JPS61223643A - Gaseous hydrogen detecting element and its production - Google Patents

Gaseous hydrogen detecting element and its production

Info

Publication number
JPS61223643A
JPS61223643A JP6578185A JP6578185A JPS61223643A JP S61223643 A JPS61223643 A JP S61223643A JP 6578185 A JP6578185 A JP 6578185A JP 6578185 A JP6578185 A JP 6578185A JP S61223643 A JPS61223643 A JP S61223643A
Authority
JP
Japan
Prior art keywords
mol
atmosphere
dispersed
sno
sno2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6578185A
Other languages
Japanese (ja)
Other versions
JPH0473544B2 (en
Inventor
Yoshiaki Okayama
義昭 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Kogyo Co Ltd filed Critical Nohmi Bosai Kogyo Co Ltd
Priority to JP6578185A priority Critical patent/JPS61223643A/en
Priority claimed from EP86113291A external-priority patent/EP0261275B1/en
Publication of JPS61223643A publication Critical patent/JPS61223643A/en
Publication of JPH0473544B2 publication Critical patent/JPH0473544B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a gaseous hydrogen detecting element having the higher responsiveness at the lower temp. than heretofore by treating an element dispersed on SnO2 at respectively specific mol% of Pd/Sn, pt/Sn, Sb/Sn ratios in a specific concn. of gaseous silane atmosphere to disperse Si oxide on the element surface. CONSTITUTION:SnO2 particles are dispersed in optional order into an aq. PdCl2 soln. and aq. H2PtCl2 soln. and thereafter the mixture composed of each aq. soln. and SnO2 is subjected to quick freeze drying to obtain the particles dispersed with Pd/Sn=0.1-8mol% and Pt/Sn=0.5-8mol% on SnO2. The dried particles are mixed with SbOCl of the amt. at which the Sb/Sn ratio attains 8-8mol% and thereafter the paste in an org. solvent such as i-C3H7OH is prepd. Such paste is coated on an alumina ceramic pipe provided with an electrode and is dried, then the coating is calcined in the atm. or antimony oxide atmosphere. The calcined element is aged for the prescribed period at 300+ or -50 deg.C. The element after the aging is treated in an air atmosphere contg. the gaseous silane such as SiH2Cl2 at 300-350 deg.C to disperse SiO2 on the element. The H2 detecting element having the high response speed at the low temp. is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は水素ガス検出素子及びその製法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a hydrogen gas detection element and a method for manufacturing the same.

[従来技術] 金属酸化物を使用した水素〃ス検出素子として、感ガス
素子上に水素分子選択透過性膜例えば燃焼非活性の薄膜
を形成してなる水素選択性センサカイ知られている。こ
のようなセンサで1よ、水素ガスは薄膜のフィルタ層を
透過しなければならず、金属酸化物に吸着するまでに時
間を要し、応答が遅れる。また、このセンサは〃ス検出
を比較的高温で行なうため、金属酸化物中にPdなどの
触媒を含む素子では触媒が早く劣化し機能を失う。
[Prior Art] As a hydrogen gas detection element using a metal oxide, a hydrogen-selective sensor is known, in which a hydrogen molecule selectively permeable membrane, such as a combustion-inactive thin film, is formed on a gas-sensitive element. In such a sensor, hydrogen gas must pass through a thin film filter layer, and it takes time for it to be adsorbed on the metal oxide, resulting in a delayed response. Further, since this sensor detects gas at a relatively high temperature, in an element containing a catalyst such as Pd in a metal oxide, the catalyst deteriorates quickly and loses its function.

[発明が解決しようとする問題、α1 従って、より低温度および/またはより応答時間の短い
水素検出素子の出現が要望される。
[Problem to be Solved by the Invention, α1] Therefore, there is a demand for a hydrogen detection element with lower temperature and/or shorter response time.

[問題点を解決するための手段] 従来、諸種の装置から排出される徘ガス中の−る。a±
の方法では酸化第2スズと 酸化第2スズに対して2〜10モル%の白金含有塩化白
金酸水溶液との混合物を凍結乾燥したものに酸化第2ス
ズに対して2〜8モル%のオキシ塩化アンチモンを添加
した混合物を有機溶剤に添加してペーストとし、このペ
ーストを電極付き絶縁体に塗布して空気中で焼成するこ
とによって、素子を加熱することなく室温で一酸化炭素
を検出できる一酸化炭素ガス検出装置を製造してし)る
[Means for Solving the Problems] Conventionally, the gas contained in the stray gas discharged from various devices has been used. a±
In this method, a mixture of stannic oxide and an aqueous solution of chloroplatinic acid containing 2 to 10 mol % of platinum based on the stannic oxide is lyophilized, and 2 to 8 mol % of the stannic oxide is added to the mixture. By adding a mixture containing antimony chloride to an organic solvent to make a paste, applying this paste to an insulator with electrodes, and baking it in air, we have developed a method that can detect carbon monoxide at room temperature without heating the device. Manufactures carbon oxide gas detection equipment).

ところが、この−酸化炭素〃ス検出素子を希薄なシラン
系ガス含有雰囲気中で処理すると、水素を選択的に30
0℃台の温度で高いSN比で検知できる素子が得られる
ことが判明した。しかしこの素子の場合には水素に対す
る応答時間は200℃〜400℃の素子動作温度で10
0〜150秒であったが、この素子に塩化パラジウムを
も添加することにより、水素ガスの選択性が高く、且つ
応答時間が50秒以内に短縮できる素子が得られること
が判明した。
However, when this -carbon oxide gas detection element is treated in an atmosphere containing dilute silane gas, hydrogen is selectively detected by 30%.
It was found that an element capable of detecting with a high signal-to-noise ratio at a temperature in the 0° C. range can be obtained. However, in the case of this device, the response time to hydrogen is 10
0 to 150 seconds, but it has been found that by also adding palladium chloride to this element, an element with high selectivity for hydrogen gas and whose response time can be shortened to within 50 seconds can be obtained.

従って、この発明はPd/Sn= 0.1〜8モル%、
Pt/Sn=0.5〜8モル%、Sb/Sn比が0−8
モル%のPdおよりPtまたはPdとPtおよびSトI
が51102上に分散してなる素子を500〜5000
pp曽のシラン系ガス雰囲気中で処理して該素子上にS
i酸化物を分散させてなる水素〃ス検出素子に関するも
のである。
Therefore, in this invention, Pd/Sn=0.1 to 8 mol%,
Pt/Sn=0.5-8 mol%, Sb/Sn ratio 0-8
Mol% of Pd or Pt or Pd and Pt and StI
500 to 5000 elements are dispersed on 51102
Processed in a silane-based gas atmosphere of pp.
This invention relates to a hydrogen gas detection element formed by dispersing i-oxide.

さらに、この発明は塩化パラジウム(PdCl2)水溶
液を造り、また、塩化白金酸(H2P tCL)水溶液
を造り、酸化第2スズにPd/Snが0.1〜8モル%
、Pt/Snが0.5〜8モル%となる量の前記塩化パ
ラジウム水溶液および塩化白金酸水溶液を任意の順序で
添加し、得られた混合液中のSnO2を好適には超音波
で良く分散させた後、乾燥し、乾燥物にSb/Sn比が
0〜8モル%となる量のS bo Clを添加し乳鉢等
で充分よく混合、例えば約30分程度混合した後、これ
を有機溶剤例えばイソプロピルアルコール中のペースト
となして電極を備えたアルミナ磁器管に塗布して乾燥し
、表面にSnO2とPdCl2およびH2P tCIs
または5n02とP dCL、H2P tC16およ(
/’5bOCI含有層を備えてなる素子を大気雰囲気中
またはアンチモン酸化ガス雰囲気中で600℃〜850
℃で焼成し、焼成した素子にヒータを取付け、ヒータで
300℃±50℃に加熱して所定時開空気中でエージン
グし、得られた素子を300〜350°C5000pp
−の雰囲気中で処理して素子上にS i 02を分散さ
せることから成る、水素ガス検出素子の製法にも関する
Furthermore, this invention creates a palladium chloride (PdCl2) aqueous solution and a chloroplatinic acid (H2P tCL) aqueous solution, which contains 0.1 to 8 mol% of Pd/Sn in stannic oxide.
, the palladium chloride aqueous solution and the chloroplatinic acid aqueous solution in an amount such that Pt/Sn is 0.5 to 8 mol% are added in any order, and the SnO2 in the resulting mixture is preferably dispersed well by ultrasonic waves. After drying, add S bo Cl in an amount such that the Sb/Sn ratio is 0 to 8 mol % and mix thoroughly in a mortar etc. After mixing for about 30 minutes, for example, add this to the dried material with an organic solvent. For example, it is applied as a paste in isopropyl alcohol to an alumina porcelain tube equipped with electrodes and dried, and the surface is coated with SnO2, PdCl2 and H2P tCIs.
or 5n02 and P dCL, H2P tC16 and (
/'5b A device comprising an OCI-containing layer is heated at 600°C to 850°C in an air atmosphere or an antimony oxide gas atmosphere.
℃, a heater is attached to the fired element, heated to 300℃±50℃ with a heater, aged in open air for a specified time, and the obtained element is heated at 300 to 350℃ 5000pp.
The present invention also relates to a method for manufacturing a hydrogen gas detection element, which comprises dispersing S i 02 on the element by processing in an atmosphere of -.

[作用] PdCI2は水には溶解しないから、Pdel□水溶液
を造るには0.2%l塩酸を使用する。塩酸濃度は単に
PdC1□を溶解させる濃度であればよい。
[Function] Since PdCI2 does not dissolve in water, 0.2% l hydrochloric acid is used to prepare the Pdel□ aqueous solution. The concentration of hydrochloric acid may be any concentration that simply dissolves PdC1□.

塩化白金酸は純水に溶解する。Pd/SnまたはPt/
Snの量がそれぞれ0.1モル%未満または0.5モル
%未満、あるいはPd/SnまたはPt/Snの量がそ
れぞれ8モル%より多いと水素検出能が低下するので好
ましくない。こうして得られたPdC1□とH2P t
CI6混合液中の5no2を超音波等により良く分散さ
せた後、真空凍結乾燥器で−40’C以下で急速凍結乾
燥することにより製品る。乾燥物とオキシ塩化アンチモ
ンとの混合物をペーストとするための有機溶剤はイソプ
ロピルアル1〜ルj他17 B−ターピネオール25重
量%、ブチルカルピトールアセテート72重量%、エチ
ルセルロース3重量%などの有機溶剤を使用でき、ベー
ス)全塗布するベースとしては磁器管の他に焼成に耐え
うる管または板状の絶縁体を用(1てもよい。ペースト
の乾燥は数分程度の自然乾燥でも、恒温槽などで行って
もよい。
Chloroplatinic acid dissolves in pure water. Pd/Sn or Pt/
If the amount of Sn is less than 0.1 mol % or less than 0.5 mol %, or if the amount of Pd/Sn or Pt/Sn is more than 8 mol %, hydrogen detection ability will decrease, which is not preferable. The thus obtained PdC1□ and H2P t
After the 5no2 in the CI6 mixture is well dispersed by ultrasonic waves or the like, the product is produced by rapid freeze-drying at -40'C or lower in a vacuum freeze dryer. Organic solvents for making a paste from the mixture of the dried product and antimony oxychloride include isopropylar 1 to 17 B-terpineol 25% by weight, butyl carpitol acetate 72% by weight, ethyl cellulose 3% by weight, etc. In addition to porcelain tubes, a tube or plate-shaped insulator that can withstand firing can be used as the base for all coatings.The paste can be dried naturally for a few minutes, or in a constant temperature oven, etc. You can go there.

アンチモン酸化ガス雰囲気はS bo Cl または5
bzO:+ 0.5〜7.51ag、  5bzOzモ
ル数に換算して 2X10− ’−3XLO−’ モル
/c++’を600〜850 ’Cで5〜30分程度焼
成して作成する。5bOC1を7 、5 ll1gより
多く使用するとPdおよびptがsbで被覆されてPd
およびptの活性が低下する。大気またはアンチモン酸
化ガスの雰囲気中での素子の焼成は600〜850℃の
温度で5〜60分間焼成する。600℃未満の温度およ
び5分未満の時間ではアンチモンをドープできない、8
50°Cを越える温度ではPdおよびptの活性が低く
なり水素を選択的に検出できない。
Antimony oxidation gas atmosphere is S bo Cl or 5
bzO: + 0.5 to 7.51 ag, converted to 5 bzOz moles, 2X10-'-3XLO-'moles/c++' is baked at 600 to 850'C for about 5 to 30 minutes to create. When 5bOC1 is used in an amount greater than 7.5 ll1g, Pd and pt are coated with sb and Pd
and pt activity decreases. The element is fired in the air or in an atmosphere of antimony oxidation gas at a temperature of 600 to 850° C. for 5 to 60 minutes. Cannot be doped with antimony at temperatures below 600°C and times below 5 minutes, 8
At temperatures exceeding 50°C, the activity of Pd and pt becomes low and hydrogen cannot be selectively detected.

素子のエージングは素子に取付けなヒータで素子を30
0±50°Cに加熱し空気雰囲気中で12半導体層を安
定化する。素子のシラン系ガス含有空気雰囲気中での処
理は 500〜5000 ppmの濃度のノクロルシラ
ン(S i82C+2)、l!7ス含有空気雰囲気中 
またはモノシラン(S i H4) lf X & 有
空気雰囲気中で素子をヒータにより300〜350℃に
5〜45分間加熱することにより?。このシラン系が六
濃度及び処理時間範囲外では水素検出の感度が低下する
。さらに素子を300±50℃に空気中で12時間以上
加熱することによって製品とする。シラン系γス含有空
気雰囲気での処理及びその後の空気中での加熱処理を同
じ手順で再処理することにより水素ガスに対する選択性
をより高めることができる。
Aging of the element is performed using a heater attached to the element.
Stabilize the 12 semiconductor layer in an air atmosphere by heating to 0±50°C. The device was treated in an air atmosphere containing silane gas using nochlorosilane (Si82C+2) at a concentration of 500 to 5000 ppm, l! In an air atmosphere containing 7s
Or by heating the element to 300-350°C for 5-45 minutes with a heater in monosilane (S i H4) lf . When this silane system is outside the six concentration and treatment time ranges, the sensitivity of hydrogen detection decreases. The device is further heated to 300±50° C. in air for 12 hours or more to produce a product. By repeating the treatment in an air atmosphere containing silane-based γ gas and the subsequent heat treatment in air using the same procedure, selectivity to hydrogen gas can be further improved.

この発明では素子を僅少量のシラン系ガスで処理するこ
とにより素子の表面上にSiが分散される。また、後記
する実施例から明ら′かなように動作温度は300℃台
で、応答速度は50秒以内である6 以下に実施例を掲げてこの発明を一層詳細に説明する。
In this invention, Si is dispersed on the surface of the element by treating the element with a small amount of silane gas. Further, as will be clear from the examples described later, the operating temperature is in the 300° C. range, and the response speed is within 50 seconds.6 The present invention will be explained in more detail with reference to examples below.

以下、特記しない限り実施例を単に例と記載する。Hereinafter, unless otherwise specified, the examples will be simply referred to as examples.

例1〜例13 第1表に示す量のPdCl2−0.2%塩酸溶液および
純水中82P tc 1.の水溶液をS n O2に順
次に添加し、この混合液中のS n O2を超音波でよ
く分散させ、この分散液を一40℃で急速凍結乾燥させ
た後、真空凍結乾燥器にセットして乾燥させる。
Examples 1 to 13 82P tc in PdCl2-0.2% hydrochloric acid solution and pure water in the amounts shown in Table 1 1. Sequentially added aqueous solutions of S n O2 to S n O2, well dispersed S n O2 in this mixture using ultrasonic waves, rapidly freeze-dried this dispersion at -40°C, and then set it in a vacuum freeze dryer. and dry.

次にこの乾燥物にS bo Clを表示のSb/Snモ
ル%となる量を混合して乳鉢で約30分間部合し、この
混合物にイソプロピルアルコールを加えてペースト状と
したものを電極が取付けられたアルミナ磁器管に塗布し
て自然乾燥させる。次にこの素子を2 、5 mgの 
S bo Clを焼成して作成したアンチモン酸化ガス
雰囲気の石英管中で700 ’Cで15分間焼成した。
Next, an amount of S bo Cl to give the indicated Sb/Sn mol% was mixed with this dried material, and the mixture was mixed in a mortar for about 30 minutes. Isopropyl alcohol was added to this mixture to form a paste, and the electrode was attached. Apply it to the alumina porcelain tube and let it dry naturally. Next, add 2.5 mg of this element to
It was fired at 700'C for 15 minutes in a quartz tube in an antimony oxidation gas atmosphere created by firing S bo Cl.

焼成した素子にヒータを取付けた後、このヒータに通電
して300°Cに素子を加熱し、そのまま空気中で12
時間ニーソングし、次いで素子を;例1(比較例)以外
は325℃に加lk l q :t /7 FI II
、F、4−.1 /’t/11’1....4−右力幇
雲間気中で10分間1回処理し、その後300℃に加熱
したまま空気中で12時間二一ジングした。得られた素
子を325℃±10°Cの温度で各供試ガス濃度100
 ppm(常温)含有空気中で測定したときの電気抵抗
値(kΩ)およびSN比(清浄空気中での素子の抵抗値
/供試が大中での素子の抵抗値)および応答時間(秒)
を第1表に示す6表中、例1はシラン処理しないときの
素子を示す比較例で、例2ないし例13は実施例である
。各例2〜例13とも応答時間は30秒以内で、例2は
Pdおよびptの添加量が下限であることを示し、例1
3IはPd、 Pt、 Sbの添加量が上限であること
を示す。第1表に示すデータは各側ごとに造ったサンプ
ル8個全部のデータの平均値である。
After attaching a heater to the fired element, the heater was energized to heat the element to 300°C, and then left in the air for 12 hours.
Knee sing for an hour and then heat the device to 325°C except for example 1 (comparative example).
,F,4-. 1 /'t/11'1. .. .. .. 4-The sample was treated once for 10 minutes in an air atmosphere, and then heated in air at 300°C for 12 hours. The obtained device was heated to a temperature of 325°C ± 10°C and the concentration of each test gas was 100%.
Electrical resistance value (kΩ), SN ratio (resistance value of the element in clean air/resistance value of the element when tested inside) and response time (seconds) when measured in air containing ppm (room temperature)
Among the six tables shown in Table 1, Example 1 is a comparative example showing the device without silane treatment, and Examples 2 to 13 are examples. The response time for each example 2 to example 13 was within 30 seconds, and example 2 showed that the amount of Pd and pt added was at the lower limit, and example 1
3I indicates that the amount of Pd, Pt, and Sb added is at the upper limit. The data shown in Table 1 is the average of data from all eight samples made for each side.

なお、例6のグループのうちの1つの素子の各試料ガス
に対する応答特性を第1図に示す。
Incidentally, the response characteristics of one element in the group of Example 6 to each sample gas are shown in FIG.

ノ′ 例14 S i 82 CI 2での処理を第1回目に1000
pp輸で10分開dヒ、第2回目に1000pp−で1
0竹 分計#=なった以外は例2〜例13と同様に操作した。
ノ' Example 14 Processing with S i 82 CI 2 is 1000 for the first time.
Open for 10 minutes with PP, then 1 with 1000pp- for the second time.
The operations were carried out in the same manner as in Examples 2 to 13, except that the total number of bamboos was 0.

後記第2表に得られた素子の性能を例1および例3の素
子と対比して示す。第2表において、例3に比べ例4で
は水素ガスのSN比が大巾に向上しているのに対し、他
のガスのSN比は低下しており、水素選択性が顕萱に向
上したことを示す6測定時の素子温度は325℃±10
℃である。
Table 2 below shows the performance of the obtained device in comparison with the devices of Examples 1 and 3. In Table 2, the S/N ratio of hydrogen gas is greatly improved in Example 4 compared to Example 3, while the S/N ratio of other gases is decreased, indicating that the hydrogen selectivity has been significantly improved. The element temperature during measurement 6 is 325℃±10
It is ℃.

例15 例15は オキシ塩化アンチモンを添加せず、またオキ
シ塩化アンチモン酸化雰囲気中での処理をしない以外は
例2〜例13と同様に操作した素子の製造例を示す。例
15の素子の応答時間は37秒と例2〜例13の素子よ
りやや遅いが、なおpt単独添加の場合より烏かに迅速
であり、また、水素選択性も良好である0例14および
例15の素子の製造条件および性能を第2表に示す。
Example 15 Example 15 shows the production of a device that was operated in the same manner as Examples 2 to 13, except that antimony oxychloride was not added and the treatment was not carried out in an oxidizing atmosphere of antimony oxychloride. The response time of the device of Example 15 is 37 seconds, which is slightly slower than the devices of Examples 2 to 13, but it is still much faster than the case of adding PT alone, and the hydrogen selectivity is also good. The manufacturing conditions and performance of the device of Example 15 are shown in Table 2.

なお、例4のグループの素子についてSiの分散量を計
算したところ0.5重量%と推定される。
In addition, when the amount of Si dispersion was calculated for the elements of the group of Example 4, it was estimated to be 0.5% by weight.

また、例14のグループのうち1つの素子について素子
表面のptとPdとSiとの分散状態について、エレク
トロン・プローブ・マイクロアナライザーによって30
00倍で測定した。その結果、S n O2上にptと
Pdが分散され(PtはSnに対し0.5モル%と微量
であるため分散は僅かであった)でおり、SiはPdと
Ptの分散状態とほとんど対応するような形で分散され
ていることが確認された。従って、Siのかなりの部分
は第2図のモデル図に示すようにPdとPtの表面に分
散されているものと推測される。この結果、水素以外の
ガスと素子表面との電子の授受が非常に行なわれ難くな
ってSN比が低下し、逆に水素が又は素子表面への吸着
ならびに電子の授受ガスムーズに行なわれるのでSN比
が向上しかつ応答が早いものと思考される。
In addition, the dispersion state of PT, Pd, and Si on the surface of one of the devices in Example 14 was measured using an electron probe microanalyzer.
Measured at 00x magnification. As a result, pt and Pd were dispersed on SnO2 (the dispersion was slight because Pt was a trace amount of 0.5 mol% relative to Sn), and Si was almost in a state of dispersion with Pd and Pt. It was confirmed that they were distributed in a corresponding manner. Therefore, it is presumed that a considerable portion of Si is dispersed on the surfaces of Pd and Pt, as shown in the model diagram of FIG. As a result, it becomes extremely difficult for gases other than hydrogen to transfer electrons to and from the element surface, resulting in a decrease in the S/N ratio.On the other hand, hydrogen adsorption onto the element surface and transfer of electrons occur smoothly, resulting in a S/N ratio. It is thought that the response time will be improved and the response will be faster.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による水素ガス検知素子の1実施例の
応答特性図、第2図はSiの分散状態を示すモデル図で
ある。 時間 (柿) 第2図
FIG. 1 is a response characteristic diagram of one embodiment of the hydrogen gas detection element according to the present invention, and FIG. 2 is a model diagram showing the dispersion state of Si. Time (persimmon) Figure 2

Claims (1)

【特許請求の範囲】 1、Pd/Sn=0.1〜8モル%、Pt/Sn=0.
5〜8モル%、Sb/Sn=0〜8モル%のPdおよび
Pt、またはPd、Pt及びSbがSnO_2上に分散
してなる素子を500〜5000ppmのシラン系ガス
雰囲気中で処理して該素子上にSi酸化物を分散させて
なる水素ガス検出素子。 2、塩化パラジウム(PdCl_2)水溶液を造り、塩
化白金酸(H_2PtCl_6)水溶液を造り、酸化第
2スズにPd/Snが0.1〜8モル%、Pt/Snが
0.5〜8モル%となる量の前記塩化パラジウム水溶液
および塩化白金酸水溶液を任意の順序で添加し、得られ
た混合液中のSnO_2を良く分散させた後乾燥し、乾
燥物にSb/Sn=0〜8モル%となる量のオキシ塩化
アンチモン(SbOCl)を添加混合した後、これを有
機溶媒中のペーストとなして電極を備えたアルミナ磁器
管に塗布して乾燥し、表面にSnO_2とPdCl_2
とH_2PtCl_6またはSnO_2とPdCl_2
とH_2PtCl_6及びSbOCl含有層を備えてな
る素子を大気雰囲気中またはアンチモン酸化ガス雰囲気
中で焼成し、焼成した素子にヒータを取付け、ヒータで
300℃±50℃に加熱して所定時間空気中でエージン
グし、得られた素子を300〜350℃に加熱してシラ
ン系ガスの濃度が500〜5000ppmの雰囲気中で
処理して素子上にSi酸化物を分散させることから成る
、水素ガス検出素子の製法。 3、SnO_2をよく分散させた後の乾燥は急速凍結乾
燥である特許請求の範囲第2項記載の水素ガス検出素子
の製法。
[Claims] 1. Pd/Sn=0.1 to 8 mol%, Pt/Sn=0.
5 to 8 mol%, Sb/Sn = 0 to 8 mol% of Pd and Pt, or an element in which Pd, Pt, and Sb are dispersed on SnO_2 is treated in a silane-based gas atmosphere of 500 to 5000 ppm. A hydrogen gas detection element made by dispersing Si oxide on the element. 2. Make a palladium chloride (PdCl_2) aqueous solution, make a chloroplatinic acid (H_2PtCl_6) aqueous solution, and add 0.1 to 8 mol% of Pd/Sn and 0.5 to 8 mol% of Pt/Sn to stannic oxide. Amounts of the above palladium chloride aqueous solution and chloroplatinic acid aqueous solution are added in an arbitrary order, and after the SnO_2 in the obtained mixture is well dispersed, it is dried, and the dried product has Sb/Sn = 0 to 8 mol%. After adding and mixing a certain amount of antimony oxychloride (SbOCl), it is made into a paste in an organic solvent and applied to an alumina porcelain tube equipped with electrodes, dried, and the surface is coated with SnO_2 and PdCl_2.
and H_2PtCl_6 or SnO_2 and PdCl_2
An element comprising a layer containing H_2PtCl_6 and SbOCl is fired in an air atmosphere or an antimony oxidation gas atmosphere, a heater is attached to the fired element, and the element is heated to 300°C ± 50°C with the heater and aged in air for a predetermined period of time. A method for manufacturing a hydrogen gas detection element, which comprises heating the obtained element to 300 to 350°C and treating it in an atmosphere with a silane gas concentration of 500 to 5000 ppm to disperse Si oxide on the element. . 3. The method for manufacturing a hydrogen gas detection element according to claim 2, wherein the drying after well dispersing SnO_2 is rapid freeze drying.
JP6578185A 1985-03-29 1985-03-29 Gaseous hydrogen detecting element and its production Granted JPS61223643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6578185A JPS61223643A (en) 1985-03-29 1985-03-29 Gaseous hydrogen detecting element and its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6578185A JPS61223643A (en) 1985-03-29 1985-03-29 Gaseous hydrogen detecting element and its production
EP86113291A EP0261275B1 (en) 1985-03-29 1986-09-26 A hydrogen gas detecting element and method of producing same

Publications (2)

Publication Number Publication Date
JPS61223643A true JPS61223643A (en) 1986-10-04
JPH0473544B2 JPH0473544B2 (en) 1992-11-24

Family

ID=26102569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6578185A Granted JPS61223643A (en) 1985-03-29 1985-03-29 Gaseous hydrogen detecting element and its production

Country Status (1)

Country Link
JP (1) JPS61223643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532671B2 (en) * 1999-06-01 2010-08-25 新コスモス電機株式会社 Hydrogen gas detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254497A (en) * 1975-10-28 1977-05-02 Matsushita Electric Works Ltd Preparation process for combustible gas detecting elements
JPS5499697A (en) * 1978-01-24 1979-08-06 Asahi Glass Co Ltd Gas sensing body for reductive gas
JPS55129741A (en) * 1979-03-30 1980-10-07 Anritsu Corp Detector for external atmosphere
JPS55136949A (en) * 1979-01-22 1980-10-25 Ford Motor Co Improved sensor
JPS6050446A (en) * 1983-08-31 1985-03-20 Nohmi Bosai Kogyo Co Ltd Gas detecting element and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254497A (en) * 1975-10-28 1977-05-02 Matsushita Electric Works Ltd Preparation process for combustible gas detecting elements
JPS5499697A (en) * 1978-01-24 1979-08-06 Asahi Glass Co Ltd Gas sensing body for reductive gas
JPS55136949A (en) * 1979-01-22 1980-10-25 Ford Motor Co Improved sensor
JPS55129741A (en) * 1979-03-30 1980-10-07 Anritsu Corp Detector for external atmosphere
JPS6050446A (en) * 1983-08-31 1985-03-20 Nohmi Bosai Kogyo Co Ltd Gas detecting element and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532671B2 (en) * 1999-06-01 2010-08-25 新コスモス電機株式会社 Hydrogen gas detector

Also Published As

Publication number Publication date
JPH0473544B2 (en) 1992-11-24

Similar Documents

Publication Publication Date Title
US4543273A (en) Carbon monoxide sensing element and method of making same
JPS61223643A (en) Gaseous hydrogen detecting element and its production
JPH0473545B2 (en)
JPH0473543B2 (en)
JP3535398B2 (en) NOx measuring element for exhaust gas
US4583070A (en) Silane gas sensor and a method of making the same
JPS5999343A (en) Gas detecting element
JPH11108872A (en) Catalytic lamination apparatus
JPH058984B2 (en)
JPH0571534B2 (en)
JPH0458906B2 (en)
JPH058983B2 (en)
JPH03220448A (en) Humidity sensor
JP2575479B2 (en) Gas sensor
JPS60263845A (en) Gas detecting element and its production
JPS63279150A (en) Semiconductor type gas sensor
JPH0458905B2 (en)
JPS6275246A (en) Gas detecting element and its production
JPH08233761A (en) Gas sensor and manufacture thereof
CN118387829A (en) Preparation method of hydrogen sensor based on nickel oxide quantum dot material
JPH05133923A (en) Manufacture of gas sensor
JPH0815195A (en) Gas sensor
JPH01304350A (en) Gas sensor
JPH04276545A (en) Ozone sensor
JPH09318582A (en) Activation treatment of catalyst for gas detection element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees