JP3668058B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP3668058B2
JP3668058B2 JP21701499A JP21701499A JP3668058B2 JP 3668058 B2 JP3668058 B2 JP 3668058B2 JP 21701499 A JP21701499 A JP 21701499A JP 21701499 A JP21701499 A JP 21701499A JP 3668058 B2 JP3668058 B2 JP 3668058B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
fuel gas
reaction vessel
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21701499A
Other languages
Japanese (ja)
Other versions
JP2001043888A (en
Inventor
和正 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21701499A priority Critical patent/JP3668058B2/en
Publication of JP2001043888A publication Critical patent/JP2001043888A/en
Application granted granted Critical
Publication of JP3668058B2 publication Critical patent/JP3668058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に関し、特に、反応容器内に複数の有底筒状の燃料電池セルを所定間隔を置いて立設して収容した燃料電池に関する。
【0002】
【従来技術】
従来の固体電解質型燃料電池は、図5に示すように、反応容器51内に、空気室仕切板53、燃焼室仕切板55、燃料ガス室仕切板57を用いて空気室A、燃焼室B、反応室C、燃料ガス室Dが形成されている。
【0003】
反応容器51内に収容された複数の有底筒状の固体電解質型燃料電池セル59は、燃焼室仕切板55に形成された複数のセル挿入孔60にそれぞれ挿入固定されており、その開口部61は燃焼室仕切板55から燃焼室B内に突出しており、その内部には、空気室仕切板53に固定された空気導入管63の一端が挿入されている。
【0004】
燃焼室仕切板55には、余剰の未反応燃料ガスを反応室Cから燃焼室Bに排出するために、複数の排気孔64が形成されており、燃料ガス室仕切板57には、燃料ガスを燃料ガス室Dから反応室Cに供給するために、複数の給気孔が形成されている。
【0005】
また、反応容器51には、例えば水素からなる燃料ガスを導入する燃料ガス導入口65、空気を導入する空気導入口67、燃焼室B内で燃焼したガスを排出するための排気口69が形成されている。
【0006】
このような固体電解質型燃料電池は、空気室Aからの空気を、空気導入管63を介して固体電解質型燃料電池セル59内にそれぞれ供給し、かつ、燃料ガス室Dからの燃料ガスを、燃料ガス室仕切板57の給気孔を介して複数の固体電解質型燃料電池セル59間に供給し、反応室Cにて反応させ発電し、余剰の空気と未反応燃料ガスを燃焼室Bにて燃焼させ、燃焼したガスが排気口69から外部に排出される。
【0007】
しかしながら、従来の固体電解質型燃料電池は、燃料電池セル59の底部側に新鮮な燃料ガスを供給して、燃料電池セル59の軸方向に沿って燃料を消費していたため、1本の燃料電池セル59の両端で、雰囲気ガス中の燃料分圧が90%から15%程度と極端に異なっていた。
【0008】
そして、燃料電池セル59の起電力は、燃料ガスの燃料分圧に影響されるため、上記したように、燃料電池セル59の両端で起電力が異なることにより、1本の燃料電池セル59内に、異なる起電力の電池を並列接続したときと等価な回路が形成され、電力損失を生じるという問題があった。
【0009】
このような問題を解決するため、例えば、特開平4−294068号公報に開示されるように、燃料ガスを燃料電池セルの側方へ供給した燃料電池が知られている。
【0010】
この公報に開示された燃料電池は、図6に示すように、反応容器81の対向する両側面に、燃料ガスを供給する供給孔82を設けるとともに、反応容器81の底面に供給孔83を設け、反応容器81内に収容された燃料電池セル85の側方および下方から燃料ガスを供給し、余剰の燃料ガスを燃料電池セル85と仕切板87との隙間から排出していた。
【0011】
【発明が解決しようとする課題】
しかしながら、特開平4−294068号公報に開示された燃料電池では、反応容器81の対向する両側面の供給孔82から、および反応容器81の底面の供給孔83から燃料ガスを供給していたため、供給孔82、83近傍の燃料電池セル85では起電力差が低減されるものの、余剰の燃料ガスを燃料電池セル85と仕切板87との隙間から、つまり反応容器81の上方から排出していたため、中央部に配置された燃料電池セル85では従来と同様、1本の燃料電池セル85の両端で起電力差が大きく、1本の燃料電池セル85内に、異なる起電力の電池を並列接続したときと等価な回路が形成され、未だ電力損失が大きいという問題があった。
【0012】
本発明は、燃料電池セル全面でほぼ同等の起電力を発生できる燃料電池を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の燃料電池は、反応容器内に、内部に空気が供給される複数の有底筒状の燃料電池セルを所定間隔を置いて立設して収容するとともに、前記反応容器の一方側面に、前記燃料電池セルの長さ方向に所定間隔をおいて、前記燃料電池セルの側方へ燃料ガスを供給する供給孔を複数形成し、前記反応容器の前記一方側面に対向する他方側面に、前記燃料電池セルの長さ方向に所定間隔をおいて、前記燃料電池セルの側方からの燃料ガスを排出する排出孔を複数設け、燃料ガスが前記燃料電池セルの長さ方向と直交する方向に流れるものである。
【0014】
このような構成を採用することにより、反応室内の燃料分圧の分布を、燃料電池セルの長さ方向ではなく、反応容器の側面方向(燃料電池セルの幅方向)に生じさせることができ、1本の燃料電池セルに供給される燃料ガスの燃料分圧はほぼ均一となり、1本の燃料電池セル内での極端な起電力の分布を抑制できる。言い換えれば、1本の燃料電池セル内での起電力を均等にできる。
【0015】
即ち、燃料電池セルのスタックの側方から供給された燃料ガスが、燃料電池セルのスタック集合体の側方の反応容器から排出し、燃料電池セルの長さ方向に対して一様な濃度の燃料ガスが供給されることになり、このため、1本の燃料電池セル内で、極端に異なる起電力が生じることを抑制でき、燃料電池セルのスタックでは、異なる起電力の電池を並列接続ではなく、直列接続した回路と等価にでき、電力損失を大きく低減できる。従って、従来のような異なる起電力の電池を並列接続したものと等価な回路を除去できるため、電力損失を大きく低減して、出力電力を大きく向上できる。
【0016】
また、燃料ガスの供給孔と排出孔を、反応容器の対向する側面に形成することにより、燃料電池セルのスタックに対して、最も効果的に燃料ガスを供給することができる。
【0017】
さらに、燃料電池セルのスタックから電力を取り出すための一対の集電体を、燃料ガスの供給孔または排出孔に対向して設け、集電体に流通孔を形成することにより、燃料ガスの分散を確実に行うことができ、1本の燃料電池セル内での起電力をさらに均等にできる。
【0018】
【発明の実施の形態】
本発明の燃料電池は、図1に示すように、反応容器1内に、空気室仕切板3、燃焼室仕切板5を用いて空気室A、燃焼室B、反応室Cが形成されている。
【0019】
反応容器1内には複数の有底筒状の固体電解質型燃料電池セル9が収容されており、その上端部は、燃焼室仕切板5に形成された複数のセル挿入孔10にそれぞれ挿入固定されており、その開口部は燃焼室仕切板5から燃焼室B内に突出しており、その内部には、空気室仕切板3に端部が固定された酸素含有ガス導入管11の一端が挿入されている。
【0020】
反応容器1の一方側面にはダクト12が設けられ、その一端が、例えば水素からなる燃料ガスを導入する燃料ガス導入口13とされ、その内部が、燃料ガスを分散して反応室C内へ供給する燃料ガス分散室Dとされている。燃料ガス分散室D内における反応容器1の側面には、複数の燃料ガスの供給孔14が形成されている。
【0021】
また、反応容器1の他方側面にはダクト17が設けられ、その内部が燃料ガス排気室Eとされている。ダクト17には、余剰の燃料ガスを燃焼室Bへ供給するための連通孔18が形成されている。燃料ガス排気室Eにおける反応容器1の側面には、複数の排出孔19が形成されている。燃料ガスの供給孔14と排出孔19は、反応容器1の対向する側面に形成されている。
【0022】
さらに、反応容器1には、燃焼室B内で燃焼したガスを外部に排出する排気口20、空気を導入する空気導入口21が形成されている。
【0023】
反応容器1には、図2に示すような複数の燃料電池セル9のスタック(集合体)22が収容されており、セル9は、図3に示すように、例えばY2 3 安定化ZrO2 からなる円筒状の固体電解質23の、内面側にLaMnO3 系からなる空気極24、外面側にNi−ZrO2 系からなる燃料極25を有し、内面側の空気極24と電気的に接続されて円筒外面に表出する、LaCrO3 系よりなるインターコネクタ26を有するように構成されている。
【0024】
スタック22は、図2に示すように、複数の燃料電池セル9を、隣り合うセル9の燃料極25とインターコネクタ26が、Ni金属繊維等の接続部材27を介して電気的に接続するように構成されている。
【0025】
また、図1および図2に示したように、反応容器1には、スタック22の最外列に位置し燃料極25と接続部材27を介して接する集電体37と、スタック22の最外列に位置しインターコネクタ26と接続部材27を介して接する集電体38とが収容され、これらの集電体37と集電体38は、スタック22を挟んで対向している。図2に集電体37と集電体38でスタック22を挟持した状態を示す。このような集電体37と集電体38を介して電力が取り出される。
【0026】
即ち、燃料電池セル9のスタック22から電力を取り出すための一対の集電体37、38が、燃料ガスの供給孔14または排出孔19に対向して設けられており、集電体37、38に複数の流通孔41が形成されている。この流通孔41により、燃料ガスの分散を効率良く行うことができる。
【0027】
以上のように構成された燃料電池では、燃料電池セル9のスタック22の側方から、燃料ガスが反応容器1の供給孔14を介して供給され、余剰の燃料ガスが、燃料電池セル9のスタック22の側方の反応容器1から排出孔19を介して、燃料ガス排気室Eへ排出され、余剰の燃料ガスが連通孔18を介して燃焼室B内に入る。
【0028】
一方、酸素含有ガスとしての空気は、酸素含有ガス導入管11を介して燃料電池セル9に供給され、余分な空気が燃焼室B内に排出され、この燃焼室B内で、連通孔18を介して供給された余剰の燃料ガスと反応して燃焼し、排気ガスとして外部に排出される。
【0029】
図4に燃料電池セルにおけるガスの流れを示す。燃料ガスはセル側方から導入され、セル側面で発電により酸化されながら進む。一方空気は酸素含有ガス導入管11を介してセル上方よりセル内部下方へ導入され、セル内部下方より上部へと、酸素を消費しながら流れる。セル上部より排出された空気は、発電で消費されなかった燃料ガスと反応し、燃焼室B内で燃焼する。
【0030】
以上のように構成された燃料電池では、燃料ガスはセル側方から導入され、セル側面で発電により酸化されながら進み、燃料電池セル9の長さ方向に対して一様な濃度の燃料ガスが供給されることになり、このため、1本の燃料電池セル9内で均等に起電力が生じ、燃料電池セル9のスタック22では、異なる起電力の電池を並列接続ではなく、直列接続した回路と等価にでき、電力損失を大きく低減できる。
【0031】
【発明の効果】
本発明の燃料電池では、反応容器の一方側面に、燃料電池セルの側方へ燃料ガスを供給する供給孔を形成し、反応容器の他方側面に、燃料電池セルの側方からの燃料ガスを排出する排出孔を設けたので、燃料電池セルのスタックの側方から供給された燃料ガスが、燃料電池セルのスタックの側方の反応容器から排出し、燃料電池セルの長さ方向に対して一様な濃度の燃料ガスが供給されることになり、このため、1本の燃料電池セル内で均等に起電力が生じ、燃料電池セルのスタックでは直列接続した回路と等価にでき、電力損失を大きく低減できる。従って、従来のような異なる起電力の電池を並列接続したものと等価な回路を除去できるため、電力損失を大きく低減して、出力電力を大きく向上できる。
【図面の簡単な説明】
【図1】本発明の燃料電池の模式図である。
【図2】スタックを示す平面図である。
【図3】燃料電池セルの断面図である。
【図4】燃料電池セルのガスの流れを説明するための説明図である。
【図5】従来の燃料電池を示す模式図である。
【図6】従来の他の燃料電池を示す模式図である。
【符号の説明】
1・・・反応容器
9・・・固体電解質型燃料電池セル
14・・・給気孔
19・・・排気孔
22・・・スタック
37、38・・・集電体
41・・・流通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell, and more particularly, to a fuel cell in which a plurality of bottomed cylindrical fuel cells are stood and accommodated at predetermined intervals in a reaction vessel.
[0002]
[Prior art]
As shown in FIG. 5, the conventional solid oxide fuel cell includes an air chamber A and a combustion chamber B using an air chamber partition plate 53, a combustion chamber partition plate 55, and a fuel gas chamber partition plate 57 in a reaction vessel 51. A reaction chamber C and a fuel gas chamber D are formed.
[0003]
A plurality of bottomed cylindrical solid oxide fuel cells 59 accommodated in the reaction vessel 51 are inserted and fixed in a plurality of cell insertion holes 60 formed in the combustion chamber partition plate 55, respectively, and their openings 61 protrudes from the combustion chamber partition plate 55 into the combustion chamber B, and one end of an air introduction pipe 63 fixed to the air chamber partition plate 53 is inserted therein.
[0004]
A plurality of exhaust holes 64 are formed in the combustion chamber partition plate 55 in order to discharge surplus unreacted fuel gas from the reaction chamber C to the combustion chamber B. The fuel gas chamber partition plate 57 includes a fuel gas. Are supplied to the reaction chamber C from the fuel gas chamber D. A plurality of air supply holes are formed.
[0005]
Further, the reaction vessel 51 is formed with a fuel gas introduction port 65 for introducing a fuel gas made of, for example, hydrogen, an air introduction port 67 for introducing air, and an exhaust port 69 for discharging the gas burned in the combustion chamber B. Has been.
[0006]
Such a solid oxide fuel cell supplies the air from the air chamber A into the solid oxide fuel cell 59 via the air introduction pipe 63, and the fuel gas from the fuel gas chamber D, It is supplied between the plurality of solid oxide fuel cells 59 through the air supply holes of the fuel gas chamber partition plate 57, reacts in the reaction chamber C to generate electric power, and surplus air and unreacted fuel gas are generated in the combustion chamber B. The burned gas is discharged from the exhaust port 69 to the outside.
[0007]
However, since the conventional solid oxide fuel cell supplies fresh fuel gas to the bottom side of the fuel cell 59 and consumes fuel along the axial direction of the fuel cell 59, one fuel cell. At both ends of the cell 59, the fuel partial pressure in the atmospheric gas was extremely different from about 90% to 15%.
[0008]
Since the electromotive force of the fuel cell 59 is affected by the fuel partial pressure of the fuel gas, as described above, the electromotive force is different at both ends of the fuel cell 59, so that the inside of one fuel cell 59 In addition, there is a problem that a circuit equivalent to the case where batteries having different electromotive forces are connected in parallel is formed, resulting in power loss.
[0009]
In order to solve such a problem, for example, as disclosed in JP-A-4-294068, a fuel cell in which fuel gas is supplied to the side of the fuel cell is known.
[0010]
In the fuel cell disclosed in this publication, as shown in FIG. 6, supply holes 82 for supplying fuel gas are provided on opposite side surfaces of the reaction vessel 81, and supply holes 83 are provided on the bottom surface of the reaction vessel 81. The fuel gas was supplied from the side and the lower side of the fuel cell 85 accommodated in the reaction vessel 81, and excess fuel gas was discharged from the gap between the fuel cell 85 and the partition plate 87.
[0011]
[Problems to be solved by the invention]
However, in the fuel cell disclosed in Japanese Patent Laid-Open No. 4-294068, the fuel gas is supplied from the supply holes 82 on both sides of the reaction vessel 81 facing each other and from the supply holes 83 on the bottom surface of the reaction vessel 81. Although the difference in electromotive force is reduced in the fuel cells 85 in the vicinity of the supply holes 82 and 83, excess fuel gas is discharged from the gap between the fuel cells 85 and the partition plate 87, that is, from above the reaction vessel 81. In the fuel cell 85 arranged in the center, the electromotive force difference is large at both ends of one fuel cell 85 as in the conventional case, and batteries of different electromotive forces are connected in parallel in one fuel cell 85. As a result, there is a problem that a circuit equivalent to that at the time is formed and the power loss is still large.
[0012]
An object of the present invention is to provide a fuel cell that can generate substantially the same electromotive force on the entire surface of the fuel cell.
[0013]
[Means for Solving the Problems]
The fuel cell according to the present invention includes a plurality of bottomed cylindrical fuel cells that are supplied with air inside and are erected and accommodated in a reaction vessel at a predetermined interval. A plurality of supply holes for supplying fuel gas to the side of the fuel cell at a predetermined interval in the length direction of the fuel cell, and on the other side facing the one side of the reaction vessel, at a predetermined interval in the longitudinal direction of the fuel cells, a plurality of discharge holes for discharging the fuel gas from the side of the fuel cell, the direction in which the fuel gas is perpendicular to the longitudinal direction of the fuel cell It is what flows in.
[0014]
By adopting such a configuration, the distribution of the fuel partial pressure in the reaction chamber can be generated not in the length direction of the fuel cell, but in the side direction of the reaction vessel (width direction of the fuel cell), The fuel partial pressure of the fuel gas supplied to one fuel battery cell becomes substantially uniform, and an extreme electromotive force distribution in one fuel battery cell can be suppressed. In other words, the electromotive force in one fuel cell can be made uniform.
[0015]
That is, the fuel gas supplied from the side of the stack of fuel cells is discharged from the reaction vessel on the side of the stack of fuel cells and has a uniform concentration in the length direction of the fuel cells. As a result, fuel gas is supplied, and therefore it is possible to suppress the generation of extremely different electromotive forces in one fuel battery cell. In the stack of fuel battery cells, batteries of different electromotive forces cannot be connected in parallel. Therefore, it can be equivalent to a circuit connected in series, and the power loss can be greatly reduced. Accordingly, since a circuit equivalent to a conventional battery having different electromotive forces connected in parallel can be removed, power loss can be greatly reduced and output power can be greatly improved.
[0016]
Further, the fuel gas can be supplied most effectively to the stack of fuel cells by forming the fuel gas supply hole and the discharge hole on the opposite side surfaces of the reaction vessel.
[0017]
Furthermore, a pair of current collectors for taking out electric power from the stack of fuel cells is provided opposite to the fuel gas supply holes or discharge holes, and a circulation hole is formed in the current collector, thereby dispersing the fuel gas. Can be reliably performed, and the electromotive force in one fuel cell can be made more uniform.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the fuel cell of the present invention, as shown in FIG. 1, an air chamber A, a combustion chamber B, and a reaction chamber C are formed in a reaction vessel 1 using an air chamber partition plate 3 and a combustion chamber partition plate 5. .
[0019]
A plurality of bottomed cylindrical solid oxide fuel cells 9 are accommodated in the reaction vessel 1, and upper ends thereof are inserted and fixed in a plurality of cell insertion holes 10 formed in the combustion chamber partition plate 5. The opening protrudes from the combustion chamber partition plate 5 into the combustion chamber B, and one end of an oxygen-containing gas introduction pipe 11 whose end is fixed to the air chamber partition plate 3 is inserted into the opening. Has been.
[0020]
A duct 12 is provided on one side surface of the reaction vessel 1, and one end thereof is a fuel gas introduction port 13 for introducing a fuel gas made of, for example, hydrogen, and the inside thereof disperses the fuel gas into the reaction chamber C. The fuel gas dispersion chamber D is supplied. A plurality of fuel gas supply holes 14 are formed in the side surface of the reaction vessel 1 in the fuel gas dispersion chamber D.
[0021]
Further, a duct 17 is provided on the other side surface of the reaction vessel 1, and the inside thereof is a fuel gas exhaust chamber E. The duct 17 is formed with a communication hole 18 for supplying surplus fuel gas to the combustion chamber B. A plurality of discharge holes 19 are formed in the side surface of the reaction vessel 1 in the fuel gas exhaust chamber E. The fuel gas supply hole 14 and the discharge hole 19 are formed on opposite side surfaces of the reaction vessel 1.
[0022]
Further, the reaction vessel 1 is formed with an exhaust port 20 for discharging the gas burned in the combustion chamber B to the outside and an air introduction port 21 for introducing air.
[0023]
A stack (aggregate) 22 of a plurality of fuel cells 9 as shown in FIG. 2 is accommodated in the reaction vessel 1, and the cells 9 are, for example, Y 2 O 3 stabilized ZrO as shown in FIG. The cylindrical solid electrolyte 23 made of 2 has an air electrode 24 made of LaMnO 3 system on the inner surface side and a fuel electrode 25 made of Ni—ZrO 2 system on the outer surface side, and is electrically connected to the air electrode 24 on the inner surface side. It is configured to have an interconnector 26 made of LaCrO 3 and connected and exposed on the outer surface of the cylinder.
[0024]
As shown in FIG. 2, the stack 22 electrically connects a plurality of fuel cells 9 with the fuel electrode 25 of the adjacent cell 9 and the interconnector 26 via a connection member 27 such as Ni metal fiber. It is configured.
[0025]
Further, as shown in FIGS. 1 and 2, the reaction vessel 1 includes a current collector 37 positioned in the outermost row of the stack 22 and in contact with the fuel electrode 25 via the connection member 27, and an outermost surface of the stack 22. A current collector 38 positioned in a row and in contact with the interconnector 26 via the connecting member 27 is accommodated, and the current collector 37 and the current collector 38 face each other with the stack 22 interposed therebetween. FIG. 2 shows a state in which the stack 22 is sandwiched between the current collector 37 and the current collector 38. Electric power is taken out through the current collector 37 and the current collector 38.
[0026]
That is, a pair of current collectors 37 and 38 for taking out electric power from the stack 22 of the fuel cells 9 is provided to face the fuel gas supply hole 14 or the discharge hole 19, and the current collectors 37 and 38. A plurality of flow holes 41 are formed in the inner wall. The circulation holes 41 can efficiently disperse the fuel gas.
[0027]
In the fuel cell configured as described above, the fuel gas is supplied from the side of the stack 22 of the fuel cell 9 through the supply hole 14 of the reaction vessel 1, and the surplus fuel gas is supplied to the fuel cell 9. The reaction vessel 1 on the side of the stack 22 is discharged to the fuel gas exhaust chamber E through the discharge hole 19, and excess fuel gas enters the combustion chamber B through the communication hole 18.
[0028]
On the other hand, air as an oxygen-containing gas is supplied to the fuel cell 9 through the oxygen-containing gas introduction pipe 11, and excess air is discharged into the combustion chamber B. In the combustion chamber B, the communication hole 18 is passed through. It reacts with the surplus fuel gas supplied via the gas and burns, and is discharged outside as exhaust gas.
[0029]
FIG. 4 shows the gas flow in the fuel cell. The fuel gas is introduced from the side of the cell and proceeds while being oxidized by power generation on the side surface of the cell. On the other hand, air is introduced from the upper part of the cell to the lower part inside the cell via the oxygen-containing gas introduction pipe 11 and flows from the lower part of the cell to the upper part while consuming oxygen. The air discharged from the upper part of the cell reacts with the fuel gas not consumed in the power generation and burns in the combustion chamber B.
[0030]
In the fuel cell configured as described above, the fuel gas is introduced from the side of the cell, proceeds while being oxidized by power generation on the side of the cell, and the fuel gas having a uniform concentration with respect to the length direction of the fuel cell 9 is generated. Therefore, an electromotive force is evenly generated in one fuel battery cell 9, and in the stack 22 of the fuel battery cell 9, a circuit in which batteries of different electromotive forces are connected in series, not in parallel The power loss can be greatly reduced.
[0031]
【The invention's effect】
In the fuel cell of the present invention, a supply hole for supplying fuel gas to the side of the fuel cell is formed on one side of the reaction vessel, and the fuel gas from the side of the fuel cell is supplied to the other side of the reaction vessel. Since the discharge hole is provided, the fuel gas supplied from the side of the stack of fuel cells is discharged from the reaction vessel on the side of the stack of fuel cells, and the length of the fuel cells is A uniform concentration of fuel gas is supplied, and therefore, an electromotive force is generated evenly in one fuel cell, and the fuel cell stack can be equivalent to a circuit connected in series, resulting in power loss. Can be greatly reduced. Accordingly, since a circuit equivalent to a conventional battery having different electromotive forces connected in parallel can be removed, power loss can be greatly reduced and output power can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a fuel cell of the present invention.
FIG. 2 is a plan view showing a stack.
FIG. 3 is a cross-sectional view of a fuel cell.
FIG. 4 is an explanatory diagram for explaining the flow of gas in a fuel cell.
FIG. 5 is a schematic view showing a conventional fuel cell.
FIG. 6 is a schematic view showing another conventional fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reaction container 9 ... Solid electrolyte fuel cell 14 ... Air supply hole 19 ... Exhaust hole 22 ... Stack 37, 38 ... Current collector 41 ... Flow hole

Claims (2)

反応容器内に、内部に空気が供給される複数の有底筒状の燃料電池セルを所定間隔を置いて立設して収容するとともに、前記反応容器の一方側面に、前記燃料電池セルの長さ方向に所定間隔をおいて、前記燃料電池セルの側方へ燃料ガスを供給する供給孔を複数形成し、前記反応容器の前記一方側面に対向する他方側面に、前記燃料電池セルの長さ方向に所定間隔をおいて、前記燃料電池セルの側方からの燃料ガスを排出する排出孔を複数設け、燃料ガスが前記燃料電池セルの長さ方向と直交する方向に流れることを特徴とする燃料電池。In the reaction vessel, a plurality of bottomed cylindrical fuel cells, to which air is supplied, are erected and stored at a predetermined interval, and the length of the fuel cell is placed on one side of the reaction vessel. A plurality of supply holes for supplying fuel gas to the side of the fuel cell are formed at predetermined intervals in the vertical direction, and the length of the fuel cell is formed on the other side surface of the reaction vessel facing the one side surface. A plurality of discharge holes for discharging fuel gas from the side of the fuel cell are provided at predetermined intervals in the direction, and the fuel gas flows in a direction orthogonal to the length direction of the fuel cell. Fuel cell. 複数の燃料電池セルの集合体であるスタックから電力を取り出すための一対の集電体が、燃料ガスの供給孔または排出孔に対向して設けられており、前記集電体に流通孔が形成されていることを特徴とする請求項記載の燃料電池。A pair of current collectors for taking out electric power from the stack, which is an assembly of a plurality of fuel cells, is provided opposite to the fuel gas supply hole or discharge hole, and a flow hole is formed in the current collector. The fuel cell according to claim 1 , wherein the fuel cell is formed.
JP21701499A 1999-07-30 1999-07-30 Fuel cell Expired - Fee Related JP3668058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21701499A JP3668058B2 (en) 1999-07-30 1999-07-30 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21701499A JP3668058B2 (en) 1999-07-30 1999-07-30 Fuel cell

Publications (2)

Publication Number Publication Date
JP2001043888A JP2001043888A (en) 2001-02-16
JP3668058B2 true JP3668058B2 (en) 2005-07-06

Family

ID=16697484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21701499A Expired - Fee Related JP3668058B2 (en) 1999-07-30 1999-07-30 Fuel cell

Country Status (1)

Country Link
JP (1) JP3668058B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539649B1 (en) 2002-12-02 2005-12-29 산요덴키가부시키가이샤 Separator for fuel cell and fuel cell using the same
KR100576622B1 (en) * 2003-08-26 2006-05-08 쿄세라 코포레이션 Fuel cell container, fuel cell and electronic equipment
JP4942287B2 (en) * 2004-02-18 2012-05-30 東京瓦斯株式会社 Power generator
JP5079441B2 (en) * 2007-09-28 2012-11-21 株式会社日立製作所 Solid oxide fuel cell
JP2009129712A (en) * 2007-11-23 2009-06-11 Toto Ltd Fuel cell module, and fuel cell equipped with the same
JP5516946B2 (en) * 2009-11-27 2014-06-11 東京瓦斯株式会社 Off-gas combustion apparatus and off-gas combustion method for solid oxide fuel cell

Also Published As

Publication number Publication date
JP2001043888A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
US5185219A (en) Solid oxide fuel cells
US20060003220A1 (en) Fuel cell
JP4325924B2 (en) Fuel cell
JP3668058B2 (en) Fuel cell
US6844093B2 (en) Fuel cell stacking body
JP4789451B2 (en) Fuel cell
JP2000188124A (en) Solid electrolyte fuel cell
JP5312419B2 (en) Fuel cell
JP4300947B2 (en) Solid oxide fuel cell
JP3509180B2 (en) Fuel cell
US11811104B2 (en) Bipolar plate with undulating channels
JP2003077496A (en) Solid electrolyte fuel cell
WO2012115485A2 (en) Flat tubular solid-oxide fuel cell, and flat tubular solid-oxide water electrolysis apparatus
JP3706959B2 (en) Structure of a cylindrical solid oxide fuel cell having a conductive tube inserted therein, a structure of a bundle in which a plurality of such cells are bundled, and a structure of a power generation module using the bundle
JP3585381B2 (en) Solid oxide fuel cell
JP3686773B2 (en) Solid oxide fuel cell
JPS61126775A (en) Fuel cell
JP2528986B2 (en) Solid oxide fuel cell
JP4418013B2 (en) Stack structure of planar solid oxide fuel cell
JP3610223B2 (en) Solid oxide fuel cell
JP4282109B2 (en) Stack structure of solid oxide fuel cell
JPH0359956A (en) Fuel battery generator
WO2023128447A1 (en) Current collector, for solid oxide fuel cell, prevented from structural deformation
JP2004055196A (en) Oxidant gas feeding mechanism for fuel cell
WO2022255710A1 (en) Nonlinear porous body for fuel cell, and fuel cell comprising same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees