JP2001043888A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2001043888A
JP2001043888A JP11217014A JP21701499A JP2001043888A JP 2001043888 A JP2001043888 A JP 2001043888A JP 11217014 A JP11217014 A JP 11217014A JP 21701499 A JP21701499 A JP 21701499A JP 2001043888 A JP2001043888 A JP 2001043888A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
reaction vessel
gas
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11217014A
Other languages
Japanese (ja)
Other versions
JP3668058B2 (en
Inventor
Kazumasa Marutani
和正 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21701499A priority Critical patent/JP3668058B2/en
Publication of JP2001043888A publication Critical patent/JP2001043888A/en
Application granted granted Critical
Publication of JP3668058B2 publication Critical patent/JP3668058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell capable of generating substantially uniform electromotive force on all the surfaces of fuel cell elements. SOLUTION: A plurality of bottomed cylindrical fuel cell elements 9 are erectly stored at fixed intervals in a reaction vessel 1, and supply holes 14 for supplying fuel gas to the side of the fuel cell elements 9 are formed in one side face of the reaction vessel 1 while exhaust holes 19 for exhausting the fuel gas from the side of the fuel cell elements 9 are provided in the other side face of the reaction vessel 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に関し、
特に、反応容器内に複数の有底筒状の燃料電池セルを所
定間隔を置いて立設して収容した燃料電池に関する。
TECHNICAL FIELD The present invention relates to a fuel cell,
In particular, the present invention relates to a fuel cell in which a plurality of bottomed tubular fuel cells are erected at predetermined intervals in a reaction vessel.

【0002】[0002]

【従来技術】従来の固体電解質型燃料電池は、図5に示
すように、反応容器51内に、空気室仕切板53、燃焼
室仕切板55、燃料ガス室仕切板57を用いて空気室
A、燃焼室B、反応室C、燃料ガス室Dが形成されてい
る。
2. Description of the Related Art As shown in FIG. 5, a conventional solid oxide fuel cell uses an air chamber A in a reaction vessel 51 by using an air chamber partition plate 53, a combustion chamber partition plate 55, and a fuel gas chamber partition plate 57. , A combustion chamber B, a reaction chamber C, and a fuel gas chamber D are formed.

【0003】反応容器51内に収容された複数の有底筒
状の固体電解質型燃料電池セル59は、燃焼室仕切板5
5に形成された複数のセル挿入孔60にそれぞれ挿入固
定されており、その開口部61は燃焼室仕切板55から
燃焼室B内に突出しており、その内部には、空気室仕切
板53に固定された空気導入管63の一端が挿入されて
いる。
[0003] A plurality of bottomed cylindrical solid oxide fuel cells 59 housed in a reaction vessel 51 are connected to a combustion chamber partition plate 5.
5 are inserted into and fixed to a plurality of cell insertion holes 60 formed in the fuel cell 5, and the openings 61 project from the combustion chamber partition plate 55 into the combustion chamber B. One end of the fixed air introduction pipe 63 is inserted.

【0004】燃焼室仕切板55には、余剰の未反応燃料
ガスを反応室Cから燃焼室Bに排出するために、複数の
排気孔64が形成されており、燃料ガス室仕切板57に
は、燃料ガスを燃料ガス室Dから反応室Cに供給するた
めに、複数の給気孔が形成されている。
A plurality of exhaust holes 64 are formed in the combustion chamber partition plate 55 in order to discharge excess unreacted fuel gas from the reaction chamber C to the combustion chamber B. In order to supply fuel gas from the fuel gas chamber D to the reaction chamber C, a plurality of air supply holes are formed.

【0005】また、反応容器51には、例えば水素から
なる燃料ガスを導入する燃料ガス導入口65、空気を導
入する空気導入口67、燃焼室B内で燃焼したガスを排
出するための排気口69が形成されている。
The reaction vessel 51 has a fuel gas inlet 65 for introducing a fuel gas composed of, for example, hydrogen, an air inlet 67 for introducing air, and an exhaust port for discharging gas burned in the combustion chamber B. 69 are formed.

【0006】このような固体電解質型燃料電池は、空気
室Aからの空気を、空気導入管63を介して固体電解質
型燃料電池セル59内にそれぞれ供給し、かつ、燃料ガ
ス室Dからの燃料ガスを、燃料ガス室仕切板57の給気
孔を介して複数の固体電解質型燃料電池セル59間に供
給し、反応室Cにて反応させ発電し、余剰の空気と未反
応燃料ガスを燃焼室Bにて燃焼させ、燃焼したガスが排
気口69から外部に排出される。
In such a solid oxide fuel cell, the air from the air chamber A is supplied into the solid oxide fuel cell 59 via the air introduction pipe 63, and the fuel from the fuel gas chamber D is supplied from the fuel gas chamber D. The gas is supplied between the plurality of solid oxide fuel cells 59 through the air supply holes of the fuel gas chamber partition plate 57, reacts in the reaction chamber C to generate power, and surplus air and unreacted fuel gas are removed from the combustion chamber. The gas is burned in B, and the burned gas is discharged to the outside through the exhaust port 69.

【0007】しかしながら、従来の固体電解質型燃料電
池は、燃料電池セル59の底部側に新鮮な燃料ガスを供
給して、燃料電池セル59の軸方向に沿って燃料を消費
していたため、1本の燃料電池セル59の両端で、雰囲
気ガス中の燃料分圧が90%から15%程度と極端に異
なっていた。
However, the conventional solid oxide fuel cell supplies fresh fuel gas to the bottom of the fuel cell 59 and consumes fuel along the axial direction of the fuel cell 59. At both ends of the fuel cell 59, the fuel partial pressure in the atmosphere gas was extremely different from about 90% to about 15%.

【0008】そして、燃料電池セル59の起電力は、燃
料ガスの燃料分圧に影響されるため、上記したように、
燃料電池セル59の両端で起電力が異なることにより、
1本の燃料電池セル59内に、異なる起電力の電池を並
列接続したときと等価な回路が形成され、電力損失を生
じるという問題があった。
Since the electromotive force of the fuel cell 59 is affected by the partial pressure of the fuel gas, as described above,
Since the electromotive force is different at both ends of the fuel cell 59,
A circuit equivalent to a case where batteries having different electromotive forces are connected in parallel in one fuel cell 59 is formed, and there is a problem that power loss occurs.

【0009】このような問題を解決するため、例えば、
特開平4−294068号公報に開示されるように、燃
料ガスを燃料電池セルの側方へ供給した燃料電池が知ら
れている。
In order to solve such a problem, for example,
As disclosed in JP-A-4-294068, there is known a fuel cell in which a fuel gas is supplied to a side of a fuel cell.

【0010】この公報に開示された燃料電池は、図6に
示すように、反応容器81の対向する両側面に、燃料ガ
スを供給する供給孔82を設けるとともに、反応容器8
1の底面に供給孔83を設け、反応容器81内に収容さ
れた燃料電池セル85の側方および下方から燃料ガスを
供給し、余剰の燃料ガスを燃料電池セル85と仕切板8
7との隙間から排出していた。
In the fuel cell disclosed in this publication, as shown in FIG. 6, supply holes 82 for supplying fuel gas are provided on both sides of a reaction vessel 81 facing each other.
A supply hole 83 is provided on the bottom surface of the fuel cell 1, and fuel gas is supplied from the side and below the fuel cell 85 accommodated in the reaction vessel 81, and excess fuel gas is separated from the fuel cell 85 and the partition plate 8.
7 was discharged from the gap.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、特開平
4−294068号公報に開示された燃料電池では、反
応容器81の対向する両側面の供給孔82から、および
反応容器81の底面の供給孔83から燃料ガスを供給し
ていたため、供給孔82、83近傍の燃料電池セル85
では起電力差が低減されるものの、余剰の燃料ガスを燃
料電池セル85と仕切板87との隙間から、つまり反応
容器81の上方から排出していたため、中央部に配置さ
れた燃料電池セル85では従来と同様、1本の燃料電池
セル85の両端で起電力差が大きく、1本の燃料電池セ
ル85内に、異なる起電力の電池を並列接続したときと
等価な回路が形成され、未だ電力損失が大きいという問
題があった。
However, in the fuel cell disclosed in Japanese Unexamined Patent Publication No. 4-294068, the supply holes 82 formed on the opposite side surfaces of the reaction vessel 81 and the supply holes 83 formed on the bottom surface of the reaction vessel 81. Supply of fuel gas from the fuel cells 85 near the supply holes 82 and 83
Although the difference in electromotive force is reduced, surplus fuel gas is discharged from the gap between the fuel cell 85 and the partition plate 87, that is, from above the reaction vessel 81. In the same manner as in the prior art, the electromotive force difference is large at both ends of one fuel cell 85, and a circuit equivalent to a case where batteries having different electromotive forces are connected in parallel in one fuel cell 85 is formed. There is a problem that power loss is large.

【0012】本発明は、燃料電池セル全面でほぼ同等の
起電力を発生できる燃料電池を提供することを目的とす
る。
An object of the present invention is to provide a fuel cell capable of generating substantially the same electromotive force over the entire surface of a fuel cell.

【0013】[0013]

【課題を解決するための手段】本発明の燃料電池は、反
応容器内に複数の有底筒状の燃料電池セルを所定間隔を
置いて立設して収容するとともに、反応容器の一方側面
に、前記燃料電池セルの側方へ燃料ガスを供給する供給
孔を形成し、前記反応容器の他方側面に、前記燃料電池
セルの側方からの燃料ガスを排出する排出孔を設けたも
のである。
According to the fuel cell of the present invention, a plurality of cylindrical fuel cells having a bottom are housed in a reaction vessel in a standing manner at predetermined intervals, and are provided on one side of the reaction vessel. A supply hole for supplying fuel gas to the side of the fuel cell; and a discharge hole for discharging fuel gas from the side of the fuel cell on the other side surface of the reaction vessel. .

【0014】このような構成を採用することにより、反
応室内の燃料分圧の分布を、燃料電池セルの長さ方向で
はなく、反応容器の側面方向(燃料電池セルの幅方向)
に生じさせることができ、1本の燃料電池セルに供給さ
れる燃料ガスの燃料分圧はほぼ均一となり、1本の燃料
電池セル内での極端な起電力の分布を抑制できる。言い
換えれば、1本の燃料電池セル内での起電力を均等にで
きる。
By adopting such a configuration, the distribution of the partial pressure of the fuel in the reaction chamber is adjusted not in the length direction of the fuel cell but in the lateral direction of the reaction vessel (the width direction of the fuel cell).
The partial pressure of the fuel gas supplied to one fuel cell becomes substantially uniform, and the distribution of the extreme electromotive force in one fuel cell can be suppressed. In other words, the electromotive force in one fuel cell can be equalized.

【0015】即ち、燃料電池セルのスタックの側方から
供給された燃料ガスが、燃料電池セルのスタック集合体
の側方の反応容器から排出し、燃料電池セルの長さ方向
に対して一様な濃度の燃料ガスが供給されることにな
り、このため、1本の燃料電池セル内で、極端に異なる
起電力が生じることを抑制でき、燃料電池セルのスタッ
クでは、異なる起電力の電池を並列接続ではなく、直列
接続した回路と等価にでき、電力損失を大きく低減でき
る。従って、従来のような異なる起電力の電池を並列接
続したものと等価な回路を除去できるため、電力損失を
大きく低減して、出力電力を大きく向上できる。
That is, the fuel gas supplied from the side of the fuel cell stack is discharged from the reaction vessel on the side of the fuel cell stack assembly, and is uniformly distributed in the longitudinal direction of the fuel cell. Therefore, it is possible to suppress the generation of extremely different electromotive forces in one fuel cell, and a stack of fuel cells uses batteries having different electromotive forces. This can be equivalent to a circuit connected in series instead of in parallel, and the power loss can be greatly reduced. Therefore, since a circuit equivalent to a conventional battery having different electromotive forces connected in parallel can be eliminated, power loss can be greatly reduced and output power can be greatly improved.

【0016】また、燃料ガスの供給孔と排出孔を、反応
容器の対向する側面に形成することにより、燃料電池セ
ルのスタックに対して、最も効果的に燃料ガスを供給す
ることができる。
Further, by forming the fuel gas supply holes and the discharge holes on the opposing side surfaces of the reaction vessel, the fuel gas can be supplied to the fuel cell stack most effectively.

【0017】さらに、燃料電池セルのスタックから電力
を取り出すための一対の集電体を、燃料ガスの供給孔ま
たは排出孔に対向して設け、集電体に流通孔を形成する
ことにより、燃料ガスの分散を確実に行うことができ、
1本の燃料電池セル内での起電力をさらに均等にでき
る。
Further, a pair of current collectors for extracting electric power from the fuel cell stack are provided to face the fuel gas supply holes or the discharge holes, and a flow hole is formed in the current collector. Gas can be reliably dispersed,
The electromotive force in one fuel cell can be further equalized.

【0018】[0018]

【発明の実施の形態】本発明の燃料電池は、図1に示す
ように、反応容器1内に、空気室仕切板3、燃焼室仕切
板5を用いて空気室A、燃焼室B、反応室Cが形成され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a fuel cell according to the present invention uses an air chamber partition plate 3 and a combustion chamber partition plate 5 in an air chamber A, a combustion chamber B and a reaction chamber 1 in a reaction vessel 1. A chamber C is formed.

【0019】反応容器1内には複数の有底筒状の固体電
解質型燃料電池セル9が収容されており、その上端部
は、燃焼室仕切板5に形成された複数のセル挿入孔10
にそれぞれ挿入固定されており、その開口部は燃焼室仕
切板5から燃焼室B内に突出しており、その内部には、
空気室仕切板3に端部が固定された酸素含有ガス導入管
11の一端が挿入されている。
A plurality of bottomed cylindrical solid oxide fuel cells 9 are accommodated in the reaction vessel 1, and the upper end thereof is provided with a plurality of cell insertion holes 10 formed in the combustion chamber partition plate 5.
, Each of which has an opening projecting from the combustion chamber partition plate 5 into the combustion chamber B.
One end of an oxygen-containing gas introduction pipe 11 whose end is fixed to the air chamber partition plate 3 is inserted.

【0020】反応容器1の一方側面にはダクト12が設
けられ、その一端が、例えば水素からなる燃料ガスを導
入する燃料ガス導入口13とされ、その内部が、燃料ガ
スを分散して反応室C内へ供給する燃料ガス分散室Dと
されている。燃料ガス分散室D内における反応容器1の
側面には、複数の燃料ガスの供給孔14が形成されてい
る。
A duct 12 is provided on one side of the reaction vessel 1, and one end of the duct 12 is used as a fuel gas inlet 13 for introducing a fuel gas composed of, for example, hydrogen. A fuel gas dispersion chamber D to be supplied into C is provided. A plurality of fuel gas supply holes 14 are formed on the side surface of the reaction vessel 1 in the fuel gas dispersion chamber D.

【0021】また、反応容器1の他方側面にはダクト1
7が設けられ、その内部が燃料ガス排気室Eとされてい
る。ダクト17には、余剰の燃料ガスを燃焼室Bへ供給
するための連通孔18が形成されている。燃料ガス排気
室Eにおける反応容器1の側面には、複数の排出孔19
が形成されている。燃料ガスの供給孔14と排出孔19
は、反応容器1の対向する側面に形成されている。
A duct 1 is provided on the other side of the reaction vessel 1.
A fuel gas exhaust chamber E is provided inside. A communication hole 18 for supplying surplus fuel gas to the combustion chamber B is formed in the duct 17. A plurality of discharge holes 19 are provided in the side of the reaction vessel 1 in the fuel gas exhaust chamber E.
Are formed. Fuel gas supply holes 14 and discharge holes 19
Are formed on opposing side surfaces of the reaction vessel 1.

【0022】さらに、反応容器1には、燃焼室B内で燃
焼したガスを外部に排出する排気口20、空気を導入す
る空気導入口21が形成されている。
Further, the reaction vessel 1 is provided with an exhaust port 20 for discharging gas burned in the combustion chamber B to the outside, and an air inlet 21 for introducing air.

【0023】反応容器1には、図2に示すような複数の
燃料電池セル9のスタック(集合体)22が収容されて
おり、セル9は、図3に示すように、例えばY2 3
定化ZrO2 からなる円筒状の固体電解質23の、内面
側にLaMnO3 系からなる空気極24、外面側にNi
−ZrO2 系からなる燃料極25を有し、内面側の空気
極24と電気的に接続されて円筒外面に表出する、La
CrO3 系よりなるインターコネクタ26を有するよう
に構成されている。
The reaction vessel 1 contains a stack (assembly) 22 of a plurality of fuel cells 9 as shown in FIG. 2, and the cell 9 is made of, for example, Y 2 O 3 as shown in FIG. A cylindrical solid electrolyte 23 made of stabilized ZrO 2, an air electrode 24 made of LaMnO 3 based on the inner surface, and Ni on the outer surface.
Having a fuel electrode 25 made of -ZrO 2 system, electrically connected to the air electrode 24 on the inner surface side, and exposed on the outer surface of the cylinder; La
It is configured to have an interconnector 26 made of CrO 3 .

【0024】スタック22は、図2に示すように、複数
の燃料電池セル9を、隣り合うセル9の燃料極25とイ
ンターコネクタ26が、Ni金属繊維等の接続部材27
を介して電気的に接続するように構成されている。
As shown in FIG. 2, the stack 22 includes a plurality of fuel cells 9, a fuel electrode 25 of an adjacent cell 9 and an interconnector 26 formed of a connecting member 27 such as Ni metal fiber.
It is configured to be electrically connected via a.

【0025】また、図1および図2に示したように、反
応容器1には、スタック22の最外列に位置し燃料極2
5と接続部材27を介して接する集電体37と、スタッ
ク22の最外列に位置しインターコネクタ26と接続部
材27を介して接する集電体38とが収容され、これら
の集電体37と集電体38は、スタック22を挟んで対
向している。図2に集電体37と集電体38でスタック
22を挟持した状態を示す。このような集電体37と集
電体38を介して電力が取り出される。
As shown in FIGS. 1 and 2, the reaction vessel 1 is located at the outermost row of the
5 and a current collector 38 located in the outermost row of the stack 22 and in contact with the interconnector 26 via the connection member 27 are accommodated. And the current collector 38 face each other across the stack 22. FIG. 2 shows a state where the stack 22 is sandwiched between the current collectors 37 and 38. Electric power is extracted through such a current collector 37 and a current collector 38.

【0026】即ち、燃料電池セル9のスタック22から
電力を取り出すための一対の集電体37、38が、燃料
ガスの供給孔14または排出孔19に対向して設けられ
ており、集電体37、38に複数の流通孔41が形成さ
れている。この流通孔41により、燃料ガスの分散を効
率良く行うことができる。
That is, a pair of current collectors 37 and 38 for taking out electric power from the stack 22 of the fuel cell unit 9 are provided to face the fuel gas supply holes 14 or the discharge holes 19, and A plurality of flow holes 41 are formed in 37 and 38. The fuel gas can be efficiently dispersed by the circulation holes 41.

【0027】以上のように構成された燃料電池では、燃
料電池セル9のスタック22の側方から、燃料ガスが反
応容器1の供給孔14を介して供給され、余剰の燃料ガ
スが、燃料電池セル9のスタック22の側方の反応容器
1から排出孔19を介して、燃料ガス排気室Eへ排出さ
れ、余剰の燃料ガスが連通孔18を介して燃焼室B内に
入る。
In the fuel cell configured as described above, the fuel gas is supplied from the side of the stack 22 of the fuel cell 9 through the supply hole 14 of the reaction vessel 1, and the excess fuel gas is supplied to the fuel cell. The fuel gas is exhausted from the reaction vessel 1 on the side of the stack 22 of the cell 9 to the fuel gas exhaust chamber E through the exhaust hole 19, and excess fuel gas enters the combustion chamber B through the communication hole 18.

【0028】一方、酸素含有ガスとしての空気は、酸素
含有ガス導入管11を介して燃料電池セル9に供給さ
れ、余分な空気が燃焼室B内に排出され、この燃焼室B
内で、連通孔18を介して供給された余剰の燃料ガスと
反応して燃焼し、排気ガスとして外部に排出される。
On the other hand, air as the oxygen-containing gas is supplied to the fuel cell 9 through the oxygen-containing gas introduction pipe 11, and excess air is discharged into the combustion chamber B.
Inside, it reacts with excess fuel gas supplied through the communication hole 18 and burns, and is discharged to the outside as exhaust gas.

【0029】図4に燃料電池セルにおけるガスの流れを
示す。燃料ガスはセル側方から導入され、セル側面で発
電により酸化されながら進む。一方空気は酸素含有ガス
導入管11を介してセル上方よりセル内部下方へ導入さ
れ、セル内部下方より上部へと、酸素を消費しながら流
れる。セル上部より排出された空気は、発電で消費され
なかった燃料ガスと反応し、燃焼室B内で燃焼する。
FIG. 4 shows a gas flow in the fuel cell. Fuel gas is introduced from the side of the cell, and proceeds while being oxidized by power generation on the side of the cell. On the other hand, air is introduced from the upper part of the cell to the lower part inside the cell via the oxygen-containing gas introducing pipe 11, and flows from the lower part inside the cell to the upper part while consuming oxygen. The air discharged from the upper part of the cell reacts with the fuel gas not consumed by the power generation and burns in the combustion chamber B.

【0030】以上のように構成された燃料電池では、燃
料ガスはセル側方から導入され、セル側面で発電により
酸化されながら進み、燃料電池セル9の長さ方向に対し
て一様な濃度の燃料ガスが供給されることになり、この
ため、1本の燃料電池セル9内で均等に起電力が生じ、
燃料電池セル9のスタック22では、異なる起電力の電
池を並列接続ではなく、直列接続した回路と等価にで
き、電力損失を大きく低減できる。
In the fuel cell configured as described above, the fuel gas is introduced from the side of the cell, proceeds while being oxidized by power generation on the side of the cell, and has a uniform concentration in the length direction of the fuel cell 9. The fuel gas is supplied, so that an electromotive force is generated evenly in one fuel cell 9,
In the stack 22 of the fuel cells 9, cells having different electromotive forces can be equivalent to a circuit connected in series, not in parallel, and the power loss can be greatly reduced.

【0031】[0031]

【発明の効果】本発明の燃料電池では、反応容器の一方
側面に、燃料電池セルの側方へ燃料ガスを供給する供給
孔を形成し、反応容器の他方側面に、燃料電池セルの側
方からの燃料ガスを排出する排出孔を設けたので、燃料
電池セルのスタックの側方から供給された燃料ガスが、
燃料電池セルのスタックの側方の反応容器から排出し、
燃料電池セルの長さ方向に対して一様な濃度の燃料ガス
が供給されることになり、このため、1本の燃料電池セ
ル内で均等に起電力が生じ、燃料電池セルのスタックで
は直列接続した回路と等価にでき、電力損失を大きく低
減できる。従って、従来のような異なる起電力の電池を
並列接続したものと等価な回路を除去できるため、電力
損失を大きく低減して、出力電力を大きく向上できる。
According to the fuel cell of the present invention, a supply hole for supplying fuel gas to the side of the fuel cell is formed on one side of the reaction vessel, and the side of the fuel cell is formed on the other side of the reaction vessel. The fuel gas supplied from the side of the fuel cell stack is
Drain from the reaction vessel beside the stack of fuel cells,
The fuel gas is supplied at a uniform concentration in the length direction of the fuel cell, so that an electromotive force is generated evenly in one fuel cell and the fuel cell stack is connected in series. It can be equivalent to a connected circuit, and the power loss can be greatly reduced. Therefore, since a circuit equivalent to a conventional battery having different electromotive forces connected in parallel can be eliminated, power loss can be greatly reduced and output power can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池の模式図である。FIG. 1 is a schematic view of a fuel cell of the present invention.

【図2】スタックを示す平面図である。FIG. 2 is a plan view showing a stack.

【図3】燃料電池セルの断面図である。FIG. 3 is a sectional view of a fuel cell unit.

【図4】燃料電池セルのガスの流れを説明するための説
明図である。
FIG. 4 is an explanatory diagram for explaining a gas flow of a fuel cell.

【図5】従来の燃料電池を示す模式図である。FIG. 5 is a schematic diagram showing a conventional fuel cell.

【図6】従来の他の燃料電池を示す模式図である。FIG. 6 is a schematic view showing another conventional fuel cell.

【符号の説明】[Explanation of symbols]

1・・・反応容器 9・・・固体電解質型燃料電池セル 14・・・給気孔 19・・・排気孔 22・・・スタック 37、38・・・集電体 41・・・流通孔 DESCRIPTION OF SYMBOLS 1 ... Reaction container 9 ... Solid oxide fuel cell 14 ... Air supply hole 19 ... Exhaust hole 22 ... Stack 37, 38 ... Current collector 41 ... Flow hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】反応容器内に複数の有底筒状の燃料電池セ
ルを所定間隔を置いて立設して収容するとともに、前記
反応容器の一方側面に、前記燃料電池セルの側方へ燃料
ガスを供給する供給孔を形成し、前記反応容器の他方側
面に、前記燃料電池セルの側方からの燃料ガスを排出す
る排出孔を設けたことを特徴とする燃料電池。
1. A plurality of bottomed tubular fuel cells are housed in a reaction vessel in a standing manner at predetermined intervals, and fuel is provided on one side of the reaction vessel to a side of the fuel cells. A fuel cell, wherein a supply hole for supplying gas is formed, and a discharge hole for discharging fuel gas from a side of the fuel cell is provided on the other side surface of the reaction vessel.
【請求項2】燃料ガスの供給孔と排出孔は、反応容器の
対向する側面に形成されていることを特徴とする請求項
1記載の燃料電池。
2. The fuel cell according to claim 1, wherein the supply hole and the discharge hole for the fuel gas are formed on opposite side surfaces of the reaction vessel.
【請求項3】複数の燃料電池セルの集合体であるスタッ
クから電力を取り出すための一対の集電体が、燃料ガス
の供給孔または排出孔に対向して設けられており、前記
集電体に流通孔が形成されていることを特徴とする請求
項1または2記載の燃料電池。
3. A pair of current collectors for extracting electric power from a stack, which is an aggregate of a plurality of fuel cells, is provided facing a supply hole or a discharge hole of a fuel gas. 3. The fuel cell according to claim 1, wherein a flow hole is formed in the fuel cell.
JP21701499A 1999-07-30 1999-07-30 Fuel cell Expired - Fee Related JP3668058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21701499A JP3668058B2 (en) 1999-07-30 1999-07-30 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21701499A JP3668058B2 (en) 1999-07-30 1999-07-30 Fuel cell

Publications (2)

Publication Number Publication Date
JP2001043888A true JP2001043888A (en) 2001-02-16
JP3668058B2 JP3668058B2 (en) 2005-07-06

Family

ID=16697484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21701499A Expired - Fee Related JP3668058B2 (en) 1999-07-30 1999-07-30 Fuel cell

Country Status (1)

Country Link
JP (1) JP3668058B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235528A (en) * 2004-02-18 2005-09-02 Tokyo Gas Co Ltd Power generation device
CN1298069C (en) * 2003-08-26 2007-01-31 京瓷株式会社 Container for fael cell,fuel cell and electronic apparatus
US7285352B2 (en) 2002-12-02 2007-10-23 Sanyo Electric Co., Ltd. Separator for fuel cell and fuel cell therewith
JP2009087694A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Solid oxide fuel cell
JP2009129712A (en) * 2007-11-23 2009-06-11 Toto Ltd Fuel cell module, and fuel cell equipped with the same
JP2011113890A (en) * 2009-11-27 2011-06-09 Tokyo Gas Co Ltd Off-gas combustion device and off-gas combustion method of solid-oxide fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285352B2 (en) 2002-12-02 2007-10-23 Sanyo Electric Co., Ltd. Separator for fuel cell and fuel cell therewith
CN1298069C (en) * 2003-08-26 2007-01-31 京瓷株式会社 Container for fael cell,fuel cell and electronic apparatus
JP2005235528A (en) * 2004-02-18 2005-09-02 Tokyo Gas Co Ltd Power generation device
JP2009087694A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Solid oxide fuel cell
JP2009129712A (en) * 2007-11-23 2009-06-11 Toto Ltd Fuel cell module, and fuel cell equipped with the same
JP2011113890A (en) * 2009-11-27 2011-06-09 Tokyo Gas Co Ltd Off-gas combustion device and off-gas combustion method of solid-oxide fuel cell

Also Published As

Publication number Publication date
JP3668058B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US7163760B2 (en) Fuel cell stack having a bypass flow passage
JP4325924B2 (en) Fuel cell
JP2006066387A (en) Fuel cell battery
JP2009289532A (en) Cell stack device, fuel cell module, and fuel cell device
JP2000188124A (en) Solid electrolyte fuel cell
JP4963195B2 (en) Separator and flat solid oxide fuel cell
JP3668058B2 (en) Fuel cell
JP3509180B2 (en) Fuel cell
JP4373378B2 (en) Stack structure of planar solid oxide fuel cell
JP2003077496A (en) Solid electrolyte fuel cell
JP4529393B2 (en) Solid oxide fuel cell
JP2005085520A (en) Solid oxide fuel cell
JPH11111314A (en) Cathode collecting structure for solid electrolyte fuel cell, and solid electrolyte fuel cell power generating module using the same
EP1852929B1 (en) Solid oxide fuel cell
JP4244579B2 (en) Flat stacked solid oxide fuel cell
JPH05266910A (en) Solid electrolyte fuel cell system
JP2005093081A (en) Power generation unit and fuel cell assembly equipped with the same
JP2967878B2 (en) Gas supply structure of solid oxide fuel cell
JP3585381B2 (en) Solid oxide fuel cell
JP4418013B2 (en) Stack structure of planar solid oxide fuel cell
JP2528986B2 (en) Solid oxide fuel cell
JPS61126775A (en) Fuel cell
JP3686773B2 (en) Solid oxide fuel cell
KR100531822B1 (en) Apparatus for supplying air of fuel cell
JP2004055196A (en) Oxidant gas feeding mechanism for fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees