溶液は、0.50、0.75、1.0、1.25Mの濃度になるように調製し、それぞれの水溶液から酸化セリウム含量が2.0、3.0、4.0、5.0at%の半導体式水素ガス検知素子Rs’を製造した。
結果を、表1に示した。
【0051】
【表1】

Figure 0003929355
HMDS処理条件:約9vol%、35℃
センサ処理温度:550℃、3.0V(10ohm)
処理時間:10分
ガス感度測定電圧:1.9V(5.6ohm)
【0052】
この結果より、水素感度比は0.81〜0.83でほぼ一定であり、セリウム酸化物の添加では直線性の改善に限界があることが分かった。
【0053】
(c)本発明の熱線型半導体式水素ガス検知素子の酸化マンガン添加量依存性
酸化インジウムの焼結体に、酸化マンガンを添加した半導体式水素ガス検知素子Rsを製造し、以下の実験に供した。
【0054】
(c−1)水素感度の酸化マンガン添加量依存性
酸化インジウムの焼結体に、酸化マンガンを0.4〜4.0at%まで添加割合を種々変更することにより、本発明の半導体式水素ガス検知素子Rsを製造した。これらの半導体式水素ガス検知素子Rsを用いて、種々の水素ガス濃度を検知し、これら半導体式水素ガス検知素子Rsの感度の変動を調べた。この時、HMDS処理条件、センサ処理温度、処理時間、ガス感度測定電圧は、上述した比較実験と同様の条件で行った。
結果を、図7に示した。尚、図7(a)は、実験により得られたデータを示し、図7(b)は、図7(a)のデータをグラフ化したものである。
【0055】
水素感度は酸化マンガンの添加量の増加と共に著しく減少し、3.0at% 以上でほぼ一定となった。
【0056】
(c−2)水素感度曲線の直線性に対する酸化マンガン添加量依存性
図7(a)のデータより水素感度比を求め、酸化インジウムの焼結体に酸化セリウムを2.0at%添加した場合の結果と比較した。結果を、図8に示した。尚、図8(a)は、得られた水素感度比の一例として、5000ppm/10000ppm(つまり、0.5vol%/1.0vol%)のデータを示し、図8(b)は、水素ガス10000ppmに対する感度比(相対感度)のデータをグラフ化したものである。
【0057】
これより、酸化マンガンの添加量の増加と共に水素感度比が減少するが、2at%以上でほぼ一定となることが判った。
【0058】
ここで、図8(b)のグラフを検討すると、酸化マンガンの添加量が1.0〜4.0at%のグラフは、酸化セリウムを2.0at%添加した場合のグラフ(破線)より下側にある。つまり、酸化マンガンの添加量が1.0〜4.0at%の場合は、酸化セリウムを2.0at%添加した場合と比べて直線性が優れている水素感度曲線が得られることが判明した。
【0059】
従って、酸化マンガンの添加量は、1.0〜4.0at%とすることにより、水素感度曲線は、酸化セリウムを添加した場合と比べて直線性が良好に改善されることが判明した。
【0060】
(d)本発明の熱線型半導体式水素ガス検知素子の酸化クロム添加量依存性
酸化インジウムの焼結体に、酸化クロムを添加した半導体式水素ガス検知素子Rsを製造し、以下の実験に供した。
【0061】
(d−1)水素感度の酸化クロム添加量依存性
酸化インジウムの焼結体に、酸化クロムを0.4〜4.0at%まで添加割合を種々変更することにより、本発明の半導体式水素ガス検知素子Rsを製造した。これらの半導体式水素ガス検知素子Rsを用いて、種々の水素ガス濃度を検知し、これらの半導体式水素ガス検知素子Rsの感度の変動を調べた。この時、HMDS処理条件、センサ処理温度、処理時間、ガス感度測定電圧は、上述した比較実験と同様の条件で行った。
結果を、図9に示した。尚、図9(a)は、実験により得られたデータを示し、図9(b)は、図9(a)のデータをグラフ化したものである。
【0062】
酸化クロムの添加では、酸化マンガンの場合と比べ水素感度は高く維持されることが判る。
【0063】
(d−2)水素感度曲線の直線性に対する酸化クロム添加量依存性
図9(a)のデータより水素感度比を求め、酸化インジウムの焼結体に酸化セリウムを2.0at%添加した場合の結果と比較した。結果を、図10に示した。尚、図10(a)は、得られた水素感度比の一例として、5000ppm/10000ppm(つまり、0.5vol%/1.0vol%)のデータを示し、図10(b)は、水素ガス10000ppmに対する感度比(相対感度)のデータをグラフ化したものである。
【0064】
酸化クロム添加量の増加と共に水素感度比が単調に減少するが、直線性は酸化マンガンを添加した場合と比べ劣る。
【0065】
ここで、図10(b)のグラフを検討すると、酸化クロムの添加量が2.0〜4.0at%のグラフは、酸化セリウムを2.0at%添加した場合のグラフ(破線)より下側にある。つまり、酸化クロムの添加量が2.0〜4.0at%の場合は、酸化セリウムを2.0at%添加した場合と比べて直線性が優れている水素感度曲線が得られることが判る。
【0066】
従って、酸化クロムの添加量は、2.0〜4.0at%とすることにより、水素感度曲線は、酸化セリウムを添加した場合と比べて直線性が良好に改善されることが判明した。
【0067】
(e)HMDSの蒸着処理時間依存性
感応層2表面のシリカ薄膜3の形成時間がガス感度に及ぼす影響を調べた。
ガス検知素子1は、酸化インジウムを主成分とする感応層2に酸化マンガンを1.8at%添加したものを用い、前記シリカ薄膜3は、HMDSの飽和蒸気圧中(35℃、約9vol%)の環境において約550℃に加熱することにより形成した。この時、加熱処理時間を種々変更して製造されたガス検知素子により、種々の濃度の被検知ガスを検知した結果を図11に示した。尚、被検知ガスは、水素ガス(200〜10000ppm)、及びメタノール(2000ppm)を使用し、ガス感度測定電圧は、1.9Vで行った。
【0068】
各被検知ガスの検知結果より、水素ガス感度は12分まで上昇傾向であるが、その後、急に減少し、一方、エタノ−ル感度は処理時間の増加と共に単調に減少することが判明した。
【0069】
また、処理時間が6分以下では、水素ガス濃度が200ppmの時とエタノール2000ppmの時のセンサ出力が重なるために水素ガスとエタノールとの区別が困難であるため好ましくなく、処理時間が14分以上では、処理時間が長い上に水素ガスの感度が急激に低下しているため好ましくない。
【0070】
従って、HMDSの蒸着処理時間は、8〜14分程度であれば、良好なガス選択性、及び、ガス感度を維持できる処理時間であると認められる。
【0071】
(f)高濃度の水素ガスに対する耐性
本発明の熱線型半導体式水素ガス検知素子を高濃度の水素ガス(2vol%)に暴露した後の感度変化を調べた。
【0072】
(f−1)酸化マンガン添加
感応層2に2at%の酸化マンガンを添加した熱線型半導体式水素ガス検知素子Rsを用い、水素ガス(2vol%)に15分暴露した後、種々の濃度の水素ガスを検知した時の結果を図12(a)に示した。結果は水素ガス濃度10000ppm時の感度を1とした時の相対感度により示した。高濃度の水素ガスへの暴露は2回行った。
【0073】
この結果、水素ガスへの暴露前(初期値)のデータと、暴露1回目、暴露2回目のデータとは、ほぼ同様の挙動を示した。
【0074】
従って、感応層2に2at%の酸化マンガンを添加した熱線型半導体式水素ガス検知素子Rsは、高濃度の水素ガス暴露に対して優れた耐性を有する(つまり、特性が変化しない)ことが認められた。
【0075】
(f−2)酸化クロム添加
感応層2に2at%の酸化クロムを添加した熱線型半導体式水素ガス検知素子Rsを用い、水素ガス(2vol%)に15分暴露した後、種々の濃度の水素ガスを検知した時の結果を図12(b)に示した。結果は水素ガス濃度10000ppm時の感度を1とした時の相対感度により示した。高濃度の水素ガスへの暴露は2回行った。
【0076】
この結果、暴露1回目及び2回目の両データは、水素ガスへの暴露前(初期値)のデータに比べて高い感度を示すことが判明した。このように感応層2に酸化クロムを添加した熱線型半導体式水素ガス検知素子Rsは、高濃度の水素ガス暴露により高感度化するように特性変化することが認められた。
【0077】 以上より、本発明の熱線型半導体式水素ガス検知素子は、高濃度の水素ガスに暴露した後においても、水素ガスに対する感度低下を引き起こすことがないため、高濃度の水素ガス検知に適したガス検知素子であると認められる。
【0078】
上述したように、本発明の熱線型半導体式水素ガス検知素子は、LEL濃度付近までの水素ガスによる影響が少なく,優れた直線性を持つ水素選択性ガス検知素子であり、また、湿度依存性が極めて少なく、シリコン系揮発性ガスや硫黄酸化物など被毒性ガスによる影響が少なく、信頼性が高く、また広い応用が可能となる水素選択性のガス検知素子であるため、水素を還元剤として使用する化学工場、半導体製造ガスのキャリヤガスとして水素を使用している半導体製造工場、自動車用、家庭用、携帯用等として使用される水素燃料電池とその周辺設備からの水素ガスの漏洩によるガス爆発の防止等を目的として利用することが可能である。
【0079】
尚、本発明は上記実施形態に限定されるものではなく、同様の作用効果を奏するものであれば、各部構成を適宜変更することが可能である。
【図面の簡単な説明】
【図1】水素ガスの検知メカニズムの概念図
【図2】本発明の半導体式水素ガス検知素子の概略図を示した図
【図3】ブリッジ回路を示した図
【図4】本発明の熱線型半導体式水素ガス検知素子の水素ガス感度特性を調べた図
【図5】本発明の熱線型半導体式水素ガス検知素子の被毒性ガスに対する影響を評価した図
【図6】本発明の熱線型半導体式水素ガス検知素子の湿度に対する影響を調べた図
【図7】酸化マンガン添加量の変動に伴う水素感度の変動を示した図
【図8】酸化マンガン添加量の変動に伴う水素感度比、及び水素感度曲線を求めた図
【図9】酸化クロム添加量の変動に伴う水素感度の変動を示した図
【図10】酸化クロム添加量の変動に伴う水素感度比、及び水素感度曲線を求めた図
【図11】HMDSの蒸着処理時間の変化に伴うガス感度の変化を調べた図
【図12】高濃度の水素ガス暴露後の水素ガス検知結果を示した図
【符号の説明】
Rs 半導体式水素ガス検知素子
1 貴金属線
2 感応層
3 シリカ薄膜[0001]
BACKGROUND OF THE INVENTION
The present invention has a sensitive layer provided using a metal oxide semiconductor mainly composed of indium oxide particles, and a noble metal wire covered with the sensitive layer. The present invention relates to a semiconductor-type hydrogen gas detecting element in which a silica thin film having hydrogen selective permeability is formed on the surface of a sensitive layer.
[0002]
[Prior art]
In general, the response characteristics and performance of a semiconductor gas detection element largely depend on the physicochemical properties of the material used therefor, and the selection of the gas detection element material is extremely important in developing a gas detection element.
[0003]
Conventionally, as a semiconductor type gas detection element, a sensitive layer provided using a semiconductor mainly composed of a metal oxide such as tin oxide (SnO 2 ) as a gas sensitive material provided so as to be in contact with a gas to be detected; One having a noble metal wire covered with the sensitive layer is known.
[0004]
The surface of the sensitive layer is provided with a so-called “molecular sieve” function that allows only hydrogen gas having a small molecular size to pass through easily by forming a dense coating layer (silica thin film) of silica. There was something. As a result, a gas sensing element (semiconductor-type hydrogen gas sensing element) having extremely high sensitivity and selectivity with respect to hydrogen gas has been produced.
[0005]
FIG. 1 shows a conceptual diagram of a hydrogen gas detection mechanism using such a gas detection element Rs.
[0006]
Various gases exist in the air, and gases having a large molecular size (carbon monoxide, ethanol, methane, butane, etc.) cannot pass through the silica thin film 3. However, the hydrogen gas easily passes through the silica thin film 3 and comes into contact with the sensitive layer 2 mainly composed of tin oxide inside, and reacts with the adsorbed oxygen having a negative charge on the surface of the sensitive layer 2 to freely react with water molecules. Generate electrons. At this time, the generated water molecules are transmitted to the outside through the silica thin film, and free electrons move into the tin oxide crystals in the sensitive layer 2 to increase the conductivity.
[0007]
On the other hand, about 21 vol% of oxygen molecules are present in the air, and a high pressure difference is generated between the inside of the gas detection element 1. Oxygen molecules pass through the dense silica thin film 3 due to this high pressure difference (concentration difference). However, since oxygen molecules are subjected to diffusion limitation when passing through the silica thin film, the supply of oxygen molecules is delayed on the reaction surface of the sensitive layer 2 and cannot keep up with the rate of the oxidation reaction of hydrogen gas. Surface adsorbed oxygen is efficiently reduced. Thereby, even if the hydrogen gas concentration in the air is low, high hydrogen sensitivity can be obtained.
[0008]
Such a semiconductor hydrogen gas detecting element can detect hydrogen gas efficiently, and can be used for detecting hydrogen gas of 2000 ppm or less.
[0009]
On the other hand, as a gas sensitive material, there is a gas detection element using indium oxide (In 2 O 3 ) instead of the above-described tin oxide. Since this gas detection element is stable even in high-concentration hydrogen gas, it is known to be suitable for detection of high-concentration hydrogen gas on the order of vol%. Further, for example, when cerium oxide (CeO 2 ) is added to the sensitive layer, the linearity of the gas sensitivity curve is improved, and high-concentration hydrogen gas can be detected satisfactorily.
[0010]
[Problems to be solved by the invention]
Since hydrogen gas has a small molecular radius, it easily leaks, its lower explosion limit (LEL) is as low as 4 vol%, and because it has a wide explosive gas concentration range, it is very dangerous because a gas explosion is likely to occur. Therefore, in hydrogen gas detection, for example, it is required to be able to detect with high reliability at a concentration of 1/10 to 1/4 of the lower explosion limit (LEL) of hydrogen (that is, 0.4 to 1 vol%). For that purpose, high selectivity to hydrogen gas, linearity of sensitivity curve, or poisoning resistance to toxic gases such as volatile compounds are required.
[0011]
There is a possibility that high concentration hydrogen gas leaks in the field such as chemical factory and semiconductor manufacturing factory, and the gas detection element used for detection is resistant even when exposed to such high hydrogen gas concentration. It is required to have
[0012]
There is a catalytic combustion type gas sensor for detecting high concentration hydrogen gas on the vol% order, but it is a serious problem because of its reliability because it tends to decrease the sensitivity due to gas selectivity and poisoning by silicon-based volatile compounds and sulfur dioxide.
[0013]
On the other hand, the semiconductor-type hydrogen gas detection element described above is an excellent hydrogen gas selectivity sensor that can be used for detection of hydrogen gas of 2000 ppm or less, but is not suitable for detection of hydrogen gas having a concentration higher than 2000 ppm. This is explained for the following reasons.
[0014]
As described above, since oxygen molecules are subjected to diffusion restriction when passing through the silica thin film, the supply of oxygen molecules to the surface of the sensitive layer is delayed, and as a result, the amount of oxygen adsorbed on the surface of the sensitive layer decreases. At this time, it is considered that not only the adsorbed oxygen present on the surface of tin oxide having a high oxidation activity but also the lattice oxygen participates in the reaction, whereby the composition of surface tin oxide deviates greatly from the stoichiometry, for example, It is reduced from tetravalent to divalent tin, and the fine structure of the surface crystal changes greatly. As described above, when the hydrogen gas concentration is slightly increased (for example, gas concentration is 1000 to 2000 ppm), tin oxide on the surface of the sensitive layer is strongly reduced. The sensitivity of the hydrogen gas detection element to the hydrogen gas decreases.
As described above, the semiconductor hydrogen gas detection element described above is insufficient for application to high concentration hydrogen gas detection because it causes irreversible sensitivity degradation when exposed to high concentration hydrogen gas.
[0015]
In addition, gas sensing elements that use indium oxide as the main component of the gas sensitive material and to which cerium oxide has been added can improve the linearity of the gas sensitivity curve by adding cerium oxide. More improved linearity is required.
[0016]
Accordingly, the object of the present invention is to detect hydrogen gas at least up to about the LEL concentration, hardly reduce the sensitivity, have excellent linearity of the gas sensitivity curve, have excellent resistance to toxic gases, and change in humidity. It is an object of the present invention to provide a semiconductor type hydrogen gas detection element that is hardly affected by the above.
[0017]
[Means for Solving the Problems]
The characteristic configuration of the present invention for achieving this object is as follows:
A sensitive layer provided using a metal oxide semiconductor mainly composed of indium oxide particles, and a noble metal wire covered with the sensitive layer, the surface of the sensitive layer being provided in contact with the gas to be detected; Is a semiconductor-type hydrogen gas detection element in which a silica thin film selectively permeable to hydrogen is formed,
The sensitive layer lies in that 1 to 4 at% of manganese oxide or 2 to 4 at% of chromium oxide is added , and the effects thereof are as follows.
[0018]
[Function and effect]
In the conventional gas detection element described above, in order to suppress the influence of high concentration hydrogen gas,
(1) Add a second appropriate substance (metal oxide, etc.) to limit the oxidation activity on the surface of tin oxide or the oxidation reaction of hydrogen gas,
(2) It is conceivable to select a gas-sensitive material (metal oxide semiconductor) having low activity.
In the present invention, as a result of diligent examination in consideration of both methods, indium oxide that exhibits a stable behavior with respect to a high concentration of hydrogen is adopted as a gas-sensitive material, and the surface activity of the second substance (metal) It has been found that a gas sensitive material can be obtained which is controlled by adding (oxide) and is less influenced by high concentration hydrogen gas near the LEL concentration. The reason why indium oxide is effective as a gas sensitive material will be described below.
[0019]
Conventionally, tin that has been used as a gas-sensitive material has stable bivalent and tetravalent valences (oxidation numbers). Therefore, it is considered that the reduction from tetravalent to divalent tin results in irreversible sensitivity deterioration such as a large change in the fine structure of the surface crystal.
[0020]
On the other hand, since indium used in the present invention has only a trivalent stable oxidation number and does not have a reduced state having a lower oxidation number, it is considered that the indium used easily returns to the original oxidation number even when reduced. That is, indium oxide is considered to be more stable than tin oxide against reduction. Therefore, it is expected to be stable with respect to high concentration hydrogen gas. Furthermore, indium oxide has higher ionicity of lattice oxygen ions (O2−) than tin oxide, and surface adsorbed oxygen is considered to be thermally stable, and has low oxidation activity and is advantageous for strong reduction by hydrogen. It is expected to be.
From the above, indium oxide is considered to be effective as a gas sensitive material that is less affected by high concentration hydrogen.
[0021]
In addition, in the gas detection element in which indium oxide is selected as the gas sensitive material, it is recognized that the following advantageous characteristics are obtained by adding manganese oxide (MnO 2 ) or chromium oxide (Cr 2 O 3 ). It was.
[0022]
(Hydrogen gas selection characteristics)
That is, in the experiment for examining the gas sensitivity characteristics in Example (a-1) described later, when hydrogen gas, methanol, ethanol, methane gas, isobutane, and carbon monoxide were used as the gas to be detected, as shown in FIG. In addition, it is recognized that the semiconductor hydrogen gas detecting element of the present invention has a sensitivity curve that is clearly different from that of other gas to be detected, and has high selectivity for hydrogen gas. Furthermore, hydrogen gas having a concentration of 3 to 4 vol% can be detected, and it is considered that good gas detection can be performed for hydrogen gas up to at least about the LEL concentration.
[0023]
(Toxic gas resistance)
In the experiment for examining the resistance to poisoning gas in Example (a-2) described later, the influence of siloxane compound and sulfur compound, which are typical poisoning gases, on gas sensitivity after exposure for 1 hour was examined. However, as shown in FIG. 5, the gas sensitivity after exposure to the siloxane compound is only slightly increased compared to the sensor output before exposure, and the sensor output after exposure to the sulfur compound is compared with the gas sensitivity before exposure. There is almost no change. Therefore, the semiconductor hydrogen gas sensing element of the present invention was recognized as a gas sensing element having excellent resistance against toxic gases.
[0024]
(Humidity dependency)
In an experiment for examining the influence of gas sensitivity on humidity in Example (a-3) described later, in FIG. 6, various concentrations of hydrogen gas and methanol were measured as detected gases under various humidity conditions. Stable sensor output was obtained. For this reason, the semiconductor hydrogen gas sensing element of the present invention has been recognized as a gas sensing element having sensor output characteristics that are hardly affected by changes in humidity.
[0025]
(Linearity of hydrogen sensitivity curve)
In an example (c) described later, an experiment was conducted in which changes in the hydrogen sensitivity were investigated by variously changing the amount of manganese oxide added to the sensitive part. Manganese oxide was added to the sensitive part in an amount of 1.0 to 4.0 at%. The hydrogen sensitivity curve obtained in this case shows a better linearity than conventional gas sensing elements (gas sensing elements using indium oxide as a gas sensitive material and cerium oxide added). (See FIG. 8B).
[0026]
Furthermore, in Example (d), which will be described later, an experiment was conducted in which the amount of chromium oxide added to the sensitive part was changed to examine changes in hydrogen sensitivity. As a result, 2.0 to 4.0 atm of chromium oxide was added to the sensitive part. As a result, it was found that the hydrogen sensitivity curve obtained in the case of addition of 1% improved the linearity better than the conventional gas detection element (see FIG. 9B).
[0027]
(Resistance to high concentration hydrogen gas exposure)
In Example (f), which will be described later, an experiment was conducted in which changes in sensitivity to hydrogen gas were examined after manganese oxide or chromium oxide was added to the sensitive part and exposed to high-concentration hydrogen gas. As a result, it was found that the gas sensitivity of the semiconductor hydrogen gas detector with manganese oxide added to the sensitive layer showed almost the same behavior as before exposure, and the semiconductor hydrogen gas with chromium oxide added to the sensitive layer. It has been found that the gas sensitivity of the gas detection element changes in characteristics so as to increase sensitivity.
That is, in the semiconductor hydrogen gas detection element of the present invention, even after exposure to a high concentration of hydrogen gas, the sensitivity to hydrogen gas is not reduced, so that the gas detection element is suitable for high concentration hydrogen gas detection. It is recognized that
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the parts denoted by the same reference numerals as in the conventional example indicate the same or corresponding parts.
[0029]
The semiconductor hydrogen gas sensing element according to the present invention was manufactured by the following method.
First, indium oxide was prepared.
Here, a commercially available fine powder of indium hydroxide (In (OH) 3 ) was baked at 600 ° C. for 4 hours using an electric furnace to obtain indium oxide.
[0030]
As another adjustment method, an aqueous solution is made from indium chloride, an aqueous ammonia solution is added dropwise with stirring, and the precipitate of indium hydroxide obtained by hydrolysis is washed several times with distilled water to remove excess ions such as chlorine. It is also possible to use a method in which indium oxide is prepared by removing 4 and baking at 600 ° C. for 4 hours.
[0031]
The obtained indium oxide semiconductor was further pulverized into a fine powder, and paste was made using a dispersion basket such as 1.3-butanediol. As shown in FIG. 2, this paste was applied to a noble metal wire 1 (platinum wire coil having a wire diameter of 20 μm) to form a sphere having a diameter of about 0.50 mm and then dried. Furthermore, an electric current was passed through the coil and heated with its Joule heat and sintered in the air at 600 ° C. for 1 hour to obtain a hot-wire semiconductor hydrogen gas sensing element Rs consisting only of the sensitive layer 2.
[0032]
On the other hand, commercially available aqueous solutions of manganese nitrate and chromium nitrate were dissolved, and each was impregnated into the sintered body of indium oxide obtained above and dried in air. Thereafter, an electric current was passed through the coil and fired in the air at 600 ° C. for 1 hour with its juule heat, and the oxide was added to the indium oxide sintered body. Thereby, various metals such as manganese and chromium can be supported on the surface of the sensitive layer 2 in the form of oxides. For comparison, a gas detection element to which cerium was added was also manufactured in the same manner.
[0033]
The gas detection element thus produced is, for example, in a saturated vapor pressure (30 to 35 ° C., about 7 to 9 vol%) of hexamethyldisiloxane (hereinafter referred to as HMDS) which is one of silicon siloxane compounds. Heat in the environment. The heating is adjusted so that the entire sensitive layer 2 becomes equal to or higher than the decomposition temperature of hexamethyldisiloxane by passing a current through the noble metal wire 1 and generating Joule heat. It is heated to about 550 ° C. with the coil heat of the coil and thermally decomposed on the surface of the element for a predetermined time to form a dense silica thin film 3 (SiO 2 ) on the surface of the sensitive layer 2 so as to be used as a hydrogen gas detecting element become.
That is, by this chemical vapor deposition method, a film through which only hydrogen having a small molecular size easily passes, that is, a so-called “molecular sieve” film was formed on the surface of the sensitive layer and in the vicinity thereof.
[0034]
As described above, the platinum wire coil is exemplified in the noble metal wire 1, but this platinum wire coil has the simplest structure as a gas detection element having a role of an electrode as well as a heater for heating a semiconductor. As expected, it is a hydrogen gas sensing element that is easy to use with low power, is easy to use, and has a low economic cost.
[0035]
This hydrogen gas detection element was incorporated in the bridge circuit shown in FIG. 3 and used as a gas detection device. At this time, the sensor output is obtained by the following equation.
V = −E {rs / (rs + r0) −r1 / (r1 + r2)}
Here, each variable is as follows.
V: sensor output E: bridge voltage rs: resistance r0 of hot-wire semiconductor gas sensing element Rs: resistance r1 of fixed resistance R0: resistance r2 of fixed resistance R1: resistance of fixed resistance R2
Moreover, the gas sensitivity was calculated | required as a difference of the output in detection gas coexistence air, and the output in clean air. In addition, when expressing sensitivity as relative sensitivity, the sensitivity under other conditions is indicated with a ratio where the sensitivity output under certain specific conditions is 1.
[0037]
【Example】
Embodiments of the present invention are described below with reference to the drawings.
By the above-described method, the hot-wire semiconductor hydrogen gas sensing element Rs in which manganese oxide or chromium oxide is added to the sensitive layer 2 containing indium oxide as a main component and the dense silica thin film 3 is formed on the surface of the sensitive layer 2 is obtained. The following experiment was conducted.
For comparison, a hot-wire semiconductor hydrogen gas sensing element Rs ′ in which cerium oxide is added to the sensitive layer 2 containing indium oxide as a main component and a dense silica thin film 3 is formed on the surface of the sensitive layer 2 is manufactured and compared. It used for experiment.
[0038]
(A) Various characteristics of the hot-wire semiconductor hydrogen gas sensing element of the present invention (a-1) Hydrogen gas sensitivity characteristics FIG. 4 shows the present invention in which manganese oxide is added to the sensitive layer 2 mainly composed of indium oxide. Using the hot-wire semiconductor hydrogen gas sensing element Rs, the results of detecting gases to be detected having various gas concentrations (vol%) are shown.
Manganese oxide indicates the case where 0.5 at% is added, and the gas to be detected is hydrogen gas (H 2 ), methanol (CH 3 OH), ethanol (C 2 H 5 OH), methane gas (CH 4 ), isobutane ( i-C 4 H 10 ) and carbon monoxide (CO) were used, and the temperature at the time of gas detection was 480 ° C.
[0039]
As a result, the hot-wire semiconductor hydrogen gas sensing element Rs of the present invention has a sensitivity curve that is clearly different from other gas to be detected in hydrogen gas, and therefore has high selectivity for hydrogen gas. Turned out to be.
[0040]
In addition, since it can be detected even at a hydrogen gas concentration of 3 to 4 vol% and no sensitivity reduction has occurred, good gas detection can be performed for high-concentration hydrogen gas at least up to about the LEL concentration. found.
[0041]
(A-2) Resistance to poisoning gas FIG. 5 shows a diagram in which the influence of the hot wire semiconductor hydrogen gas detection element Rs on a representative poisoning gas is evaluated. FIG. 5 (a) shows a siloxane compound (HMDS: 100 ppm), and FIG. 5 (b) shows a sensor output when measuring various concentrations of hydrogen gas after exposure to a sulfur compound (SO 2 : 500 ppm) for 1 hour. The results of investigating the effects on the are shown. Evaluation was performed by comparing with the sensor output before exposure.
[0042]
As a result, the gas sensitivity after HMDS exposure slightly increased compared to the sensor output before exposure, and it was found that the sensor output after exposure to SO 2 hardly changed compared to the sensor output before exposure. did.
[0043]
Therefore, the hot-wire semiconductor hydrogen gas sensing element Rs of the present invention is a gas sensing element having excellent resistance against toxic gases.
[0044]
(A-3) Humidity Dependency FIG. 6 shows a diagram in which the influence of the hot-wire semiconductor hydrogen gas sensing element Rs on humidity is examined. Hydrogen gas (0.05, 0.1, 0.2, 0.5, 1.0, 2.0 vol%) and methanol (0.2 vol%) were used as the gas to be detected.
[0045]
As a result, in hydrogen gas, a slight increase in sensor output was observed on the low humidity side, but it was found that a stable sensor output was obtained as a whole.
[0046]
Therefore, the hot-wire semiconductor hydrogen gas sensing element Rs of the present invention is a gas sensing element having sensor output characteristics that are hardly affected by changes in humidity.
[0047]
In the experiment described above, the case where manganese oxide is added to the sensitive layer 2 of the hot-wire semiconductor hydrogen gas sensing element Rs of the present invention is shown, but the above experiment is also performed when chromium oxide is added to the sensitive layer 2. The experimental result showing the same tendency as is obtained.
[0048]
(B) Comparative experiment: The following experiment was performed using the semiconductor hydrogen gas sensing element Rs ′ manufactured for use in the comparative example of the effect of improving the linearity of the hydrogen sensitivity curve by adding cerium oxide.
The semiconductor hydrogen gas sensing element Rs ′ was manufactured by variously changing the addition ratio of cerium oxide to 2.0 to 5.0 at% in a sintered body of indium oxide. Changes in the hydrogen sensitivity ratio (5000 ppm / 10000 ppm) at each ratio of cerium oxide were determined, and the linearity of the hydrogen sensitivity curve was examined.
[0049]
Here, when the hydrogen sensitivity curve shows linearity, the sensitivity change accompanying the change in the hydrogen gas concentration is almost constant.
[0050]
The cerium nitrate aqueous solution was prepared so as to have concentrations of 0.50, 0.75, 1.0, and 1.25M, and the cerium oxide content was 2.0, 3.0, 4.0 from each aqueous solution. , A semiconductor hydrogen gas sensing element Rs ′ of 5.0 at% was manufactured.
The results are shown in Table 1.
[0051]
[Table 1]
Figure 0003929355
HMDS treatment conditions: about 9 vol%, 35 ° C
Sensor processing temperature: 550 ° C., 3.0 V (10 ohm)
Processing time: 10 minutes Gas sensitivity measurement voltage: 1.9 V (5.6 ohm)
[0052]
From this result, it was found that the hydrogen sensitivity ratio was approximately constant from 0.81 to 0.83, and that the addition of cerium oxide had a limit in improving the linearity.
[0053]
(C) Manganese oxide addition amount-dependent indium oxide sintered body of the hot-wire semiconductor hydrogen gas sensing element of the present invention is manufactured as a semiconductor hydrogen gas sensing element Rs added with manganese oxide and used for the following experiments. did.
[0054]
(C-1) Dependence of hydrogen sensitivity on manganese oxide addition amount The semiconductor type hydrogen gas of the present invention can be changed by variously changing the addition ratio of manganese oxide to 0.4 to 4.0 at% in the sintered body of indium oxide. A sensing element Rs was manufactured. Using these semiconductor hydrogen gas detection elements Rs, various hydrogen gas concentrations were detected, and fluctuations in sensitivity of these semiconductor hydrogen gas detection elements Rs were examined. At this time, HMDS processing conditions, sensor processing temperature, processing time, and gas sensitivity measurement voltage were performed under the same conditions as in the comparative experiment described above.
The results are shown in FIG. FIG. 7A shows data obtained by experiments, and FIG. 7B is a graph of the data of FIG. 7A.
[0055]
The hydrogen sensitivity decreased remarkably with increasing amount of manganese oxide, and became almost constant at 3.0 at% or more.
[0056]
(C-2) Dependence of manganese oxide addition on the linearity of hydrogen sensitivity curve The hydrogen sensitivity ratio is obtained from the data in FIG. 7A, and 2.0 at% of cerium oxide is added to the sintered body of indium oxide. Compared with the results. The results are shown in FIG. 8A shows data of 5000 ppm / 10000 ppm (that is, 0.5 vol% / 1.0 vol%) as an example of the obtained hydrogen sensitivity ratio, and FIG. 8B shows hydrogen gas 10000 ppm. This is a graph of sensitivity ratio (relative sensitivity) data.
[0057]
From this, it was found that the hydrogen sensitivity ratio decreases as the amount of manganese oxide added increases, but is almost constant at 2 at% or more.
[0058]
Here, when the graph of FIG. 8B is examined, the graph in which the addition amount of manganese oxide is 1.0 to 4.0 at% is lower than the graph (dashed line) in the case of adding 2.0 at% of cerium oxide. It is in. That is, it was found that when the addition amount of manganese oxide is 1.0 to 4.0 at%, a hydrogen sensitivity curve having excellent linearity can be obtained as compared with the case where 2.0 at% of cerium oxide is added.
[0059]
Therefore, it was found that the linearity of the hydrogen sensitivity curve can be improved satisfactorily as compared with the case where cerium oxide is added by setting the addition amount of manganese oxide to 1.0 to 4.0 at%.
[0060]
(D) The semiconductor-type hydrogen gas sensing element Rs in which chromium oxide is added to the sintered body of indium oxide depending on the chromium oxide addition amount of the hot-wire semiconductor-type hydrogen gas sensing element of the present invention is manufactured and used for the following experiments. did.
[0061]
(D-1) Dependence of hydrogen sensitivity on chromium oxide addition amount The semiconductor-type hydrogen gas of the present invention is variously changed to 0.4 to 4.0 at% of chromium oxide in the sintered body of indium oxide. A sensing element Rs was manufactured. Using these semiconductor-type hydrogen gas detection elements Rs, various hydrogen gas concentrations were detected, and fluctuations in sensitivity of these semiconductor-type hydrogen gas detection elements Rs were examined. At this time, HMDS processing conditions, sensor processing temperature, processing time, and gas sensitivity measurement voltage were performed under the same conditions as in the comparative experiment described above.
The results are shown in FIG. FIG. 9A shows data obtained by experiments, and FIG. 9B is a graph of the data of FIG. 9A.
[0062]
It can be seen that the addition of chromium oxide maintains the hydrogen sensitivity higher than that of manganese oxide.
[0063]
(D-2) Dependence of addition of chromium oxide on linearity of hydrogen sensitivity curve The hydrogen sensitivity ratio is obtained from the data in FIG. 9A, and 2.0 at% of cerium oxide is added to the sintered body of indium oxide. Compared with the results. The results are shown in FIG. FIG. 10A shows data of 5000 ppm / 10000 ppm (that is, 0.5 vol% / 1.0 vol%) as an example of the obtained hydrogen sensitivity ratio, and FIG. 10B shows hydrogen gas 10000 ppm. This is a graph of sensitivity ratio (relative sensitivity) data.
[0064]
Although the hydrogen sensitivity ratio monotonously decreases as the chromium oxide addition amount increases, the linearity is inferior to that in the case of adding manganese oxide.
[0065]
Here, when examining the graph of FIG. 10B, the graph in which the addition amount of chromium oxide is 2.0 to 4.0 at% is lower than the graph (broken line) in the case of adding 2.0 at% of cerium oxide. It is in. That is, it can be seen that when the addition amount of chromium oxide is 2.0 to 4.0 at%, a hydrogen sensitivity curve having excellent linearity can be obtained as compared with the case where 2.0 at% of cerium oxide is added.
[0066]
Therefore, it was found that the linearity of the hydrogen sensitivity curve is improved better than when cerium oxide is added by setting the addition amount of chromium oxide to 2.0 to 4.0 at%.
[0067]
(E) HMDS deposition time-dependent effect The effect of the formation time of the silica thin film 3 on the surface of the sensitive layer 2 on the gas sensitivity was examined.
The gas sensing element 1 uses a sensitive layer 2 containing indium oxide as a main component and 1.8 at% of manganese oxide added, and the silica thin film 3 is in a saturated vapor pressure of HMDS (35 ° C., about 9 vol%). It was formed by heating to about 550 ° C. in the environment of At this time, the result of detecting the gas to be detected having various concentrations by the gas detection element manufactured by variously changing the heat treatment time is shown in FIG. In addition, hydrogen gas (200-10000 ppm) and methanol (2000 ppm) were used for to-be-detected gas, and the gas sensitivity measurement voltage was performed by 1.9V.
[0068]
From the detection results of each gas to be detected, it was found that the hydrogen gas sensitivity tends to increase up to 12 minutes, but then suddenly decreases, while the ethanol sensitivity decreases monotonically with increasing processing time.
[0069]
Also, if the treatment time is 6 minutes or less, the sensor outputs overlap when the hydrogen gas concentration is 200 ppm and ethanol 2000 ppm, which makes it difficult to distinguish between hydrogen gas and ethanol, and the treatment time is 14 minutes or more. Then, since the processing time is long and the sensitivity of hydrogen gas is drastically decreased, it is not preferable.
[0070]
Therefore, if the HMDS vapor deposition processing time is about 8 to 14 minutes, it is recognized that the processing time can maintain good gas selectivity and gas sensitivity.
[0071]
(F) Resistance to high-concentration hydrogen gas The change in sensitivity after the hot-wire semiconductor hydrogen gas sensing element of the present invention was exposed to high-concentration hydrogen gas (2 vol%) was examined.
[0072]
(F-1) A hot-wire semiconductor hydrogen gas sensing element Rs in which 2 at% manganese oxide is added to the manganese oxide-added sensitive layer 2 is exposed to hydrogen gas (2 vol%) for 15 minutes, and then various concentrations of hydrogen The result when the gas was detected is shown in FIG. The results are shown by the relative sensitivity when the sensitivity at a hydrogen gas concentration of 10,000 ppm is 1. Exposure to high concentration hydrogen gas was performed twice.
[0073]
As a result, the data before the exposure to hydrogen gas (initial value) and the data at the first exposure and the second exposure showed almost the same behavior.
[0074]
Accordingly, it is recognized that the hot-wire semiconductor hydrogen gas sensing element Rs in which 2 at% manganese oxide is added to the sensitive layer 2 has excellent resistance to high concentration hydrogen gas exposure (that is, the characteristics do not change). It was.
[0075]
(F-2) A hot wire semiconductor hydrogen gas sensing element Rs in which 2 at% chromium oxide is added to the chromium oxide-added sensitive layer 2 and exposed to hydrogen gas (2 vol%) for 15 minutes, and then various concentrations of hydrogen The result when gas was detected is shown in FIG. The results are shown by the relative sensitivity when the sensitivity at a hydrogen gas concentration of 10,000 ppm is 1. Exposure to high concentration hydrogen gas was performed twice.
[0076]
As a result, it was found that both the first and second exposure data showed higher sensitivity than the data before exposure to hydrogen gas (initial value). As described above, it was confirmed that the hot-wire semiconductor hydrogen gas sensing element Rs in which chromium oxide was added to the sensitive layer 2 changed its characteristics so as to be highly sensitive by exposure to a high concentration of hydrogen gas.
As described above, the hot-wire semiconductor hydrogen gas detection element of the present invention does not cause a decrease in sensitivity to hydrogen gas even after exposure to high concentration hydrogen gas. It is recognized as a suitable gas sensing element.
[0078]
As described above, the hot-wire semiconductor hydrogen gas detection element of the present invention is a hydrogen selective gas detection element that is less affected by hydrogen gas up to the vicinity of the LEL concentration, has excellent linearity, and has humidity dependency. Is a hydrogen-selective gas detector that is highly reliable and has a wide range of applications because it is less affected by toxic gases such as silicon-based volatile gases and sulfur oxides. Chemical factory used, semiconductor manufacturing factory using hydrogen as a carrier gas for semiconductor manufacturing gas, hydrogen fuel cell used for automobiles, households, portables, etc. and gas due to leakage of hydrogen gas from its peripheral equipment It can be used for the purpose of preventing explosion.
[0079]
In addition, this invention is not limited to the said embodiment, As long as there exists the same effect, the structure of each part can be changed suitably.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a hydrogen gas detection mechanism. FIG. 2 is a diagram showing a schematic diagram of a semiconductor hydrogen gas detection element of the present invention. FIG. 3 is a diagram showing a bridge circuit. Fig. 5 shows the hydrogen gas sensitivity characteristics of the type semiconductor hydrogen gas detector. Fig. 5 shows the effect of the hot wire semiconductor type hydrogen gas detector of the present invention on the toxic gas. Fig. 6 shows the hot wire type of the present invention. Fig. 7 shows the effect of semiconductor hydrogen gas detector on humidity. Fig. 7 shows the change in hydrogen sensitivity with the change in manganese oxide addition amount. Fig. 8 shows the hydrogen sensitivity ratio with the change in manganese oxide addition amount. Figure 9 shows the hydrogen sensitivity curve. Fig. 9 shows the hydrogen sensitivity change with the chromium oxide addition amount. Fig. 10 shows the hydrogen sensitivity ratio and the hydrogen sensitivity curve with the chromium oxide addition amount. [Fig. 11] HMDS deposition time Figure [EXPLANATION OF SYMBOLS] with a hydrogen gas detection result after Figure 12 shows a high concentration of hydrogen gas exposure of investigating changes in the gas sensitivity due to reduction
Rs Semiconductor type hydrogen gas sensing element 1 Precious metal wire 2 Sensitive layer 3 Silica thin film

Claims (2)

被検知ガスと接触自在に設けられ、酸化インジウム粒子を主成分とする金属酸化物半導体を用いて形成した感応層と、前記感応層により覆われた貴金属線とを有し、前記感応層の表面には、水素選択透過性のシリカ薄膜を形成してある半導体式水素ガス検知素子であって、
前記感応層に、マンガン酸化物を1〜4at%添加してある半導体式水素ガス検知素子。
A sensitive layer provided using a metal oxide semiconductor mainly composed of indium oxide particles, and a noble metal wire covered with the sensitive layer, the surface of the sensitive layer being provided in contact with the gas to be detected; Is a semiconductor-type hydrogen gas detection element in which a silica thin film selectively permeable to hydrogen is formed,
A semiconductor type hydrogen gas detecting element in which 1 to 4 at% of manganese oxide is added to the sensitive layer.
被検知ガスと接触自在に設けられ、酸化インジウム粒子を主成分とする金属酸化物半導体を用いて形成した感応層と、前記感応層により覆われた貴金属線とを有し、前記感応層の表面には、水素選択透過性のシリカ薄膜を形成してある半導体式水素ガス検知素子であって、A sensitive layer provided using a metal oxide semiconductor mainly composed of indium oxide particles, and a noble metal wire covered with the sensitive layer, the surface of the sensitive layer being provided in contact with the gas to be detected; Is a semiconductor-type hydrogen gas detection element in which a silica thin film selectively permeable to hydrogen is formed,
前記感応層に、クロム酸化物を2〜4at%添加してある半導体式水素ガス検知素子。  A semiconductor-type hydrogen gas detecting element in which 2 to 4 at% of chromium oxide is added to the sensitive layer.
JP2002154023A 2002-05-28 2002-05-28 Semiconductor hydrogen gas detector Expired - Fee Related JP3929355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154023A JP3929355B2 (en) 2002-05-28 2002-05-28 Semiconductor hydrogen gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154023A JP3929355B2 (en) 2002-05-28 2002-05-28 Semiconductor hydrogen gas detector

Publications (2)

Publication Number Publication Date
JP2003344342A JP2003344342A (en) 2003-12-03
JP3929355B2 true JP3929355B2 (en) 2007-06-13

Family

ID=29770914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154023A Expired - Fee Related JP3929355B2 (en) 2002-05-28 2002-05-28 Semiconductor hydrogen gas detector

Country Status (1)

Country Link
JP (1) JP3929355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210116405A1 (en) * 2018-08-07 2021-04-22 New Cosmos Electric Co., Ltd. Mems type semiconductor gas detection element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008045856A1 (en) 2008-09-05 2010-06-02 Justus-Liebig-Universität Giessen Sensor for measuring concentration of gases like hydrogen, oxygen, nitrogen oxide, chlorine or other reactive gases, comprises medium for measuring thermoelectric voltage and another medium for measuring ionic conduction of gases ions
JP6761764B2 (en) * 2016-03-18 2020-09-30 パナソニックセミコンダクターソリューションズ株式会社 Hydrogen sensor and fuel cell vehicle, and hydrogen detection method
EP3623805B1 (en) * 2018-09-13 2023-01-04 STMicroelectronics S.r.l. A method of countering contamination in gas sensors, corresponding circuit, device and computer program product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210116405A1 (en) * 2018-08-07 2021-04-22 New Cosmos Electric Co., Ltd. Mems type semiconductor gas detection element
US11977043B2 (en) * 2018-08-07 2024-05-07 New Cosmos Electric Co., Ltd. MEMS type semiconductor gas detection element

Also Published As

Publication number Publication date
JP2003344342A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
US5767388A (en) Methane sensor and method for operating a sensor
JP3311218B2 (en) Hydrocarbon sensor
US20100032292A1 (en) Ammonia gas sensor
JP4162262B2 (en) Sensor for measuring the concentration of oxidizable components in a gas mixture
JP3350686B2 (en) Tin oxide gas sensor and manufacturing method
Qu et al. Highly sensitive and selective toluene sensor based on Ce-doped coral-like SnO2
JP3929355B2 (en) Semiconductor hydrogen gas detector
JP2009243942A (en) Hydrocarbon concentration measuring sensor element and hydrocarbon concentration measuring method
US20190317036A1 (en) Gas sensor
RU2132551C1 (en) Gas sensor operating process
JP3901594B2 (en) Semiconductor hydrogen gas detector
JP2013068632A (en) Hydrocarbon concentration measuring sensor element, and hydrocarbon concentration measuring method
JP4532671B2 (en) Hydrogen gas detector
KR20210038552A (en) Gas detection device
JP3929199B2 (en) HYDROGEN GAS DETECTION ELEMENT AND MANUFACTURING METHOD THEREOF
JP2000356615A (en) Gas sensor and gas detector
JP2009236693A (en) Ammonia concentration measuring sensor element, ammonia concentration measuring instrument, and ammonia concentration measuring method
JP7403232B2 (en) Semiconductor gas detection element
JPH07260728A (en) Carbon monoxide gas sensor
RU2403563C1 (en) Differential sensor for gas analyser
JP4002969B2 (en) Combustible gas sensor
JP5535556B2 (en) Oxygen concentration sensor
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JPH11287781A (en) Hydrogen gas detection element and its manufacture
RU91763U1 (en) DIFFERENTIAL GAS SENSOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

R150 Certificate of patent or registration of utility model

Ref document number: 3929355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees