JP2001049367A - High strength, high conductivity and high heat resistance copper base alloy and its production - Google Patents

High strength, high conductivity and high heat resistance copper base alloy and its production

Info

Publication number
JP2001049367A
JP2001049367A JP11222198A JP22219899A JP2001049367A JP 2001049367 A JP2001049367 A JP 2001049367A JP 11222198 A JP11222198 A JP 11222198A JP 22219899 A JP22219899 A JP 22219899A JP 2001049367 A JP2001049367 A JP 2001049367A
Authority
JP
Japan
Prior art keywords
temperature
copper
copper base
base alloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11222198A
Other languages
Japanese (ja)
Other versions
JP3763234B2 (en
Inventor
Noriyuki Nomoto
詞之 野本
慶平 ▲冬▼
Kiyouhei Fuyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22219899A priority Critical patent/JP3763234B2/en
Publication of JP2001049367A publication Critical patent/JP2001049367A/en
Application granted granted Critical
Publication of JP3763234B2 publication Critical patent/JP3763234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a copper base alloy maintaining electric conductivity, tensile strength and Vickers hardness equal to or above the specified value even after heating at a specified temp. for a specified time by producing it by using an ingot of a copper base alloy contg. specified rations of iron, phosphorus and zinc. SOLUTION: This high strength, high conductivity and high heat resistance copper base alloy is produced by using an ingot of a copper base alloy contg., by weight, 2.0 to 2.5% iron, 0.01 to 0.2% phosphorus and 0.01 to 1% zinc, has >=70% IACS electric conductivity and >=520 N/mm2 tensile strength and maintains the value of >=90% of Vickers hardness of >=155 Hv even after heating at 450 deg.C for 5 min. An ingot of a copper base alloy is hot-rolled at 800 to 1,050 deg.C, is thereafter cold-rolled, is held at >=900 deg.C for >=30 sec and is immediately cooled to 500 deg.C at a cooling rate of >=100 deg.C/min. After that, it is cold-rolled, is annealed at 550 to 650 deg.C for 30 min to 6 hr, is moreover annealed at 400 to 525 deg.C for 1 to 10 hr and is cold-rolled so as to control the finish rolling working ratio to 70 to 85% to obtain a copper base alloy suitable for a lead frame material or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅基合金及びその
製造方法に関し、特に、熱処理工程の改良による高強
度、高導電率かつ高耐熱性を有する銅基合金及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper-based alloy and a method for producing the same, and more particularly, to a copper-based alloy having high strength, high electrical conductivity and high heat resistance by improving a heat treatment process, and a method for producing the same.

【0002】[0002]

【従来の技術】リードフレーム材等に代表される電気・
電子部品の材料にあっては、高強度性、高導電率性、高
耐熱性等の諸性能を有することが要求される。このよう
な要求に対し、鉄(Fe)1.5〜3.5%、りん
(P)0.01〜0.15%、亜鉛(Zn)0.03〜
0.2%を含有し、残部が銅(Cu)と不可避不純物よ
りなる銅基合金を加工して電子部品等の材料を製造する
方法として、例えば、特公昭52−20404号、特公
昭55−14132号、特公昭55−14133号、特
公昭55−14134号、特公平3−44141号、特
公平6−11904号等に開示されるものがある。これ
らの製造方法は、Cu−Fe系合金において加工度を高
くすることによって、電気・電子部品の材料に好適な性
能を付与しようとするものであり、導電率、引張強さ、
ビッカース硬さ等の強度の点では、好適な性能を付与す
ることができる。
2. Description of the Related Art Electricity represented by lead frame materials, etc.
Electronic component materials are required to have various properties such as high strength, high electrical conductivity, and high heat resistance. To meet such demands, iron (Fe) 1.5 to 3.5%, phosphorus (P) 0.01 to 0.15%, zinc (Zn) 0.03 to
As a method of manufacturing a material such as an electronic component by processing a copper-based alloy containing 0.2% and a balance of copper (Cu) and unavoidable impurities, for example, Japanese Patent Publication Nos. 52-20404 and 55-55 No. 14,132, Japanese Patent Publication No. 55-14133, Japanese Patent Publication No. 55-14134, Japanese Patent Publication No. 3-44141, and Japanese Patent Publication No. 6-11904. These production methods are intended to impart suitable performance to materials of electric / electronic parts by increasing the workability of a Cu-Fe-based alloy, and conductance, tensile strength,
In terms of strength such as Vickers hardness, suitable performance can be provided.

【0003】しかし、これらの製造方法では、電気・電
子部品の材料に求められる重要な性能の1つである耐熱
性又は軟化点については特に言及しておらず、Cu−F
e系合金における加工度を高くすることのみでは、耐熱
性の点で必ずしも十分に満足し得るものではなかった。
特に、リードフレーム材の用途においては多ピン化、薄
板化が進んでいるために高い強度が要求されている。ま
た、実際の使用に当たっては、例えば、スタンピングの
際の歪み除去工程で400℃以上の温度での加熱を受け
る等高温加熱処理される場合も多いため、高温加熱後に
おいても材料の強度を維持できるものであることが要求
されている。
However, in these manufacturing methods, heat resistance or softening point, which is one of the important properties required for materials of electric / electronic parts, is not particularly mentioned, and Cu-F
Simply increasing the workability of the e-based alloy was not always sufficient in terms of heat resistance.
In particular, in applications of lead frame materials, high strength is required due to the progress of increasing the number of pins and thinning. Further, in actual use, for example, in many cases, high-temperature heat treatment is performed such as heating at a temperature of 400 ° C. or more in a distortion removing step at the time of stamping, so that the strength of the material can be maintained even after high-temperature heating. It is required to be something.

【0004】これに対し、上記各種元素の組成に加えマ
グネシウム(Mg)を添加することにより、耐熱性ある
いは軟化点についても好適な性能を付与する製造方法
が、例えば、特公昭64−449号に開示されている。
[0004] On the other hand, a production method in which magnesium (Mg) is added in addition to the composition of the above-mentioned various elements to impart suitable performance with respect to heat resistance or softening point is disclosed in, for example, Japanese Patent Publication No. 64-449. It has been disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、特公昭64−
449号公報に開示された製造方法によると、マグネシ
ウム(Mg)を追加して添加しなければならないため、
添加元素数が大になって、管理項目数が増大し、またコ
ストアップを招く。
[Problems to be solved by the invention]
According to the production method disclosed in Japanese Patent No. 449, since magnesium (Mg) must be additionally added,
The number of added elements increases, the number of control items increases, and the cost increases.

【0006】従って、本発明の目的は、他の元素の添加
をすることなく熱処理工程の改良のみによって、高強
度、高伝導性のみならず、高耐熱性を有する、特に、リ
ードフレーム材で要求される高温加熱後においても高い
強度が維持できる銅基合金及びその製造方法を提供する
ことにある。
Accordingly, an object of the present invention is to improve not only the heat treatment step without adding other elements, but to obtain not only high strength and high conductivity but also high heat resistance. An object of the present invention is to provide a copper-based alloy capable of maintaining high strength even after high-temperature heating to be performed and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するため以下の高強度高導電率高耐熱性銅基合金及び
その製造方法を提供する。
SUMMARY OF THE INVENTION The present invention provides the following high-strength, high-conductivity, high-heat-resistant copper-based alloys and a method for producing the same.

【0008】[1] 鉄(Fe)2.0〜2.5重量
%、リン(P)0.01〜0.2重量%、亜鉛(Zn)
0.01〜1重量%を含有した銅基合金の鋳塊から製造
され、70%IACS以上の導電率、520N/mm2
以上の引張強さ、及び155Hv以上のビッカース硬さ
を有し、450℃で5分間の加熱を受けた後も前記導電
率、前記引張強さ、及び前記ビッカース硬さの90%以
上の値を維持することを特徴とする高強度高導電率高耐
熱性銅基合金。
[1] Iron (Fe) 2.0-2.5% by weight, phosphorus (P) 0.01-0.2% by weight, zinc (Zn)
Manufactured from an ingot of a copper-based alloy containing 0.01 to 1% by weight and having a conductivity of 70% IACS or more, 520 N / mm 2
Having a tensile strength of not less than, and Vickers hardness of not less than 155 Hv, even after being heated at 450 ° C. for 5 minutes, the electrical conductivity, the tensile strength, and a value of not less than 90% of the Vickers hardness are maintained. A high-strength, high-conductivity, high-heat-resistant copper-based alloy characterized by maintaining.

【0009】[2] 銅(Cu)を主成分とし、かつ鉄
(Fe)2.0〜2.5重量%、リン(P)0.01〜
0.2重量%、亜鉛(Zn)0.01〜1重量%を含有
する銅基合金の鋳塊を、800〜1050℃で熱間圧延
した後、冷間圧延をし、900℃以上の温度で30秒以
上保持後、直ちに500℃まで毎分100℃以上の冷却
速度で急冷し、更に室温まで冷却し、その後、冷間圧延
をし、550〜650℃の温度で30分〜6時間の焼鈍
をし、更に400〜525℃の温度で1〜10時間の焼
鈍をし、仕上圧延加工度70〜85%の冷間圧延をする
ことを特徴とする高強度高導電率高耐熱性銅基合金の製
造方法。
[2] Copper (Cu) as a main component, iron (Fe) 2.0 to 2.5% by weight, phosphorus (P) 0.01 to
An ingot of a copper-based alloy containing 0.2% by weight and zinc (Zn) of 0.01 to 1% by weight is hot-rolled at 800 to 1050 ° C, then cold-rolled, and heated to 900 ° C or more. And immediately cooled to 500 ° C. at a cooling rate of 100 ° C. or more per minute, further cooled to room temperature, and then cold-rolled, at a temperature of 550 to 650 ° C. for 30 minutes to 6 hours. Annealing, further annealing at a temperature of 400 to 525 ° C for 1 to 10 hours, and cold rolling at a finish rolling degree of 70 to 85%, characterized by high strength, high conductivity and high heat resistance copper base. Alloy manufacturing method.

【0010】[0010]

【発明の実施の形態】以下、本発明に係る高強度、高導
電率、高耐熱性銅基合金及びその製造方法について詳細
に説明する。本発明は、以下に述べる特定の成分を含有
する銅基合金の鋳塊に以下に述べる特定の熱処理を施
す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a high-strength, high-conductivity, high-heat-resistant copper-based alloy according to the present invention and a method for producing the same will be described in detail. According to the present invention, a copper-based alloy ingot containing a specific component described below is subjected to a specific heat treatment described below.

【0011】1.銅基合金鋳塊 (1)銅基合金成分 以下、各成分ごとに具体的に説明する。1. Copper-based alloy ingot (1) Copper-based alloy component Hereinafter, each component will be specifically described.

【0012】(i) 鉄(Fe)成分 本発明における銅基合金の鉄(Fe)成分含有率は、
2.0〜2.5重量%の範囲とするのが好ましく、より
好ましい範囲は2.1〜2.3重量%である。鉄(F
e)は主に銅(Cu)中に析出することによって、強度
と耐熱性を向上させる作用があるが、2.0重量%未満
であると鉄(Fe)の析出量が足りず必要とする強度及
び耐熱性が得られない。一方、2.5重量%を超えると
導電率の低下が大きいとともに、鋳造時に粗大な鉄(F
e)の晶出物が生成し、これが製品に残存すると曲げ割
れの起点となったり、めっき不良を起こしたりする。
(I) Iron (Fe) Component The iron (Fe) content of the copper-based alloy in the present invention is as follows:
The content is preferably in the range of 2.0 to 2.5% by weight, and more preferably 2.1 to 2.3% by weight. Iron (F
e) has an effect of improving strength and heat resistance mainly by precipitating in copper (Cu), but if it is less than 2.0% by weight, the amount of iron (Fe) precipitated is insufficient. The strength and heat resistance cannot be obtained. On the other hand, when the content exceeds 2.5% by weight, the decrease in conductivity is large and coarse iron (F
If the crystallized product of e) is generated and remains in the product, it may be a starting point of bending cracking or cause plating failure.

【0013】(ii) リン(P)成分 本発明における銅基合金のリン(P)成分含有率は、
0.01〜0.2重量%の範囲とするのが好ましく、よ
り好ましい範囲は0.01〜0.05重量%である。リ
ン(P)は溶解鋳造中に溶湯に混入する酸素を脱酸する
作用があるが、0.01重量%未満であるとその効果を
得るには十分でない。0.1重量%を超えると脱酸効果
に飽和傾向がみられるものの、鉄(Fe)と化合して析
出物を形成し、この析出物が強度や耐熱性の向上に寄与
する。一方、0.2%を超えるとこのような効果も飽和
状態となるばかりか、鋳造時に結晶粒界等に析出したリ
ン(P)と鉄(Fe)の化合物が、芯割れや熱間圧延時
の粒界割れの原因となり悪影響が大になる。
(Ii) Phosphorus (P) component The content of the phosphorus (P) component of the copper-based alloy in the present invention is as follows:
It is preferably in the range of 0.01 to 0.2% by weight, more preferably 0.01 to 0.05% by weight. Phosphorus (P) has an action of deoxidizing oxygen mixed in the molten metal during the melt casting, but if it is less than 0.01% by weight, the effect is not sufficient to obtain the effect. If it exceeds 0.1% by weight, although the deoxidizing effect tends to be saturated, it combines with iron (Fe) to form a precipitate, and this precipitate contributes to improvement in strength and heat resistance. On the other hand, if the content exceeds 0.2%, such an effect is not only saturated, but also the compound of phosphorus (P) and iron (Fe) precipitated at the crystal grain boundary or the like at the time of core cracking or hot rolling. This causes grain boundary cracking, and the adverse effect becomes large.

【0014】(iii) 亜鉛(Zn)成分 本発明における銅基合金の亜鉛(Zn)成分含有率は、
0.01〜1重量%の範囲とするのが好ましく、より好
ましい範囲は0.05〜0.15重量%である。亜鉛
(Zn)は半田濡れ性を向上させるとともに、脱酸、脱
ガス作用や銅(Cu)のマイグレーションの抑制作用が
あるが、0.01重量%未満であるとその効果を得るに
は十分でない。一方、1.0重量%を超えると、導電率
の低下をもたらす。
(Iii) Zinc (Zn) component The zinc (Zn) component content of the copper-based alloy in the present invention is as follows:
It is preferably in the range of 0.01 to 1% by weight, more preferably 0.05 to 0.15% by weight. Zinc (Zn) improves solder wettability and has a deoxidizing and degassing effect and an effect of suppressing migration of copper (Cu). However, if it is less than 0.01% by weight, it is not sufficient to obtain the effect. . On the other hand, when it exceeds 1.0% by weight, the conductivity is lowered.

【0015】(iv) 他の元素成分 本発明基合金は、基本的に銅(Cu)を主成分とし、か
つ特定量の鉄(Fe)、リン(P)、亜鉛(Zn)を含
有するものであり、他の元素の添加を企図するものでは
ない。しかし、不純物として、他の元素が混入すること
を避け得ないことがあるので、Mg,Al,Si,T
i,Cr,Mn,Co,NiおよびSnのいずれか1種
類以上を0.2重量%以下の量であるならば不可避不純
物成分として含有していてもよい。
(Iv) Other elemental components The base alloy of the present invention basically contains copper (Cu) as a main component and contains specific amounts of iron (Fe), phosphorus (P), and zinc (Zn). Which is not intended to add another element. However, it is sometimes unavoidable to mix other elements as impurities, so that Mg, Al, Si, T
If at least one of i, Cr, Mn, Co, Ni and Sn is contained in an amount of 0.2% by weight or less, it may be contained as an unavoidable impurity component.

【0016】(2)造塊 本発明に用いられる銅基合金の鋳塊は、例えば、通常の
銅合金の連続鋳造方法または半連続鋳造法により造塊す
ることができる。この際の冷却過程では鉄(Fe)が析
出するが、これらは熱間加工性に悪影響を与えるため、
続く熱間圧延の前にこれらの鉄(Fe)析出物を再固溶
させることが好ましい。
(2) Ingot The ingot of the copper-based alloy used in the present invention can be ingot by, for example, an ordinary copper alloy continuous casting method or semi-continuous casting method. In the cooling process at this time, iron (Fe) precipitates, but since these have a bad influence on hot workability,
It is preferred that these iron (Fe) precipitates be solid-dissolved before the subsequent hot rolling.

【0017】2.熱処理 (1)第1の熱間圧延、冷間圧延 本発明では、前記銅基合金を800〜1050℃の温度
によって、熱間圧延する。800℃未満であると鉄(F
e)の析出量が多く、熱間圧延時に割れが起こり易い。
次に、冷間圧延をするが、続く溶体化処理時の熱交換速
度を速くさせるためには、板厚を3mm以下になるよう
に減面率を設定することが好ましい。
2. Heat treatment (1) First hot rolling and cold rolling In the present invention, the copper-based alloy is hot-rolled at a temperature of 800 to 1050C. If the temperature is lower than 800 ° C., iron (F
The precipitation amount of e) is large, and cracks easily occur during hot rolling.
Next, cold rolling is performed. In order to increase the heat exchange rate during the subsequent solution treatment, it is preferable to set the sheet reduction rate so that the sheet thickness becomes 3 mm or less.

【0018】(2)溶体化処理 前記熱間圧延、冷間圧延後、900℃以上の温度で30
秒以上保持した後、直ちに500℃まで毎分100℃以
上の冷却速度で急冷し、更に室温まで冷却する(以下、
「溶体化処理」ということもある)。以下、具体的に説
明する。
(2) Solution treatment After the hot rolling and the cold rolling, the solution is treated at a temperature of 900 ° C. or more for 30 minutes.
After holding for more than a second, immediately cool to 500 ° C. at a cooling rate of 100 ° C. or more per minute and further cool to room temperature (hereinafter, referred to as
"Solution treatment"). Hereinafter, a specific description will be given.

【0019】この溶体化処理は、熱間圧延時に析出した
鉄(Fe)析出物を再固溶させるために行うものであ
る。
This solution treatment is performed to re-solidify iron (Fe) precipitates precipitated during hot rolling.

【0020】本発明では、溶体化処理を加熱温度900
℃以上で行う。鉄(Fe)の銅(Cu)中への固溶解度
は高温ほど大きいため、保持温度は高い方が耐熱性の点
からは好ましく、900℃未満であると固溶量が不足し
てしまうため、目標とする耐熱性が得られない。
In the present invention, the solution treatment is performed at a heating temperature of 900.
Perform at or above ° C. Since the solid solubility of iron (Fe) in copper (Cu) increases as the temperature increases, the higher the holding temperature, the better from the viewpoint of heat resistance. If it is lower than 900 ° C., the amount of solid solution will be insufficient. The target heat resistance cannot be obtained.

【0021】また、本発明では、溶体化処理を保持時間
30秒以上で行う。鉄(Fe)の銅(Cu)中での拡散
速度は速く、900℃以上では30秒程度の保持で一応
再固溶することができるので、30秒以上行えば十全に
再固溶することができる。
In the present invention, the solution treatment is performed for a holding time of 30 seconds or more. The diffusion rate of iron (Fe) in copper (Cu) is high. At 900 ° C. or higher, solid solution can be achieved once again by holding for about 30 seconds. Can be.

【0022】更に、本発明では、溶体化処理を前記保持
時間経過後直ちに500℃まで毎分100℃以上の冷却
速度で急冷し、更に室温まで冷却する。
Further, in the present invention, the solution treatment is rapidly cooled to 500 ° C. immediately after the elapse of the holding time at a cooling rate of 100 ° C. or more per minute, and further cooled to room temperature.

【0023】耐熱性を付与する点からは、冷却過程で析
出する鉄(Fe)析出物が粗大化しないような速度で冷
却する必要があるが、鉄(Fe)の銅(Cu)中での拡
散速度は速いため、500度までは毎分100℃より遅
い冷却速度で冷却すると、鉄(Fe)析出物が粗大化
し、目標とする耐熱性は得られない。尚、500℃未満
では鉄(Fe)の析出速度が遅くなるため、特に冷却速
度を早くする必要はなく、室温まで毎分5℃程度以上の
冷却速度であれば十分である。
From the viewpoint of imparting heat resistance, it is necessary to cool at a rate such that iron (Fe) precipitates precipitated during the cooling process do not become coarse. Since the diffusion rate is high, if cooling is performed at a cooling rate lower than 100 ° C. per minute up to 500 ° C., iron (Fe) precipitates become coarse and the target heat resistance cannot be obtained. If the temperature is lower than 500 ° C., the rate of precipitation of iron (Fe) becomes slow. Therefore, it is not necessary to increase the cooling rate. A cooling rate of about 5 ° C./minute or more to room temperature is sufficient.

【0024】(3)第2の冷間圧延、焼純 前記溶体化処理後、冷間圧延を行い、550〜650℃
の温度で30分〜6時間の焼鈍をし、更に400〜52
5℃の温度で1〜10時間の焼鈍する。冷間圧延は、減
面率が50%以上となるように行うことが好ましい。こ
れにより次に述べる焼鈍での析出をスムーズにすること
ができる。
(3) Second Cold Rolling and Purification After the solution treatment, cold rolling is carried out at 550-650 ° C.
Anneal for 30 minutes to 6 hours at a temperature of 400 to 52
Anneal at a temperature of 5 ° C. for 1 to 10 hours. The cold rolling is preferably performed so that the area reduction rate is 50% or more. As a result, it is possible to make precipitation by annealing described below smooth.

【0025】本発明では、焼純は2段階で行う。1段の
焼純のみでは、耐熱性が不充分となる。
In the present invention, refining is performed in two stages. If only one stage of refining is used, the heat resistance becomes insufficient.

【0026】まず、最初の焼鈍は、550〜650℃の
温度、30分〜6時間の条件で行う。最初の焼鈍温度が
650℃を超えても550℃未満でも鉄(Fe)析出物
を適正なサイズに析出させることができず、目標とする
耐熱性および強度が得られない。また、焼鈍時間が30
分未満でも6時間を超えても、目標とする耐熱性および
強度が得られない。
First, the first annealing is performed at a temperature of 550 to 650 ° C. for 30 minutes to 6 hours. If the initial annealing temperature exceeds 650 ° C. or less than 550 ° C., iron (Fe) precipitates cannot be deposited to an appropriate size, and the desired heat resistance and strength cannot be obtained. The annealing time is 30
If less than minutes or more than 6 hours, the desired heat resistance and strength cannot be obtained.

【0027】次に、2回目の焼鈍を400〜525℃の
温度で1〜8時間行う。400℃より低い温度では析出
に長時間を要し、525℃より高い温度では目標とする
耐熱性が得られない。
Next, a second annealing is performed at a temperature of 400 to 525 ° C. for 1 to 8 hours. At a temperature lower than 400 ° C., a long time is required for precipitation, and at a temperature higher than 525 ° C., the target heat resistance cannot be obtained.

【0028】2回目の焼鈍は400〜525℃の範囲内
であれば、複数の時効温度による多段式の時効でも差し
支えない。また、2回目の焼鈍は最初の焼鈍に続いて行
っても、一度室温に下げてから行っても差し支えない。
冷却速度は、特に制限はないが、毎分1℃以上とするの
が好ましい。また、1回目の焼鈍と2回目の焼鈍の間に
減面率30%以下の加工を行ってもよい。
As long as the second annealing is in the range of 400 to 525 ° C., multi-stage aging with a plurality of aging temperatures may be used. In addition, the second annealing may be performed following the first annealing, or may be performed after the temperature is once lowered to room temperature.
The cooling rate is not particularly limited, but is preferably 1 ° C. or more per minute. In addition, between the first annealing and the second annealing, processing with a surface reduction rate of 30% or less may be performed.

【0029】炉は、特に制限はないが、バッチ式の炉で
行うのが好ましい。
The furnace is not particularly limited, but is preferably a batch type furnace.

【0030】(4)第3の冷間圧延 前記冷間圧延、焼純後、仕上圧延を仕上圧延加工度70
〜85%で行う。70%未満であると引張強さ及びビッ
カース硬さ等の強度が不十分となる。一方、85%を超
えると耐熱性が不充分となる。尚、更にこの後、伸びの
向上や歪み除去のための低温焼鈍を行ってもよい。
(4) Third Cold Rolling After the cold rolling and sintering, finish rolling is performed at a finish rolling degree of 70.
Perform at ~ 85%. If it is less than 70%, the strength such as tensile strength and Vickers hardness becomes insufficient. On the other hand, if it exceeds 85%, the heat resistance becomes insufficient. Further, after this, low-temperature annealing for improving elongation and removing strain may be performed.

【0031】[0031]

【実施例】以下、本発明を実施例によってさらに具体的
に説明するが、この実施例によって本発明はいかなる限
定を受けるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited by these examples.

【0032】[実施例1]2.2重量%の鉄(Fe)、
0.03重量%のリン(P)、0.01重量%の亜鉛
(Zn)を含有する銅(Cu)合金を高周波誘導型坩堝
炉で溶解後、銅製鋳型で半連続鋳造し、横断面200m
m×450mm、長さ4000mmの直方体の鋳塊を作
製した。この鋳塊の表面をそれぞれ5mm面削し、95
0℃で2時間保持後熱間圧延を行い、板厚12mmとし
た。更に表面および裏面をそれぞれ1mm面削した後、
冷間圧延により板厚2.5mmとした。次に、連続焼鈍
炉において毎分2mの速度で雰囲気温度930℃の加熱
帯を通過させて材料の最高温度を925℃とし、続いて
冷却帯および水冷プールを通過させて急冷し、溶体化処
理を行った。材料の900℃以上の温度での保持時間は
1分、900℃から500℃までの冷却時間は48秒で
あった。更に表面および裏面を研磨した後、冷間圧延に
より板厚1.25mmとした。次に電気炉で窒素ガス雰
囲気中で600℃の温度で2時間焼鈍し、冷却速度毎分
5℃の冷却途中で500℃の温度で2時間焼鈍し、冷却
速度毎分5℃の冷却途中で更に450℃の温度で2時間
焼鈍し、冷却速度毎分5℃で室温に下げた。次に、冷間
圧延により板厚0.25mmとした。このときの特性は
表1に示すように、導電率72%IACS、ビッカース
硬さ158Hv、引張強さ563N/mm2 であった。
更に450℃の温度に5分間保持後、ビッカース硬さを
測定したところ、143Hvであった。
Example 1 2.2% by weight of iron (Fe)
A copper (Cu) alloy containing 0.03% by weight of phosphorus (P) and 0.01% by weight of zinc (Zn) is melted in a high-frequency induction crucible furnace, and then semi-continuously cast in a copper mold to obtain a cross section of 200 m.
A rectangular parallelepiped ingot having a size of mx 450 mm and a length of 4000 mm was produced. The surface of the ingot was cut 5 mm each,
After holding at 0 ° C. for 2 hours, hot rolling was performed to obtain a sheet thickness of 12 mm. Furthermore, after the front and back surfaces are each 1 mm sharpened,
The thickness was reduced to 2.5 mm by cold rolling. Next, in a continuous annealing furnace, the material is passed through a heating zone at an ambient temperature of 930 ° C. at a speed of 2 m / min to raise the maximum temperature of the material to 925 ° C., and subsequently passed through a cooling zone and a water-cooled pool to be quenched, and then subjected to solution treatment. Was done. The holding time of the material at 900 ° C. or higher was 1 minute, and the cooling time from 900 ° C. to 500 ° C. was 48 seconds. Further, after polishing the front and rear surfaces, the thickness was reduced to 1.25 mm by cold rolling. Next, annealing is performed in an electric furnace at a temperature of 600 ° C. for 2 hours in a nitrogen gas atmosphere, at a cooling rate of 5 ° C./min for 2 hours, and at a cooling rate of 500 ° C. for 2 hours. Further, annealing was performed at a temperature of 450 ° C. for 2 hours, and the temperature was lowered to room temperature at a cooling rate of 5 ° C. per minute. Next, the thickness was reduced to 0.25 mm by cold rolling. As shown in Table 1, the characteristics at this time were a conductivity of 72% IACS, a Vickers hardness of 158 Hv, and a tensile strength of 563 N / mm 2 .
Further, after holding at a temperature of 450 ° C. for 5 minutes, Vickers hardness was measured to be 143 Hv.

【0033】[実施例2]銅基合金の各種金属含有率、
及び造塊又は熱間処理の工程を実施例1と同一に行い、
板厚2.5mmとした。次に、バッチ式の電気炉におい
て材料を925℃で10分間保持後、水冷プールで急冷
し溶体化処理を行った。材料の900℃から500℃ま
での冷却時間は実施例1と同様に48秒でおこなった。
この後、実施例1と同一の焼純、及び冷間圧延処理を
し、板厚0.25mmとした。このときの特性は表1 に
示すように、導電率72%IACS、ビッカース硬さ1
59Hv、引張強さ566N/mm2 であった。更に4
50℃の温度に5分間保持後、ビッカース硬さを測定し
たところ、146Hvであった。
Example 2 Various metal contents of a copper-based alloy,
And the process of ingot or hot treatment is performed in the same manner as in Example 1,
The plate thickness was 2.5 mm. Next, the material was held at 925 ° C. for 10 minutes in a batch-type electric furnace, and then rapidly cooled in a water-cooled pool to perform a solution treatment. The cooling time of the material from 900 ° C. to 500 ° C. was 48 seconds as in Example 1.
Thereafter, the same refining and cold rolling as in Example 1 were performed to obtain a sheet thickness of 0.25 mm. As shown in Table 1, the characteristics at this time were as follows: conductivity 72% IACS, Vickers hardness 1
It was 59 Hv and a tensile strength of 566 N / mm 2 . 4 more
After holding at a temperature of 50 ° C. for 5 minutes, the Vickers hardness was measured to be 146 Hv.

【0034】[実施例3]銅基合金の各種金属含有率及
び、造塊、熱間処理又は溶体化処理の何れの工程も実施
例1と同一に行い、冷間圧延により板厚1.25mmと
した。この後、電気炉で窒素ガス雰囲気中で600℃の
温度で2時間焼鈍し、冷却速度毎分5℃の冷却途中で更
に450℃の温度で2時間焼鈍し、冷却速度毎分5℃で
室温に下げた。次に、冷間圧延により板厚0.25mm
とした。このときの特性は表1 に示すように、導電率7
5%IACS、ビッカース硬さ158Hv、引張強さ5
53N/mm2 であった。更に450℃の温度に5分間
保持後、ビッカース硬さを測定したところ、142Hv
であった。
Example 3 The contents of various metals in a copper-based alloy and the steps of ingot making, hot treatment or solution treatment were performed in the same manner as in Example 1, and the sheet thickness was 1.25 mm by cold rolling. And Thereafter, in an electric furnace, annealed in a nitrogen gas atmosphere at a temperature of 600 ° C. for 2 hours, further cooled at a rate of 5 ° C./minute for 2 hours at a temperature of 450 ° C., and cooled at a rate of 5 ° C./min. Lowered to Next, the thickness is 0.25 mm by cold rolling.
And As shown in Table 1, the characteristics at this time were as follows.
5% IACS, Vickers hardness 158Hv, tensile strength 5
53 N / mm 2 . After holding at a temperature of 450 ° C. for 5 minutes, the Vickers hardness was measured.
Met.

【0035】[比較例1]銅基合金の各種金属含有率、
及び造塊又は熱間処理の工程を実施例1と同一に行い、
板厚2.5mmとした。次に、連続焼鈍炉において毎分
2mの速度で雰囲気温度930℃の加熱帯を通過させて
材料の最高温度を925℃とし、続いて冷却帯および水
冷プールを通過させて急冷し、溶体化処理を行った。材
料の900℃以上の温度での保持時間は1分、900℃
から500℃までの冷却時間は480秒であった。この
ときの特性は表1に示すように、導電率74%IAC
S、ビッカース硬さ155Hv、引張強さ526N/m
2 であった。更に450℃の温度に5分間保持後、ビ
ッカース硬さを測定したところ、97Hvであった。
Comparative Example 1 Various metal contents of a copper-based alloy
And the process of ingot or hot treatment is performed in the same manner as in Example 1,
The plate thickness was 2.5 mm. Next, in a continuous annealing furnace, the material is passed through a heating zone at an ambient temperature of 930 ° C. at a speed of 2 m / min to make the maximum temperature of the material 925 ° C., and then rapidly cooled by passing through a cooling zone and a water-cooled pool. Was done. Hold time of material at 900 ℃ or more is 1 minute, 900 ℃
The cooling time from to 500 ° C. was 480 seconds. As shown in Table 1, the characteristics at this time were as follows.
S, Vickers hardness 155 Hv, tensile strength 526 N / m
m 2 . Further, after holding at a temperature of 450 ° C. for 5 minutes, the Vickers hardness was measured to be 97 Hv.

【0036】[比較例2]銅基合金の各種金属含有率、
及び造塊又は熱間処理の工程を実施例1と同一に行い、
板厚2.5mmとした。次に、連続焼鈍炉において毎分
5mの速度で雰囲気温度930℃の加熱帯を通過させて
材料の最高温度を850℃とし、続いて冷却帯および水
冷プールを通過させて急冷し、溶体化を行った。材料の
800℃以上の温度での保持時間は1分であった。この
後、実施例1と同一の焼純、及び冷間圧延処理をし、板
厚0.25mmとした。このときの特性は、表1に示す
ように、導電率71%IACS、ビッカース硬さ156
Hv、引張強さ540N/mm2 であった。更に450
℃の温度に5分間保持後、ビッカース硬さを測定したと
ころ、106Hvであった。
Comparative Example 2 Various metal contents of copper-based alloy
And the process of ingot or hot treatment is performed in the same manner as in Example 1,
The plate thickness was 2.5 mm. Next, in a continuous annealing furnace, the material is passed through a heating zone at an ambient temperature of 930 ° C. at a speed of 5 m / min to reach a maximum temperature of 850 ° C., and then rapidly cooled by passing through a cooling zone and a water-cooled pool. went. The retention time of the material at temperatures above 800 ° C. was 1 minute. Thereafter, the same refining and cold rolling as in Example 1 were performed to obtain a sheet thickness of 0.25 mm. As shown in Table 1, the characteristics at this time were as follows: conductivity 71% IACS, Vickers hardness 156
Hv and tensile strength were 540 N / mm 2 . Further 450
After maintaining at a temperature of 5 ° C. for 5 minutes, the Vickers hardness was measured and found to be 106 Hv.

【0037】[比較例3]銅基合金の各種金属含有率及
び、造塊、熱間処理又は溶体化処理の何れの工程も実施
例1と同一に行い、冷間圧延により板厚1.25mmと
した。次に電気炉で窒素ガス雰囲気中で700℃の温度
で2時間焼鈍し、冷却速度毎分5℃の冷却途中で500
℃の温度で2時間焼鈍し、冷却速度毎分5℃の冷却途中
で450℃の温度で2時間焼鈍し、冷却速度毎分5℃で
室温に下げた。次に、冷間圧延により板厚0.25mm
とした。このときの特性は、表1に示すように、導電率
65%IACS、ビッカース硬さ151Hv、引張強さ
514N/mm2 であった。更に450℃の温度に5分
間保持後、ビッカース硬さを測定したところ、84Hv
であった。
COMPARATIVE EXAMPLE 3 The various metal contents of the copper-based alloy and the steps of ingot making, hot treatment or solution treatment were performed in the same manner as in Example 1, and the sheet thickness was 1.25 mm by cold rolling. And Next, in an electric furnace, annealed in a nitrogen gas atmosphere at a temperature of 700 ° C. for 2 hours, and at a cooling rate of 5 ° C./min.
Annealing was performed at a temperature of 450C for 2 hours during the cooling at a cooling rate of 5C per minute, and the temperature was lowered to room temperature at a cooling rate of 5C per minute. Next, the thickness is 0.25 mm by cold rolling.
And At this time, as shown in Table 1, the electrical conductivity was 65% IACS, the Vickers hardness was 151 Hv, and the tensile strength was 514 N / mm 2 . After further holding at a temperature of 450 ° C. for 5 minutes, the Vickers hardness was measured to be 84 Hv
Met.

【0038】[比較例4]銅基合金の各種金属含有率及
び、造塊、熱間処理又は溶体化処理の何れの工程も実施
例1と同一に行い、冷間圧延により板厚1.25mmと
した。次に電気炉で窒素ガス雰囲気中で520℃の温度
で2時間焼鈍し、冷却速度毎分5℃の冷却途中で500
℃の温度で2時間焼鈍し、冷却速度毎分5℃の冷却途中
で450℃の温度で2時間焼鈍し、冷却速度毎分5℃で
室温に下げた。次に、冷間圧延により板厚0.25mm
とした。このときの特性は、表1に示すように、導電率
68%IACS、ビッカース硬さ154Hv、引張強さ
530N/mm2 であった。更に450℃の温度に5分
間保持後、ビッカース硬さを測定したところ、125H
vであった。
[Comparative Example 4] The various metal contents of the copper-based alloy and the steps of ingot making, hot treatment or solution treatment were performed in the same manner as in Example 1, and the sheet thickness was 1.25 mm by cold rolling. And Next, annealing is performed in an electric furnace at a temperature of 520 ° C. for 2 hours in a nitrogen gas atmosphere.
Annealing was performed at a temperature of 450C for 2 hours during the cooling at a cooling rate of 5C per minute, and the temperature was lowered to room temperature at a cooling rate of 5C per minute. Next, the thickness is 0.25 mm by cold rolling.
And At this time, as shown in Table 1, the electrical conductivity was 68% IACS, the Vickers hardness was 154 Hv, and the tensile strength was 530 N / mm 2 . After holding at a temperature of 450 ° C. for 5 minutes, the Vickers hardness was measured.
v.

【0039】[比較例5]銅基合金の各種金属含有率及
び、造塊、熱間処理又は溶体化処理の何れの工程も実施
例1と同に行い、冷間圧延により板厚1.25mmとし
た。この後、電気炉で窒素ガス雰囲気中で600℃の温
度で2時間焼鈍し、冷却速度毎分5℃で室温に下げた。
次に、冷間圧延により板厚0.25mmとした。このと
きの特性は表1に示すように、導電率58%IACS、
ビッカース硬さ160Hv、引張強さ565N/mm2
であった。更に450℃の温度に5分間保持後、ビッカ
ース硬さを測定したところ、147Hvであった。
[Comparative Example 5] The various metal contents of the copper-based alloy and the steps of ingot making, hot treatment or solution treatment were performed in the same manner as in Example 1, and the sheet thickness was 1.25 mm by cold rolling. And Thereafter, annealing was performed at a temperature of 600 ° C. for 2 hours in a nitrogen gas atmosphere in an electric furnace, and the temperature was lowered to room temperature at a cooling rate of 5 ° C./min.
Next, the thickness was reduced to 0.25 mm by cold rolling. As shown in Table 1, the characteristics at this time were as follows: a conductivity of 58% IACS,
Vickers hardness 160Hv, tensile strength 565N / mm 2
Met. Further, after holding at a temperature of 450 ° C. for 5 minutes, the Vickers hardness was measured to be 147 Hv.

【0040】[比較例6]銅基合金の各種金属含有率及
び、造塊、熱間処理又は溶体化処理の何れの工程も実施
例1と同一に行い、冷間圧延により板厚1.25mmと
した。また、この後の焼純、及び冷間圧延処理の工程も
実施例1と同一に行い、板厚0.125mmとした。こ
のときの特性は表1に示すように、導電率67%IAC
S、ビッカース硬さ158Hv、引張強さ558N/m
2 であった。更に450℃の温度に5分間保持後、ビ
ッカース硬さを測定したところ、114Hvであった。
Comparative Example 6 The various metal contents of the copper-based alloy and the steps of ingot making, hot treatment or solution treatment were performed in the same manner as in Example 1, and the sheet thickness was 1.25 mm by cold rolling. And Further, the subsequent steps of refining and cold rolling were performed in the same manner as in Example 1, and the plate thickness was set to 0.125 mm. As shown in Table 1, the characteristics at this time were as follows.
S, Vickers hardness 158Hv, tensile strength 558N / m
m 2 . Further, after holding at a temperature of 450 ° C. for 5 minutes, the Vickers hardness was measured to be 114 Hv.

【0041】[0041]

【表1】 [Table 1]

【0042】表1の比較例1に示すように、溶体化処理
での冷却速度が100℃/min.より遅いと最終材を
450℃に加熱後の硬さは140Hv未満となる。ま
た、比較例2に示すように、溶体化温度が900℃未満
でも同様である。比較例3に示すように最初の焼純での
時効温度が650℃を超える場合及び比較例4に示すよ
うに550℃未満である場合も同様である。特に焼純で
の時効温度が650℃を超えると強度の低下も大きくな
る。比較例5に示すように2回目の焼純工程を省略した
場合は、導電率が60%IACSに満たない。また、比
較例6に示すように仕上圧延加工度を90%とした場合
も、最終材の450℃加熱後における硬さが120Hv
以下になる。
As shown in Comparative Example 1 of Table 1, the cooling rate in the solution treatment was 100 ° C./min. If it is slower, the hardness after heating the final material to 450 ° C. will be less than 140 Hv. Further, as shown in Comparative Example 2, the same applies even when the solution temperature is lower than 900 ° C. The same applies to the case where the aging temperature in the first sintering exceeds 650 ° C. as shown in Comparative Example 3 and the case where it is lower than 550 ° C. as shown in Comparative Example 4. In particular, when the aging temperature during sintering exceeds 650 ° C., the decrease in strength is also large. When the second refining step is omitted as shown in Comparative Example 5, the conductivity is less than 60% IACS. Also, as shown in Comparative Example 6, when the finish rolling degree was set to 90%, the hardness of the final material after heating at 450 ° C. was 120 Hv.
It becomes below.

【0043】これに対し、実施例1〜3に示すように本
発明における溶体化処理の条件、及び焼純工程の時効条
件では、導電率70%IACS以上、引張強さ550N
/mm2 以上、ビッカース硬さ155Hv以上を有し、
更に、450℃で5分間加熱後も強度の90%以上を維
持しており、リードフレームに代表される電気・電子部
品材料等で好適な性能が得られる。
On the other hand, as shown in Examples 1 to 3, under the conditions of the solution treatment and the aging condition of the refining process in the present invention, the conductivity was 70% IACS or more, and the tensile strength was 550 N.
/ Mm 2 or more, Vickers hardness 155Hv or more,
Furthermore, even after heating at 450 ° C. for 5 minutes, 90% or more of the strength is maintained, and suitable performance can be obtained with an electric / electronic component material represented by a lead frame.

【0044】[0044]

【発明の効果】以上説明した通り、本発明の銅基合金及
びその製造方法によると、高導電率、高強度性を有する
と共に、高耐熱性を有する銅基合金を提供することがで
きる。特に、本発明では、450℃で5分間加熱後も強
度が加熱前の90%以上を維持する耐熱性を有する合金
を提供することができる。しかも、従来組成を変えるこ
となく製造方法の改良のみで製造することが可能なた
め、本来の性能を損なうことなく高強度性、高伝導率
性、高耐熱性を付与できる利点を有する。
As described above, according to the copper-based alloy of the present invention and the method for producing the same, it is possible to provide a copper-based alloy having high electrical conductivity, high strength and high heat resistance. In particular, according to the present invention, it is possible to provide an alloy having heat resistance in which the strength is maintained at 90% or more of that before heating even after heating at 450 ° C. for 5 minutes. In addition, since it is possible to produce the composition only by improving the production method without changing the conventional composition, there is an advantage that high strength, high conductivity and high heat resistance can be imparted without impairing the original performance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 661 C22F 1/00 661A 683 683 685 685Z 691 691B 691C 692 692B 692A 694 694B 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 661 C22F 1/00 661A 683 683 685 685Z 691 691B 691C 692 692B 692A 694 694B 694A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉄(Fe)2.0〜2.5重量%、リン
(P)0.01〜0.2重量%、亜鉛(Zn)0.01
〜1重量%を含有した銅基合金の鋳塊から製造され、7
0%IACS以上の導電率、520N/mm2 以上の引
張強さ、及び155Hv以上のビッカース硬さを有し、
450℃で5分間の加熱を受けた後も前記導電率、前記
引張強さ、及び前記ビッカース硬さの90%以上の値を
維持することを特徴とする高強度高導電率高耐熱性銅基
合金。
1. Iron (Fe) 2.0-2.5% by weight, phosphorus (P) 0.01-0.2% by weight, zinc (Zn) 0.01
Manufactured from an ingot of a copper-based alloy containing
Having a conductivity of 0% IACS or more, a tensile strength of 520 N / mm 2 or more, and a Vickers hardness of 155 Hv or more;
A high-strength, high-conductivity, high-heat-resistant copper base, which maintains at least 90% of the electrical conductivity, the tensile strength, and the Vickers hardness after being heated at 450 ° C. for 5 minutes. alloy.
【請求項2】 銅(Cu)を主成分とし、かつ鉄(F
e)2.0〜2.5重量%、リン(P)0.01〜0.
2重量%、亜鉛(Zn)0.01〜1重量%を含有する
銅基合金の鋳塊を、800〜1050℃で熱間圧延した
後、冷間圧延をし、900℃以上の温度で30秒以上保
持後、直ちに500℃まで毎分100℃以上の冷却速度
で急冷し、更に室温まで冷却し、その後、冷間圧延を
し、550〜650℃の温度で30分〜6時間の焼鈍を
し、更に400〜525℃の温度で1〜10時間の焼鈍
をし、仕上圧延加工度70〜85%の冷間圧延をするこ
とを特徴とする高強度高導電率高耐熱性銅基合金の製造
方法。
2. The method according to claim 1, wherein copper (Cu) is a main component and iron (F) is used.
e) 2.0-2.5% by weight, phosphorus (P) 0.01-0.
An ingot of a copper-based alloy containing 2% by weight and zinc (Zn) of 0.01 to 1% by weight is hot-rolled at 800 to 1050 ° C, then cold-rolled, and heated at a temperature of 900 ° C or more at 30 ° C. Immediately after holding for more than 2 seconds, it is rapidly cooled to 500 ° C at a cooling rate of 100 ° C or more per minute, further cooled to room temperature, cold rolled, and annealed at a temperature of 550 to 650 ° C for 30 minutes to 6 hours. And further annealing at a temperature of 400 to 525 ° C. for 1 to 10 hours, and performing cold rolling at a finish rolling degree of 70 to 85%. Production method.
JP22219899A 1999-08-05 1999-08-05 Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy Expired - Lifetime JP3763234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22219899A JP3763234B2 (en) 1999-08-05 1999-08-05 Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22219899A JP3763234B2 (en) 1999-08-05 1999-08-05 Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy

Publications (2)

Publication Number Publication Date
JP2001049367A true JP2001049367A (en) 2001-02-20
JP3763234B2 JP3763234B2 (en) 2006-04-05

Family

ID=16778690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22219899A Expired - Lifetime JP3763234B2 (en) 1999-08-05 1999-08-05 Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy

Country Status (1)

Country Link
JP (1) JP3763234B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101031816B1 (en) * 2009-02-18 2011-04-29 주식회사 풍산 method of manufacturing a copper alloy for leadframe
JP2011174142A (en) * 2010-02-25 2011-09-08 Dowa Metaltech Kk Copper alloy plate, and method for producing copper alloy plate
JP2012107297A (en) * 2010-11-18 2012-06-07 Hitachi Cable Ltd Copper alloy for electric and electronic components, and method of manufacturing the same
JP2012136746A (en) * 2010-12-27 2012-07-19 Hitachi Cable Ltd Copper alloy for electric and electronic parts, and method for manufacturing the same
JP2013057110A (en) * 2011-09-09 2013-03-28 Hitachi Cable Ltd Method for producing copper alloy for electric and electronic part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502060B1 (en) * 2013-07-12 2015-03-11 신원금속 주식회사 Surface-treating method of nickel-silver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101031816B1 (en) * 2009-02-18 2011-04-29 주식회사 풍산 method of manufacturing a copper alloy for leadframe
JP2011174142A (en) * 2010-02-25 2011-09-08 Dowa Metaltech Kk Copper alloy plate, and method for producing copper alloy plate
JP2012107297A (en) * 2010-11-18 2012-06-07 Hitachi Cable Ltd Copper alloy for electric and electronic components, and method of manufacturing the same
JP2012136746A (en) * 2010-12-27 2012-07-19 Hitachi Cable Ltd Copper alloy for electric and electronic parts, and method for manufacturing the same
JP2013057110A (en) * 2011-09-09 2013-03-28 Hitachi Cable Ltd Method for producing copper alloy for electric and electronic part

Also Published As

Publication number Publication date
JP3763234B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
JP4943095B2 (en) Copper alloy and manufacturing method thereof
JP4674483B2 (en) Copper material manufacturing method and copper material
TWI465591B (en) Cu-Ni-Si alloy and its manufacturing method
JP4787986B2 (en) Copper alloy and manufacturing method thereof
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
CN111411256B (en) Copper-zirconium alloy for electronic components and preparation method thereof
CN110872664A (en) Al-Mg-Si alloy plate
JP2002241873A (en) High strength and highly electrically conductive copper alloy and method for producing copper alloy material
JP2012057242A (en) Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JPH06264202A (en) Production of high strength copper alloy
JPS6132386B2 (en)
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
CN110872665A (en) Al-Mg-Si alloy plate
JP4779100B2 (en) Manufacturing method of copper alloy material
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JP7227245B2 (en) Method for producing copper alloy sheet material excellent in strength and electrical conductivity, and copper alloy sheet material produced therefrom
JP2001279347A (en) High strength copper alloy excellent in bending workability and heat resistance and its producing method
JPS63111151A (en) Copper alloy for electrical and electronic parts and production thereof
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JP5687976B2 (en) Manufacturing method of copper alloy for electric and electronic parts
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060109

R150 Certificate of patent or registration of utility model

Ref document number: 3763234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term