JP2003077496A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JP2003077496A
JP2003077496A JP2001262469A JP2001262469A JP2003077496A JP 2003077496 A JP2003077496 A JP 2003077496A JP 2001262469 A JP2001262469 A JP 2001262469A JP 2001262469 A JP2001262469 A JP 2001262469A JP 2003077496 A JP2003077496 A JP 2003077496A
Authority
JP
Japan
Prior art keywords
cell
gas
combustion chamber
partition plate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001262469A
Other languages
Japanese (ja)
Other versions
JP4794086B2 (en
Inventor
Kazumasa Marutani
和正 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001262469A priority Critical patent/JP4794086B2/en
Publication of JP2003077496A publication Critical patent/JP2003077496A/en
Application granted granted Critical
Publication of JP4794086B2 publication Critical patent/JP4794086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell that can maintain high generation performance for a long period by reducing effectively the thermal stress working on the opening part of the cell and by preventing breakage of the whole cell caused by cracking of the opening part of the solid electrolyte fuel cell. SOLUTION: This is a solid electrolyte fuel cell in which a combustion chamber B and a reaction chamber C are formed in a reaction container 51 by using a combustion chamber partition plate 62 and the cell 52 is inserted and fixed in the cell insertion hole 69 of the combustion chamber partition plate 62. And an oxygen-contained gas is supplied in the cell 52 and the fuel gas is supplied and reacted between the cells 52 in the reaction chamber C, and the surplus fuel gas in the reaction chamber C passes from the surplus gas vent 63 formed in the combustion chamber partition plate 62 to the combustion chamber B and is burnt by reacting with the oxygen-contained gas in the combustion chamber B. The surplus gas vent 63 is formed at the surroundings of the assembled body of a plurality of cells 52.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池に関し、特に、燃焼室仕切板を用いて燃焼室及び反
応室を形成した固体電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell in which a combustion chamber partition plate is used to form a combustion chamber and a reaction chamber.

【0002】[0002]

【従来技術】従来の固体電解質型燃料電池について、図
7を用いて説明する。固体電解質型燃料電池は、図7に
示すように、反応容器51内に、空気室仕切板56、燃
焼室仕切板62、燃料ガス室仕切板55を用いて空気室
A、燃焼室B、反応室C、燃料ガス室Dが形成されてい
る。
2. Description of the Related Art A conventional solid oxide fuel cell will be described with reference to FIG. As shown in FIG. 7, in the solid oxide fuel cell, the air chamber A, the combustion chamber B, the reaction chamber B, the reaction chamber 51, the reaction chamber 51, the reaction chamber 51, the combustion chamber partition plate 62, and the fuel gas chamber partition plate 55 are used. A chamber C and a fuel gas chamber D are formed.

【0003】反応容器51内に収容された複数の有底筒
状の固体電解質型燃料電池セル52は、燃焼室仕切板6
2に形成された複数のセル挿入孔にそれぞれ挿入固定さ
れており、その開口部は燃焼室仕切板62から燃焼室B
内に突出しており、その内部には、空気室仕切板56に
固定された空気導入管59の一端が挿入されている。
A plurality of bottomed cylindrical solid oxide fuel cell units 52 housed in a reaction vessel 51 are composed of a combustion chamber partition plate 6.
2 are inserted into and fixed to a plurality of cell insertion holes formed in No. 2, and the openings are formed from the combustion chamber partition plate 62 to the combustion chamber B.
One end of an air introduction pipe 59 fixed to the air chamber partition plate 56 is inserted into the inside thereof.

【0004】燃焼室仕切板62には、余剰の燃料ガスを
燃焼室Bに導入するための燃料ガス通気孔(図示せず)
が形成されており、燃料ガス室仕切板55には、燃料ガ
スを反応室C内に供給するための供給孔(図示せず)が
形成されている。
The combustion chamber partition plate 62 has a fuel gas vent hole (not shown) for introducing excess fuel gas into the combustion chamber B.
The fuel gas chamber partition plate 55 has a supply hole (not shown) for supplying the fuel gas into the reaction chamber C.

【0005】また、反応容器51には、例えば水素から
なる燃料ガスを導入する燃料ガス導入口53、空気を導
入する空気導入口57、燃焼室B内で燃焼したガスを排
出するための排気口58が形成されている。
Further, in the reaction vessel 51, for example, a fuel gas introduction port 53 for introducing a fuel gas composed of hydrogen, an air introduction port 57 for introducing air, and an exhaust port for discharging the gas burned in the combustion chamber B. 58 is formed.

【0006】このような固体電解質型燃料電池は、空気
室Aからの空気を固体電解質型燃料電池セル52内にそ
れぞれ供給し、かつ、燃料ガス室Dからの燃料ガスを複
数の固体電解質型燃料電池セル52間に供給し、反応室
Cにて反応させ、余剰の空気と燃料ガスを燃焼室Bにて
燃焼させ、燃焼したガスが排気口58から外部に排出さ
れる。
In such a solid oxide fuel cell, the air from the air chamber A is supplied into the solid oxide fuel cell 52, and the fuel gas from the fuel gas chamber D is supplied to a plurality of solid oxide fuel cells. It is supplied between the battery cells 52, reacted in the reaction chamber C, burns excess air and fuel gas in the combustion chamber B, and the burned gas is discharged from the exhaust port 58 to the outside.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
固体電解質型燃料電池は、図7に示すように、有底筒状
の固体電解質型燃料電池セル52の開口部が燃焼室仕切
板62から燃焼室B内に突出しており、この開口部付近
の燃焼室仕切板62に余剰燃料ガス通気孔が集中して設
けてあり、この余剰燃料ガス通気孔から、もしくは燃焼
室仕切板62のセル挿入孔とセル52との隙間から余剰
の燃料ガスが噴出されるため、即ち、複数のセル52の
集合体内で余剰の燃料ガスが噴出されるため、セル52
の開口部付近に燃焼領域が集中し、燃焼室Bに突出した
セル52の開口部付近がスポット的に高温にさらされ、
熱応力によって割れるという問題があった。この開口部
の割れに起因してセル全体が破損し、発電性能が劣化す
る虞があった。
However, in the conventional solid oxide fuel cell, as shown in FIG. 7, the opening of the bottomed cylindrical solid oxide fuel cell 52 is burned from the combustion chamber partition plate 62. Excess fuel gas vent holes are provided in a concentrated manner in the combustion chamber partition plate 62 near the opening of the chamber B. The excess fuel gas vent holes are provided from the surplus fuel gas vent holes or the cell insertion holes of the combustion chamber partition plate 62. Since the surplus fuel gas is ejected from the gap between the cell 52 and the cell 52, that is, the surplus fuel gas is ejected in the assembly of the plurality of cells 52, the cell 52
The combustion region is concentrated near the opening of the cell 52, and the vicinity of the opening of the cell 52 protruding into the combustion chamber B is exposed to a high temperature spotwise.
There was a problem of cracking due to thermal stress. Due to the cracks in the openings, the entire cell may be damaged and the power generation performance may be deteriorated.

【0008】本発明は、セルの開口部に作用する熱応力
を効果的に低減し、固体電解質型燃料電池セルの開口部
の割れに起因するセル全体の破損を防止して、高い発電
性能を長期間維持できる固体電解質型燃料電池を提供す
ることを目的とする。
The present invention effectively reduces the thermal stress acting on the opening of the cell, prevents the damage of the entire cell due to the cracking of the opening of the solid oxide fuel cell unit, and improves the power generation performance. An object is to provide a solid oxide fuel cell that can be maintained for a long period of time.

【0009】[0009]

【課題を解決するための手段】本発明の固体電解質型燃
料電池は、反応容器内に燃焼室仕切板を用いて燃焼室と
反応室を形成し、複数の有底筒状の固体電解質型燃料電
池セルを、前記燃焼室仕切板に形成された複数のセル挿
入孔に、開口部が燃焼室に開口するようにそれぞれ挿入
し固定してなり、酸素含有ガス又は燃料ガスを前記固体
電解質型燃料電池セル内にそれぞれ供給し、かつ、燃料
ガス又は酸素含有ガスを前記反応室内の前記固体電解質
型燃料電池セル間に供給して反応させ、前記反応室内の
余剰の燃料ガス又は酸素含有ガスを前記燃焼室仕切板に
形成された余剰ガス通気孔から前記燃焼室へ通過させ、
前記燃焼室内の酸素含有ガス又は燃料ガスと反応させて
燃焼させる固体電解質型燃料電池であって、前記余剰ガ
ス通気孔を、前記複数の固体電解質型燃料電池セルの集
合体の周りに形成してなるものである。
A solid oxide fuel cell according to the present invention comprises a plurality of bottomed cylindrical solid oxide fuel cells in which a combustion chamber and a reaction chamber are formed by using a combustion chamber partition plate in a reaction container. Battery cells are inserted and fixed in a plurality of cell insertion holes formed in the combustion chamber partition plate so that the openings are opened to the combustion chamber, and an oxygen-containing gas or fuel gas is added to the solid electrolyte fuel. Each of them is supplied into a battery cell, and a fuel gas or an oxygen-containing gas is supplied between the solid oxide fuel cell cells in the reaction chamber to cause a reaction, and the excess fuel gas or oxygen-containing gas in the reaction chamber is Pass the excess gas vents formed in the combustion chamber partition plate to the combustion chamber,
A solid oxide fuel cell for reacting with an oxygen-containing gas or a fuel gas in the combustion chamber for combustion, wherein the excess gas vent holes are formed around an assembly of the plurality of solid oxide fuel cell units. It will be.

【0010】このような固体電解質型燃料電池では、余
剰ガス通気孔を、複数の固体電解質型燃料電池セルの集
合体の周りに形成したので、余剰ガス通気孔を通過する
余剰の燃料ガス又は酸素含有ガスは、セルの集合体の外
側から燃焼室内に導かれ、燃焼室内の酸素含有ガス又は
燃料ガスと反応して燃焼するため、燃焼位置がセルから
離れ、セルの開口部の温度を低下でき、これにより、セ
ルの開口部に発生する熱応力を低減でき、セル開口部の
割れを防止でき、セル全体の破損を防止して高い発電性
能を長期間維持できる。
In such a solid oxide fuel cell, since the excess gas vent holes are formed around the assembly of a plurality of solid electrolyte fuel cell units, the excess fuel gas or oxygen passing through the excess gas vent holes is discharged. The contained gas is introduced into the combustion chamber from the outside of the assembly of cells and reacts with the oxygen-containing gas or the fuel gas in the combustion chamber to burn, so that the combustion position is separated from the cell and the temperature of the cell opening can be lowered. As a result, the thermal stress generated in the opening of the cell can be reduced, cracking of the cell opening can be prevented, damage to the entire cell can be prevented, and high power generation performance can be maintained for a long period of time.

【0011】また、本発明では、反応容器内の燃焼室仕
切板よりもセル底部側に、前記燃焼室仕切板と所定間隔
を置いて複数の固体電解質型燃料電池セル間にほぼ均一
に燃料ガス又は酸素含有ガスを分散させるガス分散用仕
切板を設け、該ガス分散用仕切板に形成されたセル挿入
孔を、前記固体電解質型燃料電池セルが挿通しているこ
とが望ましい。
Further, in the present invention, the fuel gas is substantially evenly distributed between the plurality of solid oxide fuel cell units at a predetermined distance from the combustion chamber partition plate on the cell bottom side of the combustion chamber partition plate in the reaction vessel. Alternatively, it is preferable that a gas dispersion partition plate for dispersing the oxygen-containing gas is provided, and the solid electrolyte fuel cell unit is inserted through the cell insertion hole formed in the gas dispersion partition plate.

【0012】このような構成によれば、ガス分散用仕切
板により、反応室内に導入される燃料ガス又は酸素含有
ガスを複数の固体電解質型燃料電池セル間にほぼ均一に
分散できるとともに、余剰の燃料ガス又は酸素含有ガス
は、例えば、ガス分散用仕切板のセル挿入孔と固体電解
質型燃料電池セルとの間の隙間からガス分散用仕切板と
燃焼室仕切板との間のガス流制御室内に導入され、余剰
の燃料ガス又は酸素含有ガスが、ガス流制御室をセルの
集合体の周りに形成された余剰ガス通気孔から燃焼室内
に強制的にガス流が制御されて導入されるため、上記し
たように、セルの集合体における開口部の温度を低下で
き、これにより、セルの開口部に発生する熱応力を低減
でき、セル開口部の割れを防止でき、セル全体の破損を
防止して高い発電性能を長期間維持できる。
According to such a construction, the partition plate for gas dispersion allows the fuel gas or the oxygen-containing gas introduced into the reaction chamber to be substantially evenly distributed among the plurality of solid oxide fuel cell units, and the surplus gas. The fuel gas or the oxygen-containing gas is supplied, for example, from the gap between the cell insertion hole of the gas dispersion partition plate and the solid oxide fuel cell unit to the gas flow control chamber between the gas dispersion partition plate and the combustion chamber partition plate. The excess fuel gas or oxygen-containing gas is forcibly introduced into the combustion chamber from the excess gas vent holes formed around the cell assembly in the gas flow control chamber. , As described above, the temperature of the opening in the cell assembly can be lowered, which can reduce the thermal stress generated in the opening of the cell, prevent cracking of the cell opening, and prevent damage to the entire cell. And high power The ability for a long period of time can be maintained.

【0013】また、本発明では、燃焼室仕切板のセル挿
入孔と固体電解質型燃料電池セルとの隙間が封止されて
いることが望ましい。このような構成を採用することに
より、余剰の燃料ガス又は酸素含有ガスを、セルの集合
体の周りに形成された余剰ガス通気孔から燃焼室内によ
り強制的に導入できる。
Further, in the present invention, it is desirable that the gap between the cell insertion hole of the combustion chamber partition plate and the solid oxide fuel cell be sealed. By adopting such a configuration, surplus fuel gas or oxygen-containing gas can be forcibly introduced into the combustion chamber through the surplus gas vent holes formed around the cell assembly.

【0014】[0014]

【発明の実施の形態】本発明の固体電解質型燃料電池を
図1に基づいて説明する。尚、従来技術と同様の部材の
場合には、従来の技術と同一符号を付した。
BEST MODE FOR CARRYING OUT THE INVENTION The solid oxide fuel cell of the present invention will be described with reference to FIG. In the case of a member similar to that of the conventional technique, the same reference numeral as that of the conventional technique is given.

【0015】本発明の固体電解質型燃料電池は、図1に
示すように、反応容器51内に、複数の固体電解質型燃
料電池セル52を収容して構成されており、この反応容
器51には、例えば水素からなる燃料ガスを導入する燃
料ガス導入口53、燃料ガスを分散するための燃料ガス
室仕切板55、反応室Cから燃焼室Bに余剰燃料ガスを
通気させるガス分散用仕切板61と燃焼室仕切板62、
例えば空気からなる酸素含有ガスを導入する空気導入口
57、セル52内に空気を導入する空気導入管59、こ
の空気導入管59を固定する空気室仕切板56とを具備
して構成されている。
As shown in FIG. 1, the solid oxide fuel cell of the present invention is constructed by accommodating a plurality of solid oxide fuel cell units 52 in a reaction container 51. , A fuel gas inlet port 53 for introducing a fuel gas composed of hydrogen, a fuel gas chamber partition plate 55 for dispersing the fuel gas, and a gas dispersion partition plate 61 for allowing excess fuel gas to pass from the reaction chamber C to the combustion chamber B. And the combustion chamber partition plate 62,
For example, an air introduction port 57 for introducing an oxygen-containing gas composed of air, an air introduction pipe 59 for introducing air into the cell 52, and an air chamber partition plate 56 for fixing the air introduction pipe 59 are configured. .

【0016】燃料ガス室仕切板55には、燃料ガスの反
応室C導入時にセル52間に均一に分散するために複数
の分散孔(図示せず)が形成されおり、燃料ガス室仕切
板55にはセル52の底部が支持されている。また、セ
ル52の底部は、保持部材60により、複数のセル52
が所定間隔をおいて保持固定されている。
The fuel gas chamber partition plate 55 is provided with a plurality of dispersion holes (not shown) for uniformly dispersing the fuel gas between the cells 52 when the reaction chamber C is introduced into the fuel gas chamber partition plate 55. The bottom of the cell 52 is supported by. In addition, the bottom of the cell 52 is fixed to the plurality of cells 52 by the holding member 60.
Are held and fixed at predetermined intervals.

【0017】ガス分散用仕切板61には、図2に示すよ
うに、セル挿入孔65とセル52の外面との間に隙間6
7が設けられ、余剰燃料ガスが通過できるようにしてあ
る。尚、セル挿入孔65とセル52の外面との間の隙間
67を封止して、ガス分散用仕切板61に余剰燃料ガス
通気孔を形成しても良いが、隙間67を利用する事で、
燃料ガス又は酸素含有ガスがセルの電気化学反応面に沿
って流れる事と作製が容易という事から、セル挿入孔6
5とセル52の外面との間に隙間67を設けることが望
ましい。
As shown in FIG. 2, in the gas dispersion partition plate 61, a gap 6 is formed between the cell insertion hole 65 and the outer surface of the cell 52.
7 is provided to allow excess fuel gas to pass through. It should be noted that the gap 67 between the cell insertion hole 65 and the outer surface of the cell 52 may be sealed to form an excess fuel gas vent hole in the gas distribution partition plate 61, but by using the gap 67. ,
Since the fuel gas or the oxygen-containing gas flows along the electrochemical reaction surface of the cell and the fabrication is easy, the cell insertion hole 6
It is desirable to provide a gap 67 between the cell 5 and the outer surface of the cell 52.

【0018】ガス分散用仕切板61と燃焼室仕切板62
との間は、余剰燃料ガスの流れを制御するガス流制御室
Eが形成されている。燃焼室仕切板62と空気室仕切板
56との間は、空気と水素が燃焼する燃焼室Bとされ、
燃焼室仕切板62には、図3に示すように、セル52の
集合体の周りに余剰燃料ガスを燃焼室B内に導入する余
剰ガス通気孔63が複数設けられ、セル挿入孔69とセ
ル52の隙間はガスシールされ、封止されている。尚、
この隙間は完全に密封する必要はない。
Gas distribution partition plate 61 and combustion chamber partition plate 62
A gas flow control chamber E for controlling the flow of the surplus fuel gas is formed between and. Between the combustion chamber partition plate 62 and the air chamber partition plate 56 is a combustion chamber B in which air and hydrogen burn.
As shown in FIG. 3, the combustion chamber partition plate 62 is provided with a plurality of surplus gas vent holes 63 around the assembly of the cells 52 for introducing surplus fuel gas into the combustion chamber B. The gap 52 is gas-sealed and sealed. still,
This gap does not have to be completely sealed.

【0019】燃焼室仕切板62からのセル開口部の突出
量、及び燃焼室仕切板62とガス分散用仕切板61の設
置間隔は各々5mm以下とされており、セル開口端から
の非発電領域が20mm以下とされている。
The amount of protrusion of the cell opening from the combustion chamber partition plate 62 and the installation interval between the combustion chamber partition plate 62 and the gas dispersion partition plate 61 are each set to 5 mm or less. Is 20 mm or less.

【0020】複数のセル52は燃焼室仕切板62に形成
された複数のセル挿入孔69に挿入固定されており、空
気導入管59は、空気室仕切板56に形成された空気導
入管挿入孔(図示せず)に挿入固定されている。各仕切
板55、61、62、56は、各室A、B、C、D、E
におけるガスの漏出を防止している。
The plurality of cells 52 are inserted and fixed in a plurality of cell insertion holes 69 formed in the combustion chamber partition plate 62, and the air introduction pipe 59 is an air introduction pipe insertion hole formed in the air chamber partition plate 56. It is inserted and fixed to (not shown). The partition plates 55, 61, 62 and 56 are used for the chambers A, B, C, D and E, respectively.
Gas leakage is prevented.

【0021】燃焼室B内で燃焼したガスは反応容器51
に設けられた排気口58を介して外部に排出される。
The gas burned in the combustion chamber B is the reaction vessel 51.
It is discharged to the outside through an exhaust port 58 provided in the.

【0022】セル52は、図4に示すように、例えば、
支持管としてのLaMnO3系空気極71と、この空気
極71の表面に形成されたY23安定化ZrO2からな
る固体電解質72と、固体電解質72の表面に形成され
たNi−ジルコニア系の燃料極73と、空気極71と電
気的に接続されるLaCrO3系よりなるインターコネ
クタ74とから構成されている。
The cell 52 is, for example, as shown in FIG.
LaMnO 3 system air electrode 71 as a support tube, solid electrolyte 72 formed of Y 2 O 3 stabilized ZrO 2 formed on the surface of this air electrode 71, and Ni-zirconia system formed on the surface of solid electrolyte 72 Of the fuel electrode 73 and an interconnector 74 of LaCrO 3 system electrically connected to the air electrode 71.

【0023】そして、図5に示すように、一方のセル5
2のインターコネクタ74が、Ni金属繊維等の接続部
材75を介して他方のセル52の燃料極73に接続され
て、複数のセル52が電気的に接続され、スタック77
が構成されており、このようなスタック77が、図1に
示したように、反応容器51内に収容されて固体電解質
型燃料電池が構成されている。
Then, as shown in FIG. 5, one cell 5
The interconnector 74 of No. 2 is connected to the fuel electrode 73 of the other cell 52 via the connecting member 75 such as Ni metal fiber, so that the plurality of cells 52 are electrically connected, and the stack 77 is formed.
As shown in FIG. 1, such a stack 77 is housed in the reaction vessel 51 to form a solid oxide fuel cell.

【0024】このような固体電解質型燃料電池の発電
は、空気を空気導入口57から空気導入管59を介して
セル52内に導入するとともに、燃料ガス導入口53か
ら水素を導入し、燃料ガス室仕切板55の複数の分散孔
で均一に分散してセル52の外部に導入し、セル52を
1000℃に保持する事により行われ、余剰の空気と燃
料ガスは燃焼室B内で燃焼させられ、排気口58から外
部に排出される。
In the power generation of such a solid oxide fuel cell, air is introduced into the cell 52 from the air introduction port 57 through the air introduction pipe 59, and hydrogen is introduced from the fuel gas introduction port 53 to generate the fuel gas. It is carried out by uniformly dispersing it in a plurality of dispersion holes of the chamber partition plate 55 and introducing it to the outside of the cell 52, and maintaining the cell 52 at 1000 ° C., so that excess air and fuel gas are burned in the combustion chamber B. And is discharged to the outside through the exhaust port 58.

【0025】図6に固体電解質型燃料電池セル52一本
のガスの流れを示す。水素ガス(燃料ガス)はセル52
下方から導入され、発電により酸化されながら上方へと
進む。一方空気(酸素含有ガス)は空気導入管59を介
してセル52上方よりセル内部下方へ導入され、折り返
して、セル内部下方より上方へと流れる。セル上部より
排出された空気は発電で消費されなかった余剰の水素ガ
スと反応し、燃焼室B内で燃焼する。
FIG. 6 shows the gas flow of one solid oxide fuel cell unit 52. Hydrogen gas (fuel gas) is the cell 52
It is introduced from below, and proceeds upward while being oxidized by power generation. On the other hand, air (oxygen-containing gas) is introduced from above the cell 52 to below the inside of the cell through the air introduction pipe 59, turns back, and flows upward from below the inside of the cell. The air discharged from the upper part of the cell reacts with the surplus hydrogen gas that has not been consumed in the power generation, and burns in the combustion chamber B.

【0026】本発明では、セル52の外面とガス分散用
仕切板61のセル挿入孔65との間に隙間67が形成さ
れているので、燃料ガス仕切板55の分散孔から導入さ
れた燃料ガスは、セル52間をほぼ均一にセル52に沿
って流れ、発電に寄与できなかった余剰燃料ガスが隙間
67を介してガス流制御室E内に導入されるが、燃焼室
仕切板62のセル挿入孔69とセル52の隙間はガスシ
ールされているので、ガス流制御室Eの余剰燃料ガス
が、燃焼室仕切板62の外縁に、即ち、セル52の集合
体の周りに設けられた余剰燃料ガスの余剰ガス通気孔6
3から燃焼室B内に強制的に導入され、この燃焼室B内
で空気と反応して燃焼する。
In the present invention, since the gap 67 is formed between the outer surface of the cell 52 and the cell insertion hole 65 of the gas dispersion partition plate 61, the fuel gas introduced through the dispersion hole of the fuel gas partition plate 55 is formed. Flows almost uniformly between the cells 52 along the cells 52, and excess fuel gas that could not contribute to power generation is introduced into the gas flow control chamber E through the gap 67, but the cells of the combustion chamber partition plate 62 are Since the gap between the insertion hole 69 and the cell 52 is gas-sealed, the surplus fuel gas in the gas flow control chamber E is provided at the outer edge of the combustion chamber partition plate 62, that is, around the assembly of the cells 52. Excess gas vent for fuel gas 6
3 is forcibly introduced into the combustion chamber B and reacts with air in the combustion chamber B to burn.

【0027】以上のように構成された固体電解質型燃料
電池では、セル52の集合体の周りに該当する燃焼室仕
切板62に、余剰燃料ガスの余剰ガス通気孔63を設け
たので、余剰ガス通気孔63を通過する余剰燃料ガス
は、セル52の集合体の外側から燃焼室B内に導かれ、
燃焼室B内の空気と反応して燃焼し、セル52の集合体
の周りが最も高温となる一方で、セル52の開口部の温
度を低下でき、これにより、セル52の開口部に発生す
る熱応力を低減でき、セル開口部の割れを防止でき、セ
ル全体の破損を防止して高い発電性能を長期間維持でき
る。
In the solid oxide fuel cell constructed as described above, the surplus gas vent holes 63 for the surplus fuel gas are provided in the corresponding combustion chamber partition plate 62 around the assembly of the cells 52. Excess fuel gas passing through the ventilation holes 63 is introduced into the combustion chamber B from the outside of the assembly of the cells 52,
While reacting with the air in the combustion chamber B and burning, the temperature around the assembly of the cells 52 becomes the highest temperature, while the temperature of the opening of the cell 52 can be lowered, and thus the temperature of the opening of the cell 52 is generated. Thermal stress can be reduced, cracks in the cell openings can be prevented, damage to the entire cell can be prevented, and high power generation performance can be maintained for a long time.

【0028】また、燃焼室仕切板62と所定間隔を置い
てガス分散用仕切板61を設け、該ガス分散用仕切板6
1に形成されたセル挿入孔65を、固体電解質型燃料電
池セル52が挿通しているため、余剰燃料ガスの燃焼室
B内への導入は、燃焼室仕切板62とガス分散用仕切板
61との間のガス流制御室Eを介して余剰ガス通気孔6
3からセル52から遠ざかった反応容器51の壁側に供
給され、セル52から離れた位置で燃焼させることがで
きるとともに、余剰燃料ガスはガス分散用仕切板61の
セル挿入孔65とセル52の隙間67を通るので、反応
室Cでは燃料ガスがセル52に沿って、セル52間を均
一に流れ、発電性能を向上できる。
Further, a gas dispersion partition plate 61 is provided at a predetermined distance from the combustion chamber partition plate 62, and the gas dispersion partition plate 6 is provided.
Since the solid oxide fuel cell unit 52 is inserted through the cell insertion hole 65 formed in No. 1, the excess fuel gas is introduced into the combustion chamber B by the combustion chamber partition plate 62 and the gas dispersion partition plate 61. Through the gas flow control chamber E between
3 is supplied to the wall side of the reaction vessel 51 away from the cell 52 and can be burned at a position away from the cell 52, and the surplus fuel gas is discharged from the cell insertion hole 65 of the gas dispersion partition plate 61 and the cell 52. Since the gas flows through the gap 67, the fuel gas in the reaction chamber C flows along the cells 52 evenly between the cells 52, and the power generation performance can be improved.

【0029】さらに、燃焼室仕切板62のセル挿入孔6
9とセル52との隙間が封止されているので、余剰燃料
ガスを、ガス流制御室Eを介して余剰ガス通気孔63か
ら、セル52から遠ざかった反応容器51の壁側に確実
に供給できる。
Further, the cell insertion hole 6 of the combustion chamber partition plate 62.
Since the gap between the cell 9 and the cell 52 is sealed, the surplus fuel gas is reliably supplied from the surplus gas vent hole 63 through the gas flow control chamber E to the wall side of the reaction vessel 51 which is distant from the cell 52. it can.

【0030】また、燃焼室仕切板62でのセル開口部の
突出量、及び、燃焼室仕切板62とガス分散用仕切板6
1の設置間隔を各々5mm以下とし、セル開口端側の非
発電領域を20mm以下としたセルを使用するので、セ
ル表面における発電領域を拡大でき、燃料利用率を増加
でき、これにより余剰燃料ガスを減らすことができ、燃
焼室B内での燃焼温度を下げることができる。従って、
燃焼室B内の燃焼領域をセル開口部付近から遠ざけ、且
つ、燃焼温度を低下でき、セルの開口部に作用する熱応
力を効果的に低減することができる。
The amount of protrusion of the cell opening in the combustion chamber partition plate 62, and the combustion chamber partition plate 62 and the gas dispersion partition plate 6
Since the cells each having an installation interval of 1 of 5 mm or less and a non-power generation area on the cell opening end side of 20 mm or less can be used, the power generation area on the cell surface can be expanded and the fuel utilization rate can be increased. And the combustion temperature in the combustion chamber B can be lowered. Therefore,
The combustion region in the combustion chamber B can be moved away from the vicinity of the cell opening, the combustion temperature can be lowered, and the thermal stress acting on the cell opening can be effectively reduced.

【0031】尚、上記例では、空気極71の外面に固体
電解質72、燃料極73を形成し、セル52の外側に燃
料ガスを、内側に空気を流したが、セルを、燃料極の外
面に固体電解質、空気極を形成し、セルの外側に空気
を、内側に燃料ガスを流しても同様の効果を得ることが
できる。
In the above example, the solid electrolyte 72 and the fuel electrode 73 are formed on the outer surface of the air electrode 71, and the fuel gas is flown outside the cell 52 and the air is flown inside the cell 52. The same effect can be obtained by forming a solid electrolyte and an air electrode in the cell and flowing air to the outside of the cell and flowing fuel gas to the inside of the cell.

【0032】[0032]

【発明の効果】本発明の固体電解質型燃料電池では、余
剰ガス通気孔を、複数の固体電解質型燃料電池セルの集
合体の周りに形成したので、余剰ガス通気孔を通過する
余剰の燃料ガス又は酸素含有ガスは、セルの集合体の外
側から燃焼室内に導かれ、燃焼室内の酸素含有ガス又は
燃料ガスと反応して燃焼するため、燃焼位置がセルから
離れ、セルの開口部の温度を低下でき、これにより、セ
ルの開口部に発生する熱応力を低減でき、セル開口部の
割れを防止でき、セル全体の破損を防止して高い発電性
能を長期間維持できる。
In the solid oxide fuel cell of the present invention, since the surplus gas vent holes are formed around the assembly of the plurality of solid electrolyte fuel cell units, the surplus fuel gas passing through the surplus gas vent holes is formed. Or, the oxygen-containing gas is introduced into the combustion chamber from the outside of the assembly of cells, and reacts with the oxygen-containing gas or the fuel gas in the combustion chamber to burn, so that the combustion position is separated from the cell and the temperature of the opening of the cell is reduced. This can reduce the thermal stress generated in the opening of the cell, prevent cracking of the cell opening, prevent damage to the entire cell, and maintain high power generation performance for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体電解質型燃料電池の模式図であ
る。
FIG. 1 is a schematic diagram of a solid oxide fuel cell of the present invention.

【図2】ガス分散用仕切板の平面図である。FIG. 2 is a plan view of a gas dispersion partition plate.

【図3】燃焼室仕切板の平面図である。FIG. 3 is a plan view of a combustion chamber partition plate.

【図4】固体電解質型燃料電池セルの断面図である。FIG. 4 is a cross-sectional view of a solid oxide fuel cell unit.

【図5】スタックを示す断面図である。FIG. 5 is a cross-sectional view showing a stack.

【図6】固体電解質型燃料電池セルのガスの流れを示す
説明図である。
FIG. 6 is an explanatory diagram showing a gas flow in a solid oxide fuel cell unit.

【図7】従来の固体電解質型燃料電池の模式図である。FIG. 7 is a schematic view of a conventional solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

51・・・反応容器 52・・・固体電解質型燃料電池セル 61・・・ガス分散用仕切板 62・・・燃焼室仕切板 63・・・余剰ガス通気孔 65・・・ガス分散用仕切板のセル挿入孔 67・・・隙間 69・・・燃焼室仕切板のセル挿入孔 B・・・燃焼室 C・・・反応室 51 ... Reaction container 52 ... Solid oxide fuel cell 61 ... Partition plate for gas dispersion 62 ... Combustion chamber partition plate 63 ... Excess gas vent 65 ... Cell insertion hole of partition plate for gas dispersion 67 ... Gap 69 ... Cell insertion hole of combustion chamber partition plate B ... Combustion chamber C ... Reaction chamber

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】反応容器内に燃焼室仕切板を用いて燃焼室
と反応室を形成し、複数の有底筒状の固体電解質型燃料
電池セルを、前記燃焼室仕切板に形成された複数のセル
挿入孔に、開口部が燃焼室に開口するようにそれぞれ挿
入し固定してなり、酸素含有ガス又は燃料ガスを前記固
体電解質型燃料電池セル内にそれぞれ供給し、かつ、燃
料ガス又は酸素含有ガスを前記反応室内の前記固体電解
質型燃料電池セル間に供給して反応させ、前記反応室内
の余剰の燃料ガス又は酸素含有ガスを前記燃焼室仕切板
に形成された余剰ガス通気孔から前記燃焼室へ通過さ
せ、前記燃焼室内の酸素含有ガス又は燃料ガスと反応さ
せて燃焼させる固体電解質型燃料電池であって、前記余
剰ガス通気孔を、前記複数の固体電解質型燃料電池セル
の集合体の周りに形成してなることを特徴とする固体電
解質型燃料電池。
1. A combustion chamber partition plate is used in a reaction vessel to form a combustion chamber and a reaction chamber, and a plurality of bottomed cylindrical solid oxide fuel cell units are formed on the combustion chamber partition plate. The cell insertion holes of the respective are inserted and fixed so that the openings are opened to the combustion chamber, and the oxygen-containing gas or the fuel gas is supplied into the solid oxide fuel cell, respectively, and the fuel gas or the oxygen is supplied. The containing gas is supplied between the solid oxide fuel cell units in the reaction chamber to react with each other, and the excess fuel gas or oxygen-containing gas in the reaction chamber is passed through the excess gas vent hole formed in the combustion chamber partition plate. A solid oxide fuel cell which is passed through to a combustion chamber and is reacted with an oxygen-containing gas or a fuel gas in the combustion chamber and burned, wherein the surplus gas vent hole is an assembly of the plurality of solid oxide fuel battery cells. Shaped around Solid oxide fuel cell, characterized in that to become to.
【請求項2】反応容器内の燃焼室仕切板よりもセル底部
側に、前記燃焼室仕切板と所定間隔を置いて複数の固体
電解質型燃料電池セル間にほぼ均一に燃料ガス又は酸素
含有ガスを分散させるガス分散用仕切板を設け、該ガス
分散用仕切板に形成されたセル挿入孔を、前記固体電解
質型燃料電池セルが挿通していることを特徴とする請求
項1記載の固体電解質型燃料電池。
2. A fuel gas or an oxygen-containing gas in a plurality of solid oxide fuel cell units in a reaction vessel on the cell bottom side with respect to the combustion chamber partition plate at a predetermined distance from the combustion chamber partition plate. 2. A solid electrolyte fuel cell according to claim 1, wherein a partition plate for gas dispersion for dispersing is provided, and the solid electrolyte fuel cell unit is inserted through a cell insertion hole formed in the partition plate for gas dispersion. Type fuel cell.
【請求項3】燃焼室仕切板のセル挿入孔と固体電解質型
燃料電池セルとの隙間が封止されていることを特徴とす
る請求項1又は2記載の固体電解質型燃料電池。
3. The solid oxide fuel cell according to claim 1, wherein a gap between the cell insertion hole of the combustion chamber partition plate and the solid oxide fuel cell is sealed.
【請求項4】ガス分散用仕切板のセル挿入孔と固体電解
質型燃料電池セルとの間に隙間が形成されており、該隙
間を燃料ガス又は酸素含有ガスが通過することを特徴と
する請求項2又は3記載の固体電解質型燃料電池。
4. A gap is formed between the cell insertion hole of the gas dispersion partition plate and the solid oxide fuel cell unit, and the fuel gas or the oxygen-containing gas passes through the gap. Item 3. A solid oxide fuel cell according to item 2 or 3.
JP2001262469A 2001-08-30 2001-08-30 Solid electrolyte fuel cell Expired - Fee Related JP4794086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001262469A JP4794086B2 (en) 2001-08-30 2001-08-30 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001262469A JP4794086B2 (en) 2001-08-30 2001-08-30 Solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2003077496A true JP2003077496A (en) 2003-03-14
JP4794086B2 JP4794086B2 (en) 2011-10-12

Family

ID=19089363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001262469A Expired - Fee Related JP4794086B2 (en) 2001-08-30 2001-08-30 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4794086B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158524A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly
JP2007220548A (en) * 2006-02-17 2007-08-30 National Institute Of Advanced Industrial & Technology Fuel cell system
JP2009070730A (en) * 2007-09-14 2009-04-02 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2009087539A (en) * 2007-09-27 2009-04-23 Kyocera Corp Fuel battery cell and fuel battery cell stack, as well as fuel battery
JP2009289532A (en) * 2008-05-28 2009-12-10 Kyocera Corp Cell stack device, fuel cell module, and fuel cell device
JP2010097797A (en) * 2008-10-16 2010-04-30 Toto Ltd Fuel cell module
JP2010097795A (en) * 2008-10-16 2010-04-30 Toto Ltd Fuel cell module
JP2011113890A (en) * 2009-11-27 2011-06-09 Tokyo Gas Co Ltd Off-gas combustion device and off-gas combustion method of solid-oxide fuel cell
JP2013197027A (en) * 2012-03-22 2013-09-30 Toto Ltd Fuel cell unit
JP2013243150A (en) * 2013-07-19 2013-12-05 Tokyo Gas Co Ltd Off-gas combustion device and off-gas combustion method of solid oxide fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594830A (en) * 1991-09-30 1993-04-16 Central Res Inst Of Electric Power Ind Vertical stripe cylindrical solid electrolyte fuel cell
JPH11162499A (en) * 1997-12-01 1999-06-18 Kyocera Corp Solid electrolyte fuel cell
JPH11238519A (en) * 1998-02-24 1999-08-31 Kyocera Corp Solid electrolyte fuel cell
JP2000133298A (en) * 1998-10-28 2000-05-12 Kyocera Corp Solid electrolyte fuel cell
JP2000268839A (en) * 1999-03-17 2000-09-29 Kyocera Corp Solid electrolyte fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594830A (en) * 1991-09-30 1993-04-16 Central Res Inst Of Electric Power Ind Vertical stripe cylindrical solid electrolyte fuel cell
JPH11162499A (en) * 1997-12-01 1999-06-18 Kyocera Corp Solid electrolyte fuel cell
JPH11238519A (en) * 1998-02-24 1999-08-31 Kyocera Corp Solid electrolyte fuel cell
JP2000133298A (en) * 1998-10-28 2000-05-12 Kyocera Corp Solid electrolyte fuel cell
JP2000268839A (en) * 1999-03-17 2000-09-29 Kyocera Corp Solid electrolyte fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158524A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly
JP2007220548A (en) * 2006-02-17 2007-08-30 National Institute Of Advanced Industrial & Technology Fuel cell system
JP2009070730A (en) * 2007-09-14 2009-04-02 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2009087539A (en) * 2007-09-27 2009-04-23 Kyocera Corp Fuel battery cell and fuel battery cell stack, as well as fuel battery
JP2009289532A (en) * 2008-05-28 2009-12-10 Kyocera Corp Cell stack device, fuel cell module, and fuel cell device
JP2010097797A (en) * 2008-10-16 2010-04-30 Toto Ltd Fuel cell module
JP2010097795A (en) * 2008-10-16 2010-04-30 Toto Ltd Fuel cell module
JP2011113890A (en) * 2009-11-27 2011-06-09 Tokyo Gas Co Ltd Off-gas combustion device and off-gas combustion method of solid-oxide fuel cell
JP2013197027A (en) * 2012-03-22 2013-09-30 Toto Ltd Fuel cell unit
JP2013243150A (en) * 2013-07-19 2013-12-05 Tokyo Gas Co Ltd Off-gas combustion device and off-gas combustion method of solid oxide fuel cell

Also Published As

Publication number Publication date
JP4794086B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US5185219A (en) Solid oxide fuel cells
JP2003077496A (en) Solid electrolyte fuel cell
JP5177945B2 (en) Fuel cell assembly
JP4863600B2 (en) Fuel cell assembly
JP4986376B2 (en) Fuel cell assembly
JP4300947B2 (en) Solid oxide fuel cell
JP4587709B2 (en) Fuel cell
JP3668058B2 (en) Fuel cell
JP2007018966A (en) Fuel cell
JPH06349512A (en) Fuel cell
JP3585363B2 (en) Solid oxide fuel cell
EP0810684B1 (en) Molten carbonate fuel cell comprising electolyte plate having fine through holes
JP3585381B2 (en) Solid oxide fuel cell
JP2005100818A (en) Fuel cell
JP3686773B2 (en) Solid oxide fuel cell
JP2005093081A (en) Power generation unit and fuel cell assembly equipped with the same
JP4859359B2 (en) Operation method of fuel cell
JP3389481B2 (en) Solid oxide fuel cell
JP3276649B2 (en) Fuel cell
JP4761722B2 (en) Fuel cell
JP2011029201A (en) Fuel battery and method of operating the same
JPH1092459A (en) Fused carbonate type fuel cell
JP2000048841A (en) Fuel cell
JP4084795B2 (en) Solid electrolyte fuel cell
JP4986377B2 (en) Fuel cell assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees