JPH0594830A - Vertical stripe cylindrical solid electrolyte fuel cell - Google Patents

Vertical stripe cylindrical solid electrolyte fuel cell

Info

Publication number
JPH0594830A
JPH0594830A JP3276483A JP27648391A JPH0594830A JP H0594830 A JPH0594830 A JP H0594830A JP 3276483 A JP3276483 A JP 3276483A JP 27648391 A JP27648391 A JP 27648391A JP H0594830 A JPH0594830 A JP H0594830A
Authority
JP
Japan
Prior art keywords
unit cell
fuel
cell
cell assembly
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3276483A
Other languages
Japanese (ja)
Other versions
JP3346784B2 (en
Inventor
Hibiki Ito
響 伊藤
Masashi Mori
昌史 森
Toshio Abe
俊夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP27648391A priority Critical patent/JP3346784B2/en
Publication of JPH0594830A publication Critical patent/JPH0594830A/en
Application granted granted Critical
Publication of JP3346784B2 publication Critical patent/JP3346784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve the output density per unit area and per unit volume of a vertical stripe cylindrical solid electrolyte fuel cell, to prevent a battery breakdown to generate a thermal stress, and to make the quality control and the manufacturing of the battery easier. CONSTITUTION:One single cell assembly 1 is to be composed by connecting a single cell 2 whose one end is closed and at least more than one of cylindrical single cells 3a, 3b,..., 3n whose both ends are opened, which have the size manufactured by utilizing the conventional manufacturing technology already established as it is. And the single cells 2, 3a, 3b,..., 3n to compose this single cell assembly 1 are preferably to have different cell areas each other and the cell areas are formed larger as separated farther from a fuel gas feeding port 27. Furthermore, at an oxidizer gas feeding pipe 6 and a fuel gas feeding pipe 5 provided at the inside and the outside of the single cell assembly 1, plural gas feeding holes 5a and 6a are provided to the feeding pipes 5 and 6 according to the lengths of the corresponding single cells 2, 3a, 3b,..., 3n, so as to feed the oxidizer gas and the fuel gas by distributing in the longitudinal direction of the single cell assembly 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質燃料電池に
関する。更に詳述すると、本発明は、円筒状の多孔質支
持管の外側に空気極を設置し、更にその上に固体電解
質、インターコネクタ、燃料極を積層し、多孔質支持管
の内側に酸化剤ガスを流すと共に燃料極の周囲に燃料ガ
スを流して発電する縦縞円筒型固体電解質燃料電池に関
する。
FIELD OF THE INVENTION The present invention relates to a solid oxide fuel cell. More specifically, according to the present invention, an air electrode is installed outside a cylindrical porous support tube, a solid electrolyte, an interconnector, and a fuel electrode are further laminated thereon, and an oxidizer is provided inside the porous support tube. The present invention relates to a vertically striped cylindrical solid electrolyte fuel cell in which a gas flows and a fuel gas flows around a fuel electrode to generate electric power.

【0002】[0002]

【従来の技術】固体電解質燃料電池は電池自身の発電効
率が高い上に、大規模発電プラントとしてボトミングサ
イクルと組合せると、従来の発電プラント以上の高効率
発電システムの構築ができるものと期待でき、その実用
化が急がれている。また、大気汚染ガスの発生が少ない
ことやシステムの小型化が予想されるため、電力消費地
に隣接して長距離の送電によるエネルギーロスを回避で
きる分散電源として活用することもできる。更にこの固
体電解質燃料電池が優れているのは、電力消費地と隣接
しているため、燃料電池から得られる熱を冷暖房に有効
に利用でき、よりエネルギー効率をより高めることがで
きることである。
2. Description of the Related Art Solid electrolyte fuel cells have high power generation efficiency of the cells themselves, and when combined with a bottoming cycle as a large-scale power plant, it can be expected that a high-efficiency power generation system superior to conventional power plants can be constructed. , Its practical application is urgent. Further, since the generation of air pollutant gas is small and the system is expected to be downsized, it can be used as a distributed power source that can avoid energy loss due to long-distance power transmission adjacent to the power consumption area. Further, this solid electrolyte fuel cell is excellent in that, since it is adjacent to the power consumption area, the heat obtained from the fuel cell can be effectively used for cooling and heating, and the energy efficiency can be further improved.

【0003】ところで、縦縞円筒型固体電解質燃料電池
の場合、例えば図6及び図7に斜視図で示すような構成
の円筒型燃料電池モジュールが従来より提案されてい
る。この単電池101は、図5に示すように、円筒状の
多孔質支持管11の上に多孔性空気極12、ち密な固体
電解質13、多孔性燃料極15およびち密なインターコ
ネクタ14の各電池構成材料がこの順番で積層されてい
る。多孔質支持管11は、図6及び図7に示すように、
先端が閉じられると共に後端が開口された円筒状を成し
後端から酸化剤ガス供給管107が挿入され、閉塞され
た多孔性支持管の先端付近まで酸化剤ガス例えば空気な
どが供給されている。また、単電池101,101,
…,101の周囲には、燃料ガス例えば水素などが単電
池101の閉塞端付近の燃料ガス供給口105から供給
され、単電池101に沿って流される。各ガスの未反応
分は単電池101の上部に設けられた空間106におい
て燃焼し、酸化剤ガスの予熱に使われる。このような構
造をもつ燃料電池では燃料ガスと酸化剤ガスの混合を防
ぐためのガスシールを考える必要はない。
By the way, in the case of a vertically striped cylindrical solid electrolyte fuel cell, for example, a cylindrical fuel cell module having a structure shown in perspective views in FIGS. 6 and 7 has been conventionally proposed. As shown in FIG. 5, this unit cell 101 includes a porous porous electrode 11, a porous air electrode 12, a dense solid electrolyte 13, a porous fuel electrode 15, and a dense interconnector 14 on a cylindrical porous support tube 11. The constituent materials are laminated in this order. The porous support tube 11, as shown in FIGS. 6 and 7,
An oxidant gas supply pipe 107 is inserted from the rear end so that the front end is closed and the rear end is opened, and an oxidant gas such as air is supplied to the vicinity of the front end of the closed porous support pipe. There is. In addition, the unit cells 101, 101,
, 101 is supplied with a fuel gas such as hydrogen from the fuel gas supply port 105 near the closed end of the unit cell 101 and flows along the unit cell 101. The unreacted portion of each gas burns in the space 106 provided above the unit cell 101 and is used for preheating the oxidant gas. In the fuel cell having such a structure, it is not necessary to consider a gas seal for preventing the mixing of the fuel gas and the oxidant gas.

【0004】更に、この電池101は、図7に示すよう
に数本ずつを束にして直列及び並列に電気的に接続さ
れ、スタック(集合電池)として構築される。この際の
各単電池101,101,…,101の接続にはニッケ
ルフェルト104,104,…,104が用いられ、発
生した電気はこれらのニッケルフェルト104,…,1
04を介して、容器の上下に設けられたプラス(+)側
集電板102、マイナス(−)側集電板103より外部
に取出される。
Further, as shown in FIG. 7, the battery 101 is constructed as a stack (assembled battery) by bundling several batteries and electrically connecting them in series and in parallel. At this time, nickel felts 104, 104, ..., 104 are used to connect the respective cells 101, 101, ..., 101, and the generated electricity is generated by these nickel felts 104 ,.
It is taken out from the positive (+) side current collecting plate 102 and the negative (−) side current collecting plate 103 provided above and below the container via 04.

【0005】この縦縞円筒型固体電解質燃料電池は固体
の電池構成材料のみで構成されており、空気極と燃料極
は主にスラリーディッピング法で、また電解質とインタ
ーコネクタは電気化学蒸着法で作製されている。また、
図6及び図7によって明らかなように多孔質支持管11
上に電池を構成した円筒構造を取っているために機械的
強度が大きく、電解質膜が20〜50μmの厚さでも熱
衝撃等で破壊されることがなく単位面積当たりの電流密
度を大きくでき、出力の向上が可能であるという利点が
ある。
This vertical striped cylindrical solid electrolyte fuel cell is composed only of solid cell constituent materials. The air electrode and the fuel electrode are mainly produced by the slurry dipping method, and the electrolyte and the interconnector are produced by the electrochemical vapor deposition method. ing. Also,
Porous support tube 11 as is apparent from FIGS. 6 and 7.
Since it has a cylindrical structure with a battery formed on it, it has a large mechanical strength, and even if the electrolyte membrane has a thickness of 20 to 50 μm, it can be increased in current density per unit area without being destroyed by thermal shock or the like. There is an advantage that the output can be improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、縦縞円
筒型固体電解質燃料電池にも弱点がある。すなわち、第
一には作製上の問題である。まず、スラリーディッピン
グ法では空気極材料や燃料極材料のスラリー(泥状にし
たセラミックス)に多孔質支持管11を浸漬するが、そ
の後の支持管のスラリーからの引き上げ時および乾燥時
に泥しょう状のセラミックスが下の方に垂れてしまうの
で均一な膜厚の成膜が難しい。また、高温で金属塩化物
を用いる電気化学蒸着法による電解質やインターコネク
タの作製では装置の耐蝕性も問題となるが、特に、成膜
される部分の面積が大きいと膜厚の制御が極めて難しく
なるなどによって、現在の作製技術では50cm程度の
長さのものしか作製することができない。これは、従来
の成膜法では原料が供給される付近で反応が起こりやす
く、供給口から遠ざかったところでは原料ガスの濃度が
希薄になり反応が起こり難いためであり、この原料ガス
の濃度差に応じて膜厚にも差が生じてくる。以上の二点
から一本の電池の長さを実用レベルである1〜2mの長
さにするのは困難であり、固体電解質燃料電池の実用化
にとって大きな障壁になっているのが現状である。
However, the vertical stripe cylinder type solid electrolyte fuel cell also has a weak point. That is, first, there is a manufacturing problem. First, in the slurry dipping method, the porous support tube 11 is immersed in a slurry (mud-like ceramics) of an air electrode material or a fuel electrode material. Since the ceramics drips downward, it is difficult to form a uniform film thickness. In addition, the corrosion resistance of the device is also a problem in the production of electrolytes and interconnectors by the electrochemical deposition method using metal chloride at high temperature, but it is extremely difficult to control the film thickness especially when the area of the film-formed portion is large. As a result, the current manufacturing technology can only manufacture a film having a length of about 50 cm. This is because in the conventional film forming method, the reaction is likely to occur in the vicinity of the supply of the raw material, and the concentration of the raw material gas becomes diluted and the reaction is hard to occur in the location far from the supply port. The film thickness also varies depending on the situation. From the above two points, it is difficult to make the length of one battery to a practical level of 1 to 2 m, and it is a big obstacle to practical use of the solid electrolyte fuel cell under the present circumstances. ..

【0007】また、円筒型固体電解質燃料電池の長さを
仮に長くできたとしても、従来の酸化剤ガス・燃料ガス
の供給方法では供給されたガスが電池の端部に流れてい
くに従って、ガスの濃度が希薄になり、大容量電池では
電池面上の長さ方向で取り出せる電流値に差が生じるこ
とにより、電極の過電圧(材料の電池抵抗以外の電圧降
下)が大きくなり、エネルギーの有効利用、電極面積の
有効利用が図れなくなってしまう。即ち、単位体積当た
りの出力密度をあげるために単電池の長さをいくら長く
しても有効に利用できない。したがって、縦縞円筒型固
体電解質燃料電池の開発は世界的にみても二例しかな
く、上述の利点を持ちながらも未だに実用化が図れてい
ないのが現状である。
Even if the length of the cylindrical solid oxide fuel cell can be increased, the conventional method for supplying the oxidant gas and the fuel gas causes the supplied gas to flow as it flows to the end of the cell. The concentration of is diminished, and in large-capacity batteries, there is a difference in the current value that can be taken out in the length direction on the battery surface, resulting in a large electrode overvoltage (voltage drop other than the battery resistance of the material) and effective use of energy. However, the effective use of the electrode area cannot be achieved. That is, in order to increase the output density per unit volume, no matter how long the unit cell is, it cannot be effectively used. Therefore, there are only two examples of the development of the vertical stripe cylindrical solid oxide fuel cell in the world, and it is the current situation that the vertical stripe cylindrical solid oxide fuel cell has not been put into practical use while having the above-mentioned advantages.

【0008】本発明は、作製上の問題点を解消しかつ性
能面で従来のものよりも優れた縦縞円筒型固体電解質燃
料電池を提供し、電力供給源としての早期実用化を促進
することを目的とする。更に、具体的には、本発明は、
単位面積当たり(kW/m2 )および単位体積当たり
(kW/m3 )の出力密度の向上と、熱応力が生じた際
の電池破壊の防止並びに電池の品質管理や製造方法の容
易化を可能とする縦縞円筒型固体電解質燃料電池を提供
することを目的とする。
The present invention provides a vertical striped cylindrical solid electrolyte fuel cell which solves the problems in production and is superior in performance to conventional ones, and promotes early commercialization as a power supply source. To aim. More specifically, the present invention is
It is possible to improve the power density per unit area (kW / m 2 ) and per unit volume (kW / m 3 ), prevent battery destruction when thermal stress occurs, and facilitate battery quality control and manufacturing methods. An object of the present invention is to provide a vertical striped cylindrical solid oxide fuel cell.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
め、本発明の縦縞円筒型固体電解質燃料電池は、一端が
閉じられ他端が開口された円筒状の多孔質支持管の外側
に燃料極等を積層した単電池と、両端が開口された円筒
状の多孔質支持管の外側に燃料極等を積層した少なくと
も1本以上の単電池とを縦方向に接続して1本の単電池
アッセンブリーを構成し、該単電池アッセンブリーの内
側に挿入される酸化剤ガス供給管によって前記単電池の
閉塞された端部付近から開口端部へ向けて酸化剤ガスを
流す一方、前記単電池の閉塞された端部側から単電池の
周囲に単電池に沿って燃料ガスを流すようにしている。
In order to achieve the above object, the vertical striped cylindrical solid electrolyte fuel cell of the present invention comprises a fuel electrode on the outside of a cylindrical porous support tube having one end closed and the other end open. And the like, and a unitary cell assembly in which at least one or more unitary cells in which a fuel electrode or the like is laminated outside the cylindrical porous support tube with both ends opened are vertically connected to form a unitary cell assembly. The oxidant gas is supplied from the vicinity of the closed end of the unit cell toward the open end by the oxidant gas supply pipe inserted inside the unit cell assembly, while the unit cell is closed. The fuel gas is made to flow from the end side to the periphery of the unit cell along the unit cell.

【0010】更に、本発明の縦縞円筒型固体電解質燃料
電池において、単電池アッセンブリーを構成する各単電
池は、各々電池面積を異にし、燃料ガスの供給口から離
れる単電池ほど電池面積が大きくなるようにしている。
Further, in the vertical-striped cylindrical solid oxide fuel cell of the present invention, each cell constituting the cell assembly has a different cell area, and the cell area becomes larger as the cell is farther from the fuel gas supply port. I am trying.

【0011】また、本発明の縦縞円筒型固体電解質燃料
電池は、単電池アッセンブリーの内側に酸化剤ガス供給
管を設置すると共に外側にも燃料ガス供給管を設置し、
対応する各単電池の長さに応じて各供給管管にガス供給
口を複数設け、酸化剤ガス及び燃料ガスを単電池アッセ
ンブリーの長手方向に分配して供給するようにしてい
る。
In the vertical striped cylindrical solid oxide fuel cell of the present invention, the oxidant gas supply pipe is installed inside the unit cell assembly and the fuel gas supply pipe is installed outside the unit assembly.
A plurality of gas supply ports are provided in each supply pipe according to the length of each corresponding single cell, and the oxidant gas and the fuel gas are distributed and supplied in the longitudinal direction of the single cell assembly.

【0012】[0012]

【作用】したがって、現状の作製技術で問題なく作製し
得る長さの単電池を製作し、これを縦方向に接続するこ
とによって実用レベルの長さの単電池アッセンブリーを
得ることができる。しかも、この燃料電池の場合、燃料
ガス及び酸化剤ガスが希薄化する下流側の即ち燃料ガス
の供給口から離れる単電池ほど電流密度が小さくなる
が、発電面積が大きくなるため、出力電流はほぼ均一化
され、電池の過電圧によるエネルギー損失を低減する。
Therefore, a unit cell assembly having a length of a practical level can be obtained by manufacturing unit cells of a length that can be manufactured without problems by the current manufacturing technique and connecting them in the vertical direction. Moreover, in the case of this fuel cell, the current density becomes smaller in the unit cell on the downstream side where the fuel gas and the oxidant gas are diluted, that is, farther from the fuel gas supply port, but the power generation area becomes larger, so the output current is almost the same. It is homogenized and reduces energy loss due to battery overvoltage.

【0013】また、酸化剤ガス及び燃料ガスの供給を単
電池アッセンブリーの長さ方向に分けて行なう場合、稀
薄な酸素及び燃料ガスの拡散抵抗増加による電極の過電
圧損失を少なくし、エネルギーを有効に使うと共に単電
池アッセンブリー一本当たり(特に、下流側(供給ガス
濃度が低い部分))の発電性能を向上させる。
When the oxidant gas and the fuel gas are separately supplied in the length direction of the unit cell assembly, the overvoltage loss of the electrode due to the increase in the diffusion resistance of the dilute oxygen and the fuel gas is reduced and the energy is effectively used. Use and improve the power generation performance per cell assembly (especially on the downstream side (where the supply gas concentration is low)).

【0014】[0014]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0015】図1〜図5に本発明の一実施例を示す。こ
の燃料電池の作製上の問題点は前述したように約50c
m以下の比較的短いものであれば現状の技術で作製でき
るが、それよりも長いものの製作には困難をきたしてい
る点である。そこで、本発明では現状の技術を生かしつ
つ、これらの単電池を長さ方向に接続することで1本当
りの電池の長さを長くしたり短くしたりできるようにし
ている。即ち、図1に示すように、一番下の部分に位置
する単電池2には一方の端部は閉じられているが他方の
端部は開口された円筒型単電池を用い、それよりも上の
単電池3a,…,3nには両端が開口された同じ直径の
円筒型単電池を1本以上接続することによって1本の単
電池アッセンブリー1を構成している。各単電池2,3
a,…,3nの接続面は平面出し加工を施しておき、接
続の際にはインターコネクタ14,14の方向を同一方
向とする。電気的な接続はこれまでと同様にニッケルフ
ェルトを用いることによって行う。さらに、燃料供給口
27寄り(供給ガス濃度が高い部分)の円筒電池2を短
く、燃料供給口27より離れた部位(供給ガス濃度が低
い部分)の円筒電池3a,…,3nを長く調整すること
で発電面積を調整することにより、供給ガスが稀薄にな
ることによって生ずる電極部分の過電圧をより小さくす
ることができる。
1 to 5 show an embodiment of the present invention. As described above, the problem in manufacturing this fuel cell is about 50c.
If the length is relatively short, such as m or less, it can be manufactured by the current technology, but if it is longer than that, it is difficult to manufacture. Therefore, in the present invention, while utilizing the current technology, the length of each battery can be lengthened or shortened by connecting these unit cells in the length direction. That is, as shown in FIG. 1, a cylindrical cell having one end closed and the other end open is used for the cell 2 located at the bottom. , 3n are connected to one or more cylindrical cells of the same diameter with both ends opened to form one cell assembly 1. Each cell 2, 3
The connection surfaces of a, ..., 3n are subjected to flattening processing so that the directions of the interconnectors 14, 14 are the same when connecting. The electrical connection is made by using nickel felt as before. Further, the cylindrical battery 2 near the fuel supply port 27 (the part where the supply gas concentration is high) is shortened, and the cylindrical batteries 3a, ..., 3n apart from the fuel supply port 27 (the part where the supply gas concentration is low) are adjusted long. Therefore, by adjusting the power generation area, it is possible to further reduce the overvoltage of the electrode portion caused by the supply gas being diluted.

【0016】この単電池において、13はその固体電解
質部分であって、例えばイットリア安定化ジルコニアや
イットリア部分安定化ジルコニアなどを電気化学蒸着法
を用いて作られる。12は空気極であって、例えばスト
ロンチウムまたはカルシウム等を添加したランタンマン
ガナイトやランタンコバルタイト等によりスラリーディ
ッピング法を用いて作られる。15は燃料極であって、
例えばニッケルジルコニアサーメットによって作られ
る。更に、14はインターコネクタであって、例えばマ
グネシウムやストロンチウム等を添加したランタンクロ
マイト等で作られている。これらの電池構成物質は、例
えばカルシウムで安定化したジルコニアで作製した多孔
性を有する支持管11上に図5に示すように積層されて
いる。
In this unit cell, 13 is a solid electrolyte portion thereof, and for example, yttria-stabilized zirconia, yttria partially-stabilized zirconia, etc. are produced by an electrochemical vapor deposition method. Reference numeral 12 denotes an air electrode, which is made of, for example, lanthanum manganite or lanthanum cobaltite to which strontium or calcium is added by using a slurry dipping method. 15 is a fuel electrode,
For example made by nickel zirconia cermet. Further, 14 is an interconnector, which is made of, for example, lanthanum chromite to which magnesium, strontium or the like is added. As shown in FIG. 5, these battery constituent materials are laminated on a porous support tube 11 made of, for example, calcium-stabilized zirconia.

【0017】また、これらの単電池2,3a,3b,
…,3nの内部には各単電池の長さ(電池面積)に応じ
て必要な数のガス供給口6aを開けた酸化剤ガス供給管
6が挿入される。ただし、このガス供給管6は、例えば
アルミナのような耐熱性に優れたセラミックス製のもの
であることが望まれる。また、単電池アッセンブリー1
の周囲には、各単電池2,3a,3b,…,3nの長さ
(電池面積)に応じて必要な数の燃料ガス供給口5aを
開けた燃料ガス供給管5が4本の単電池アッセンブリー
1の隙間に酸化剤ガス供給管6とは逆方向に挿入されて
いる。また、単電池2と単電池3aとの間、また他の単
電池3a,3b,…,3n同士の間にはそれらを接続す
るための接続部品4が装着されている。この接続部品4
は例えば図4に示すように、短い円筒状を成し、その両
端面に単電池2あるいは3a,3b,…,3nを嵌め込
むための溝16が形成してあり、この溝16に単電池2
あるいは3a,3b,…,3nが嵌め込まれるように設
けられている。この接続部品4は空気極12と燃料極1
5とが短絡しないように、電気絶縁性材料で構成されて
いる。
Further, these unit cells 2, 3a, 3b,
, 3n are provided with oxidant gas supply pipes 6 each having a required number of gas supply ports 6a opened according to the length (battery area) of each unit cell. However, it is desired that the gas supply pipe 6 is made of ceramics having excellent heat resistance such as alumina. Also, single cell assembly 1
Around the cell, there are four fuel gas supply pipes 5 each having four fuel gas supply ports 5a opened according to the length (cell area) of each cell 2, 3a, 3b, ..., 3n. It is inserted in the gap of the assembly 1 in the direction opposite to the oxidant gas supply pipe 6. Further, a connection component 4 for connecting them is mounted between the unit cell 2 and the unit cell 3a and between the other unit cells 3a, 3b, ..., 3n. This connection part 4
For example, as shown in FIG. 4, a short cylindrical shape is formed, and a groove 16 for fitting the unit cells 2 or 3a, 3b, ..., 3n is formed on both end faces thereof. Two
Alternatively, 3a, 3b, ..., 3n are provided so as to be fitted therein. This connecting part 4 is composed of an air electrode 12 and a fuel electrode 1.
It is made of an electrically insulating material so as not to short circuit.

【0018】上述のように構成された単電池アッセンブ
リー1は所定本数が集められてスタックを構成し、それ
が燃料電池ケーシング10内に収容されて酸化剤ガス供
給管6や燃料ガス供給管5を配置してモジュールを構成
している。そして、ニッケルフェルト17によって隣な
る単電池アッセンブリー1同士が互いに電気的に接続さ
れ空気極集電板18や燃料極集電板19を介して電気が
出力される。ここで、燃料電池ケーシング10は、床板
7と仕切り板8及び天井壁板9によって、燃料ガス導入
室20と、反応室21と酸化剤ガス加熱室22及び酸化
剤ガス供給室23との4室に区画されている。床板7に
は燃料ガス供給用の穴27が開けられており、更にそれ
らの縁に、燃料ガス供給管5を嵌め込むための突起28
が設けられている。仕切り板8には、単電池アッセンブ
リー1の多孔性支持管11の端部を貫通させると共に反
応室21内で消費されなかった未反応ガス(燃料ガス)
を酸化剤ガス加熱室22内に導入するための連通孔29
が設けられている。更に、天井壁板9には酸化剤ガス供
給管6を貫通させるための孔30が設けられ、酸化剤ガ
ス供給室23内の酸化剤ガスを酸化剤ガス供給管6を介
して各単電池アッセンブリー1内に供給するように設け
られている。
A predetermined number of unit cell assemblies 1 having the above-described structure are assembled to form a stack, which is housed in a fuel cell casing 10 to form an oxidant gas supply pipe 6 and a fuel gas supply pipe 5. Arranged to form a module. Then, the adjacent unit cell assemblies 1 are electrically connected to each other by the nickel felt 17, and electricity is output via the air electrode current collector plate 18 and the fuel electrode current collector plate 19. Here, the fuel cell casing 10 is composed of a floor plate 7, a partition plate 8 and a ceiling wall plate 9, and is composed of four chambers including a fuel gas introduction chamber 20, a reaction chamber 21, an oxidant gas heating chamber 22 and an oxidant gas supply chamber 23. It is divided into The floor plate 7 is provided with holes 27 for supplying the fuel gas, and the edges thereof have projections 28 for fitting the fuel gas supply pipe 5 therein.
Is provided. The partition plate 8 penetrates the end of the porous support tube 11 of the unit cell assembly 1 and does not consume the unreacted gas (fuel gas) in the reaction chamber 21.
Communicating hole 29 for introducing oxygen into the oxidizing gas heating chamber 22
Is provided. Further, the ceiling wall plate 9 is provided with a hole 30 for penetrating the oxidant gas supply pipe 6, and the oxidant gas in the oxidant gas supply chamber 23 is passed through the oxidant gas supply pipe 6 to each unit cell assembly. It is provided so that it may be supplied to the inside.

【0019】以上のように構成された燃料電池は次のよ
うに組立てられる。まず、床板7の突起28部分に燃料
ガス供給管5を嵌め込み、側壁や各集電板18,19な
どを組立てて蓋のない箱状態のケーシングを作る。続い
て一端が閉塞された単電池2を所定の位置に置いた後に
ニッケルフェルト17を各単電池2,2,…,2間に詰
め込む。その後、電池接続部品4,4,…,4を各単電
池2,…,2に取付ける。このとき、各電池接続部品
4,…,4の溝16の部分にはシール材(図示省略)を
充填し、酸化剤ガスあるいは燃料ガスが電池接続部品4
と単電池2との間の隙間を透過しないように設けられて
いる。更に両端開口の単電池3a,3a,…,3aを上
から電池接続部品4の溝16内に挿入し、かつニッケル
フェルト17を各単電池3a,3a,…,3a間に詰め
込む。必要であればこの組立を繰返して単電池アッセン
ブリー1の一本当たりの長さを長くすればよい。最後
に、仕切り板8、天井壁板9をセットしてから酸化剤ガ
ス供給管6を単電池アッセンブリー1内に挿入し燃料電
池ケーシング10を構成する。
The fuel cell constructed as above is assembled as follows. First, the fuel gas supply pipe 5 is fitted into the protrusion 28 of the floor plate 7, and the side walls and the current collecting plates 18 and 19 are assembled to form a box-like casing without a lid. Subsequently, the unit cell 2 with one end closed is placed at a predetermined position, and then the nickel felt 17 is packed between the unit cells 2, 2 ,. After that, the battery connecting parts 4, 4, ..., 4 are attached to each of the cells 2 ,. At this time, the groove 16 of each of the battery connecting parts 4, ..., 4 is filled with a sealing material (not shown) so that the oxidizing gas or the fuel gas is filled with the battery connecting parts 4.
It is provided so as not to pass through the gap between the unit cell 2 and the unit cell 2. Further, the cells 3a, 3a, ..., 3a having openings at both ends are inserted from above into the groove 16 of the cell connecting component 4, and the nickel felt 17 is packed between the cells 3a, 3a ,. If necessary, this assembly may be repeated to increase the length of each single battery assembly 1. Finally, the partition plate 8 and the ceiling wall plate 9 are set, and then the oxidant gas supply pipe 6 is inserted into the unit cell assembly 1 to form the fuel cell casing 10.

【0020】この燃料電池において、下部の燃料ガス導
入室20に送られてきた燃料ガス、例えばある程度加熱
された水素は床板7上に突出した燃料ガス供給管5を通
って各単電池アッセンブリー1の周囲に送り込まれる。
また一方、酸化剤ガス、例えば空気は一番上部の酸化剤
ガス供給室23に入りここで酸化剤ガス加熱室22から
の熱を受けて加熱された後に酸化剤ガス供給管6を通っ
て各単電池アッセンブリー1内に送り込まれる。これら
の供給された燃料ガス及び酸化剤ガスによって発電が行
われる。尚、酸化剤ガス(空気)の加熱は、反応室21
から連通孔29を通って酸化剤ガス加熱室22に流入し
た燃料ガス及び酸化剤ガスの未利用分が燃焼するときに
発生する熱によって行なわれる。
In this fuel cell, the fuel gas sent to the lower fuel gas introducing chamber 20, for example, hydrogen which has been heated to some extent, passes through the fuel gas supply pipe 5 projecting on the floor plate 7 of each unit cell assembly 1. It is sent to the surroundings.
On the other hand, the oxidant gas, for example, air, enters the oxidant gas supply chamber 23 at the top and is heated by receiving heat from the oxidant gas heating chamber 22, and thereafter passes through the oxidant gas supply pipe 6 to reach each It is fed into the unit cell assembly 1. Electric power is generated by the supplied fuel gas and oxidant gas. The heating of the oxidizing gas (air) is performed in the reaction chamber 21.
This is performed by the heat generated when the unused portion of the fuel gas and the oxidant gas, which has flowed into the oxidant gas heating chamber 22 through the communication hole 29, burns.

【0021】尚、上述の実施例は本発明の好適な実施の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば、本実施例では縦に組み上げられた各単電池
をそれぞれ横に並列接続した場合について主に説明した
が特にこれに限定されるものではなく、各単電池や縦方
向に電気的に接続(直列接続)することも可能であり、
この場合は大電流を取り出すことができる。即ち、電池
接続部品4,4,…,4で絶縁されてしまう各単電池
2,3a,3b,…,3nをニッケルフェルトによって
接続し、単電池アッセンサリー1を電気的に単一の電池
とする。また、本実施例では酸化剤ガスと燃料ガスの供
給を多数のガス供給口5a,6aを有する管5,6を利
用して数箇所から分配しているが特にこれに限定される
ものではなく、燃料ガス供給口27から離れるに従って
単電池の電池面積を増大させている場合には、1箇所か
ら供給することも可能である。この場合、燃料ガス供給
口27から離れる単電池ほど電流密度が小さくなるが発
電面積増大によって出力電流そのものは低下しないの
で、過電圧となることがない。更に、酸化剤ガス供給管
6と燃料ガス供給管5のガス供給口6a,5aを各ガス
濃度が薄くなる上側ほど多くしてガス濃度を均一化する
場合には、単電池アッセンブリー1を構成する各単電池
の長さは同じにしてもよい。
It should be noted that the above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, although the present embodiment has mainly described the case where the vertically assembled cells are connected in parallel in the horizontal direction, the present invention is not particularly limited to this, and the cells are electrically connected in the vertical direction ( It is also possible to connect in series,
In this case, a large current can be taken out. That is, the individual cells 2, 3a, 3b, ..., 3n that are insulated by the battery connecting parts 4, 4, ..., 4 are connected by nickel felt, and the single cell assembly 1 is made into an electrically single battery. To do. Further, in the present embodiment, the supply of the oxidant gas and the fuel gas is distributed from several places by utilizing the pipes 5 and 6 having the numerous gas supply ports 5a and 6a, but the present invention is not particularly limited to this. In the case where the cell area of the unit cell is increased as the distance from the fuel gas supply port 27 increases, it is possible to supply from a single location. In this case, the electric current density becomes smaller as the unit cell is farther from the fuel gas supply port 27, but the output current itself does not decrease due to the increase in the power generation area, so that the overvoltage does not occur. Further, when the gas supply ports 6a, 5a of the oxidant gas supply pipe 6 and the fuel gas supply pipe 5 are increased toward the upper side where the gas concentration becomes thin to make the gas concentration uniform, the unit cell assembly 1 is configured. The length of each cell may be the same.

【0022】[0022]

【発明の効果】以上の説明より明らかなように、本発明
は、一端閉じた単電池に両端開口の単電池を1本以上接
続して1本の単電池アッセンブリーを構成するようにし
ているので、従来の製作技術をそのまま利用しつつ電池
の大容量を可能にする。即ち、従来の製造技術を用い
て大容量燃料電池の作製が可能となり、新たに製造に関
する開発を行なわなくてもよい。設定する条件、つま
り場所や必要となる容量、敷地面積などによって必要な
長さを設定でき、小さいものから大きなものまで大きさ
に関する自由度が広がる。50cm程度のものを製造
するという従来技術の導入によって品質管理やその他製
造、運搬等が容易である。更に、ニッケルフェルトに
よる接続を変えれば、長さ方向には一本の電池であって
も電気的には複数の電池として組合わせることも可能と
なり、高い電圧を得ることができる。単電池を前記
の様に分割すれば、分割された電池を直列に接続したそ
れぞれの部分の電流値が一定である必要性が生じてくる
ため、予想される供給ガスの濃度にあわせて最適面積が
設定することもできるために、上側(供給ガス濃度が低
い部分)の円筒型電池の分極によるエネルギーロスも最
小限に抑えることができる。以上のことから、コスト面
での利点が大きく実用化の促進を図り得ることが期待で
きる点にある。
As is apparent from the above description, according to the present invention, one cell having one end closed is connected to one or more cells having openings at both ends to form one cell assembly. The large capacity of the battery is possible while using the conventional manufacturing technology as it is. That is, it becomes possible to manufacture a large-capacity fuel cell by using the conventional manufacturing technique, and it is not necessary to newly develop the manufacturing. The required length can be set depending on the conditions to be set, that is, the place, the required capacity, the site area, etc., and the degree of freedom regarding the size increases from the small to the large. By introducing the conventional technique of manufacturing a product of about 50 cm, quality control and other manufacturing and transportation are easy. Furthermore, if the connection by nickel felt is changed, even one battery in the length direction can be electrically combined into a plurality of batteries, and a high voltage can be obtained. If the unit cell is divided as described above, the current value of each part where the divided cells are connected in series needs to be constant, so the optimum area is adjusted according to the expected concentration of the supply gas. Can also be set, so that the energy loss due to polarization of the cylindrical battery on the upper side (the portion where the supply gas concentration is low) can be minimized. From the above, there is a great advantage in terms of cost and it can be expected that the practical application can be promoted.

【0023】更に、本発明において、ガス供給管にも電
池の長さを考慮した改良を加えた場合、電池の発電性能
を向上させることが可能になるなど従来の問題点を解決
した縦縞円筒型固体電解質燃料電池が提供可能となり、
電力供給源としての性能向上への寄与並びに普及の促進
を加速するものとして期待できる。
Further, in the present invention, when the gas supply pipe is also improved in consideration of the length of the battery, it is possible to improve the power generation performance of the battery and to solve the conventional problems such as the vertical stripe cylindrical type. Solid electrolyte fuel cell can be provided,
It can be expected to contribute to the improvement of performance as a power supply source and accelerate its promotion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の縦縞円筒型固体電解質燃料電池の一例
を説明する縦断面図である。
FIG. 1 is a vertical cross-sectional view illustrating an example of a vertical stripe cylindrical solid electrolyte fuel cell of the present invention.

【図2】本発明の燃料電池の構造を説明する図で、
(A)は単電池アッセンブリーの斜視図、(B)は燃料
電池モジュールを部分断面して示す斜視図である。
FIG. 2 is a diagram illustrating the structure of the fuel cell of the present invention,
(A) is a perspective view of a unit cell assembly, and (B) is a perspective view showing a partial cross section of a fuel cell module.

【図3】本発明の燃料電池の分解斜視図である。FIG. 3 is an exploded perspective view of the fuel cell of the present invention.

【図4】単電池接続用部品の説明図で、(A)は縦断面
図、(B)は平面図である。
FIG. 4 is an explanatory view of a unit cell connecting component, (A) is a longitudinal sectional view and (B) is a plan view.

【図5】縦縞円筒型固体電解質燃料電池の単電池の構造
を示す斜視図である。
FIG. 5 is a perspective view showing a structure of a unit cell of a vertical stripe cylindrical solid oxide fuel cell.

【図6】従来の縦縞円筒型固体電解質燃料電池の単電池
を示す斜視図である。
FIG. 6 is a perspective view showing a unit cell of a conventional vertical stripe cylindrical solid oxide fuel cell.

【図7】従来の燃料電池のスタックを説明する図で、
(A)は斜視図、(B)は横断面図である。
FIG. 7 is a diagram illustrating a stack of a conventional fuel cell,
(A) is a perspective view and (B) is a cross-sectional view.

【符号の説明】[Explanation of symbols]

1 単電池アッセンブリー 2 閉塞単電池 3 両端開口単電池 4 接続部品 5 燃料ガス供給管 5a 燃料ガス供給口 6 酸化剤ガス供給管 6a 酸化剤ガス供給口 DESCRIPTION OF SYMBOLS 1 Single cell assembly 2 Closed single cell 3 Both ends open single cell 4 Connection parts 5 Fuel gas supply pipe 5a Fuel gas supply port 6 Oxidizing gas supply pipe 6a Oxidizing gas supply port

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一端が閉じられ他端が開口された円筒状
の多孔質支持管の外側に燃料極等を積層した単電池と、
両端が開口された円筒状の多孔質支持管の外側に燃料極
等を積層した少なくとも1本以上の単電池とを縦方向に
接続して1本の単電池アッセンブリーを構成し、該単電
池アッセンブリーの内側に挿入される酸化剤ガス供給管
によって前記単電池の閉塞された端部近傍から開口端部
へ向けて酸化剤ガスを流す一方、前記単電池の閉塞され
た端部側から単電池の周囲に単電池に沿って燃料ガスを
流すことを特徴とする縦縞円筒型固体電解質燃料電池。
1. A unit cell in which a fuel electrode or the like is laminated outside a cylindrical porous support tube having one end closed and the other end open,
At least one unit cell in which a fuel electrode or the like is laminated is connected to the outside of a cylindrical porous support tube having both ends opened in the longitudinal direction to form one unit cell assembly, and the unit cell assembly is provided. While flowing the oxidant gas from the vicinity of the closed end of the unit cell toward the open end by the oxidant gas supply pipe inserted inside the unit cell, A vertically striped cylindrical solid electrolyte fuel cell, characterized in that a fuel gas is caused to flow around the periphery of the unit cell.
【請求項2】 前記単電池アッセンブリーを構成する各
単電池は各々電池面積を異にし、燃料ガスの供給口から
離れる単電池ほど電池面積が大きく形成されていること
を特徴とする請求項1記載の縦縞円筒型固体電解質燃料
電池。
2. The unit cells constituting the unit cell assembly have different cell areas, and the unit cells are formed to have a larger cell area as they are farther from the fuel gas supply port. Vertical striped cylindrical solid oxide fuel cell.
【請求項3】 前記単電池アッセンブリーの内方に酸化
剤ガス供給管を設置すると共に外方に燃料ガス供給管を
設置し、対応する各単電池の長さに応じて各供給管にガ
ス供給口を複数設け、酸化剤ガス及び燃料ガスを単電池
アッセンブリーの長手方向に分配して供給することを特
徴とする請求項1または2記載の縦縞円筒型固体電解質
燃料電池。
3. An oxidant gas supply pipe is installed inside the unit cell assembly and a fuel gas supply pipe is installed outside the unit cell assembly, and gas is supplied to each supply pipe according to the length of each corresponding unit cell. The vertical striped cylindrical solid electrolyte fuel cell according to claim 1 or 2, wherein a plurality of ports are provided so that the oxidant gas and the fuel gas are distributed in the longitudinal direction of the unit cell assembly and supplied.
JP27648391A 1991-09-30 1991-09-30 Vertical stripe cylindrical solid electrolyte fuel cell Expired - Fee Related JP3346784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27648391A JP3346784B2 (en) 1991-09-30 1991-09-30 Vertical stripe cylindrical solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27648391A JP3346784B2 (en) 1991-09-30 1991-09-30 Vertical stripe cylindrical solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH0594830A true JPH0594830A (en) 1993-04-16
JP3346784B2 JP3346784B2 (en) 2002-11-18

Family

ID=17570084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27648391A Expired - Fee Related JP3346784B2 (en) 1991-09-30 1991-09-30 Vertical stripe cylindrical solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3346784B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054951A1 (en) * 1998-04-17 1999-10-28 Siemens Westinghouse Power Corporation Fuel delivery system for fuel cell stacks
JP2003077496A (en) * 2001-08-30 2003-03-14 Kyocera Corp Solid electrolyte fuel cell
JP2005524955A (en) * 2002-05-07 2005-08-18 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Electrochemical battery stack assembly
US7517601B2 (en) 2002-12-09 2009-04-14 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
JP2009238651A (en) * 2008-03-28 2009-10-15 Toho Gas Co Ltd Gas supply-exhaust manifold and solid oxide fuel cell bundle
JP2013030486A (en) * 2012-08-30 2013-02-07 Toto Ltd Fuel cell module and fuel cell including the same
JP2016146271A (en) * 2015-02-06 2016-08-12 三菱重工業株式会社 Cell stack, fuel cell module having the same, and cell stack manufacturing method
CN111403763A (en) * 2020-03-31 2020-07-10 西安交通大学 Metal thin-wall tube supporting type micro-tube solid oxide fuel cell and cell stack structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054951A1 (en) * 1998-04-17 1999-10-28 Siemens Westinghouse Power Corporation Fuel delivery system for fuel cell stacks
JP2003077496A (en) * 2001-08-30 2003-03-14 Kyocera Corp Solid electrolyte fuel cell
JP2005524955A (en) * 2002-05-07 2005-08-18 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Electrochemical battery stack assembly
US7517601B2 (en) 2002-12-09 2009-04-14 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
JP2009238651A (en) * 2008-03-28 2009-10-15 Toho Gas Co Ltd Gas supply-exhaust manifold and solid oxide fuel cell bundle
JP2013030486A (en) * 2012-08-30 2013-02-07 Toto Ltd Fuel cell module and fuel cell including the same
JP2016146271A (en) * 2015-02-06 2016-08-12 三菱重工業株式会社 Cell stack, fuel cell module having the same, and cell stack manufacturing method
US10547080B2 (en) 2015-02-06 2020-01-28 Mitsubishi Heavy Industries, Ltd. Cell stack, fuel battery module including the same, and method of manufacturing cell stack
CN111403763A (en) * 2020-03-31 2020-07-10 西安交通大学 Metal thin-wall tube supporting type micro-tube solid oxide fuel cell and cell stack structure

Also Published As

Publication number Publication date
JP3346784B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
US5185219A (en) Solid oxide fuel cells
US6670069B2 (en) Fuel cell stack assembly
WO2011159064A9 (en) Internal reforming tubular solid oxide fuel cell stack and manufacturing method therefor
US20020076597A1 (en) Monopolar cell pack of proton exchange membrane fuel cell and direct methanol fuel cell
US20070154773A1 (en) Electrochemical cells, a producing process thereof, and electrochemical devices using such electrochemical cells
KR101053227B1 (en) Stack for Solid Oxide Fuel Cell Using Flat Tubular Structure
JPS63110560A (en) Electrochemical battery
US5292599A (en) Cell units for solid oxide fuel cells and power generators using such cell units
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JP2004517446A (en) Method of making assembly of basic components of fuel cell board
US7306868B2 (en) Integrated fuel cell stack and catalytic combustor apparatus, assembly, and method of use
JP3346784B2 (en) Vertical stripe cylindrical solid electrolyte fuel cell
JPS63291364A (en) Control of fuel cell voltage distribution
KR101120134B1 (en) flat-tubular solid oxide cell stack
US3576732A (en) Cast electrical batteries and process for their production
JPH01281682A (en) Fuel cell
JP2599810B2 (en) Solid electrolyte fuel cell
JPH0589901A (en) Solid electrolyte type fuel cell
JPH01267964A (en) Fuel battery with solid electrolyte
JPH08185884A (en) Solid electrolytic fuel cell
JP7138364B2 (en) Flow battery, its manufacturing process, and its method of use
RU1840836C (en) Cell battery
JPH05325997A (en) Stack structure of solid electrolyte fuel cell
JPH0660888A (en) Flat type solid electrolyte fuel cell
JPH06349514A (en) Stack for solid electrolyte type fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees