JPH0660888A - Flat type solid electrolyte fuel cell - Google Patents

Flat type solid electrolyte fuel cell

Info

Publication number
JPH0660888A
JPH0660888A JP4214442A JP21444292A JPH0660888A JP H0660888 A JPH0660888 A JP H0660888A JP 4214442 A JP4214442 A JP 4214442A JP 21444292 A JP21444292 A JP 21444292A JP H0660888 A JPH0660888 A JP H0660888A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel
electrode
oxygen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4214442A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hasuda
良紀 蓮田
Toshitaka Yumiba
利恭 弓場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4214442A priority Critical patent/JPH0660888A/en
Publication of JPH0660888A publication Critical patent/JPH0660888A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide high efficiency and reliability by improving the degree of power generation efficiency drop due to the improper seal of fuel and oxygen gases, and the degree of thermal strain due to a crossing type cell module in the conventional structure of a flat type solid electrolyte fuel cell. CONSTITUTION:An oxygen electrode 1 is made of a bottomed rectangular parallelopiped having many holes, and the film of a solid electrolyte 2 as a film resistant against gas permeation is formed on one side of the parellelopiped. The other side thereof is covered with the film of an interconnector 4 as a film against gas permeation as well, thereby forming a single cell 5. With the application of this construction, a mixing process is prevented from taking place between oxygen gas supplied to the inside of the electrode 1, and fuel gas supplied to the outside of the bottomed parellelopiped, without any sealing treatment. A drop in power generation efficiency is thereby prevented. Also, oxygen gas feed tubes 7 are inserted in the upper opening sections 6 of the holes, and an identical flow direction is maintained for oxygen gas on the electrode 1 and fuel gas on a fuel electrode 3 formed on the solid electrolyte 2. As a result, thermal strain distribution over a cell power generation section is made uniform and thermal strain is restrained, thereby improving the reliability of a battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は平板型固体電解質燃料電
池の構造に係り、ガスシールレス構造、ガス供給管内包
セル構造、燃料ガスリサイクル構造を有した高発電効率
の平板型固体電解質燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a flat plate type solid electrolyte fuel cell, which has a gas sealless structure, a gas supply pipe-containing cell structure, and a fuel gas recycling structure and has a high power generation efficiency. It is about.

【0002】[0002]

【従来の技術】ジルコニア等の酸化物固体電解質を用い
る平板型の固体電解質燃料電池(以下SOFCと記す)
は、その動作温度が800〜1000℃と高温であるた
め発電効率が高いこと、構成材料が固体のため液漏れの
トラブルがないこと、円筒型のSOFCより内部抵抗が
小さいため高出力化に有効であること等の特徴を有して
いる。このような平板型SOFCは、燃料極,電解質,
酸素極からなる単セルと、単セル間を接続するインタコ
ネクター又はセパレート板とが交互に積層されてなるス
タックで構成され、インタコネクターの両面で立体的に
直角交差した溝がガス流路として形成され、それぞれ異
なった反応ガス(燃料極側には燃料ガス、酸素極側には
酸素ガス)が流されている。また、燃料極及び酸素極
は、反応ガスが容易に拡散できるように多孔性電極とな
っている。一般的に電解質にはジルコニア焼成体、イン
タコネクターにはLaCrO3焼成体が用いられ、これ
らは、いずれもガス不透過な緻密性の焼成体である。こ
のような材料で構成される単セルとインタコネクターと
は材料的にはガス不透過であるが、その接合面は一体焼
結が困難なため、その接合面からガスリークが生じ発電
効率を下げる原因となる。この問題点を解決するため
に、例えば特開平2−215052号,特開平2−16
8568号に開示されたような単セルの内周面または外
周面にガラスシールする方法がある。
2. Description of the Related Art A plate type solid electrolyte fuel cell (hereinafter referred to as SOFC) using an oxide solid electrolyte such as zirconia.
Has high power generation efficiency because its operating temperature is as high as 800-1000 ° C, there is no liquid leakage trouble because the constituent material is solid, and it has an internal resistance smaller than the cylindrical SOFC, which is effective for high output. It has features such as Such a flat plate type SOFC has a fuel electrode, an electrolyte,
It is composed of a stack in which single cells consisting of oxygen electrodes and interconnectors or separate plates that connect the single cells are alternately laminated, and grooves that intersect at right angles in three dimensions are formed as gas channels on both sides of the interconnector. Then, different reaction gases (fuel gas on the fuel electrode side and oxygen gas on the oxygen electrode side) respectively flow. Further, the fuel electrode and the oxygen electrode are porous electrodes so that the reaction gas can be easily diffused. Generally, a zirconia fired body is used as the electrolyte and a LaCrO 3 fired body is used as the interconnector, and these are both gas impermeable dense fired bodies. The unit cell made of such materials and the interconnector are impermeable to gas, but it is difficult to sinter the joint surface, which causes gas leakage from the joint surface and reduces the power generation efficiency. Becomes In order to solve this problem, for example, Japanese Patent Laid-Open Nos. 2-215052 and 2-16
There is a method of glass sealing the inner peripheral surface or the outer peripheral surface of a single cell as disclosed in No. 8568.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、100
0℃の高温で、かつ高出力を得るためにガス流量を増大
させセル内圧力を高くした条件下で上記従来のSOFC
を運転した場合に、シール材の溶融ガラスの粘度が減少
しシール性が劣るという問題があった。
[Problems to be Solved by the Invention] However, 100
The conventional SOFC described above is operated at a high temperature of 0 ° C. and under the condition that the gas flow rate is increased and the cell internal pressure is increased to obtain a high output.
However, there was a problem that the viscosity of the molten glass of the sealing material was reduced and the sealing property was deteriorated when the operation was performed.

【0004】また、従来の平板型セル発電部における燃
料流と空気流は、互いに直交する交差型セルになってい
るため、発電部の電流密度及び温度分布に著しい匂配が
生じ、セルに内部応力歪みが発生し、長期信頼性に問題
があった(Proceeding of 2nd In
ternatinal Symposium onSo
lid Oxide Fuel Cell,P.305
−312,July1991)。さらに、セルを大型化
した場合、セルのガス供給口の電流密度が著しく大きく
なりセル全面に渡って一様な発電が行なわれなくなるた
め、セルの出力密度が低下するという問題があった。
Further, since the fuel flow and the air flow in the conventional flat-plate type cell power generation section are cross-type cells which are orthogonal to each other, a remarkable odor is generated in the current density and temperature distribution of the power generation section, and the inside of the cell There was a problem of long-term reliability due to stress strain (Proceeding of 2nd In
ternary Symposium on So
lid Oxide Fuel Cell, P.M. 305
-312, July 1991). Further, when the cell is made larger, the current density at the gas supply port of the cell becomes remarkably large, and uniform power generation is not performed over the entire surface of the cell, so that there is a problem that the output density of the cell is lowered.

【0005】本発明は上記問題点を解決するためになさ
れたものであり、その目的は、従来の平板型SOFCが
抱えていた燃料ガスと酸素ガスのガスシールの問題及び
交差型セル・モジュールに起因して発生する熱歪の問題
を改善して、高信頼性で高効率・高出力な平板型SOF
Cを提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to solve the problem of the gas sealing between the fuel gas and the oxygen gas, which the conventional flat plate type SOFC has, and the cross type cell module. Flat type SOF with high reliability, high efficiency and high output by improving the problem of thermal strain caused by
To provide C.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明による請求項1の発明では、燃料極,固体電
解質,酸素極よりなる平板型固体電解質燃料電池におい
て、酸素極が上面に多数の開口部を有する中空状の孔を
形成してある有底形直方体であり、該直方体の片面に固
体電解質,燃料極を形成し、それと反対の一方の片面お
よび底部,側部の面にインタコネクターの緻密膜を形成
した単セル構造体を成している構成としている。
In order to achieve the above object, in the invention of claim 1 according to the present invention, in a flat plate type solid electrolyte fuel cell comprising a fuel electrode, a solid electrolyte and an oxygen electrode, the oxygen electrode is on the upper surface. A bottomed rectangular parallelepiped in which hollow holes having a large number of openings are formed. A solid electrolyte and a fuel electrode are formed on one surface of the rectangular parallelepiped, and the other surface and the bottom surface and the side surface opposite to the solid electrolyte are formed. The structure is a single cell structure in which a dense film of an interconnector is formed.

【0007】また、同じく請求項2の発明では、酸素ガ
ス供給管が有底直方体の酸素極上面の開口部より挿入さ
れ、酸素ガスが該酸素ガス供給管より酸素極内部に供給
される構造を有する構成とする。
Further, according to the second aspect of the present invention, the oxygen gas supply pipe is inserted from the opening of the oxygen electrode upper surface of the rectangular parallelepiped with a bottom, and the oxygen gas is supplied from the oxygen gas supply pipe into the oxygen electrode. It is assumed to have.

【0008】また、同じく請求項3の発明では、単セル
間の電気的接続がニッケルフェルトで接続されている構
成とする。
Also, in the third aspect of the invention, the electrical connection between the unit cells is made of nickel felt.

【0009】さらに、同じく請求項4の発明では、燃料
極から排出されるガスを、該燃料極の燃料ガスとしてリ
サイクルする経路に導く構成としている。
Further, according to the fourth aspect of the invention, the gas discharged from the fuel electrode is guided to a route for recycling the fuel gas of the fuel electrode.

【0010】[0010]

【作用】本発明の請求項1の発明の平板型固体電解質燃
料電池では、酸素極を多数の孔を有する有底形直方体と
し、有底形直方体の片面にガス不透過膜の固体電解質
膜、また、固体電解質膜のついていない他の面をガス不
透過膜のインタコネクター膜でそれぞれ覆って、ガスシ
ール構造を設けることなく酸素極内部に供給される酸素
ガスと該有底形直方体の外部に供給される燃料ガスとの
混合が起こらないようにし、それに伴う発電効率の低下
を防止する。
According to the flat plate type solid electrolyte fuel cell of the invention of claim 1, the oxygen electrode is a bottomed rectangular parallelepiped having a large number of holes, and a solid electrolyte membrane of a gas impermeable membrane is formed on one surface of the bottomed rectangular parallelepiped. Also, the other surface without the solid electrolyte membrane is covered with the interconnector membrane of the gas impermeable membrane, and the oxygen gas supplied into the oxygen electrode and the outside of the bottomed rectangular parallelepiped are provided without providing a gas seal structure. The mixing with the supplied fuel gas is prevented from occurring and the power generation efficiency is prevented from lowering accordingly.

【0011】また、請求項2の発明では、特に、固体電
解質膜上に形成される燃料極面上の燃料ガスと固体電解
質膜と接している酸素極面上の酸素ガスの気流の向きを
互いに同一方向とし、セル発電部の熱分布を従来のガス
流が直交している平板型SOFCに比べ均一化し、応力
歪を改善し、信頼性を高める。
According to the second aspect of the present invention, in particular, the directions of the air flow of the fuel gas on the fuel electrode surface formed on the solid electrolyte membrane and the oxygen gas on the oxygen electrode surface in contact with the solid electrolyte membrane are mutually different. In the same direction, the heat distribution in the cell power generation section is made more uniform than in the conventional flat plate SOFC in which the gas flows are orthogonal, stress distortion is improved, and reliability is increased.

【0012】また、請求項3の発明では、特に、セルに
流れる電流の向きを平板型SOFCセル面と直角方向に
なるようにして、円筒型SOFCに比べて、電極面方向
の電流の流れをなくすことによりセル内部抵抗を小さく
し、高効率・高出力を実現している。
According to the third aspect of the present invention, in particular, the direction of the current flowing through the cell is set to the direction perpendicular to the plane type SOFC cell surface, so that the current flow in the direction of the electrode surface is greater than that of the cylindrical SOFC. By eliminating it, the internal resistance of the cell is reduced and high efficiency and high output are realized.

【0013】さらに、請求項4の発明では、特に、燃料
極から排出される未利用の燃料ガスの大部分をリサイク
ルすることにより、高効率のSOFCを実現する。
Further, according to the invention of claim 4, in particular, a high efficiency SOFC is realized by recycling most of the unused fuel gas discharged from the fuel electrode.

【0014】[0014]

【実施例】以下、本発明の実施例を、図面に基づいて詳
細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0015】図1は、本発明の実施例に係わる平板型S
OFCの単セル構造の斜視図で、図2は平板型SOFC
モジュール構造の断面図である。酸素極1は上面に複数
の開口部6を有する有底形直方体である。酸素極1は、
材料としてLa0・9Sr0・1MnO3粉末を用い、静水圧
プレス法にて開口部6を有する有底形直方体を成形し、
それを焼結体とすることにより作製する。その焼結体は
気孔率が30%の多孔体である。この焼結体の酸素極1
の固体電解質2を形成する面をマスクして、他の面に化
学気相蒸着(CVD)法−電気化学的気相蒸着(EV
D)法にて、厚さ20μmのマグネシウムをドープした
ランタンクロマイト(LaCr0・95Mg0・053)膜を
インタコネクター4として形成する。次に、マスクを取
り外し、その位置にCVD−EVD法にて厚さ20μm
のイットリア(Y23)を10mole%ドープしたジ
ルコニア(ZrO2)膜を固体電解質2として形成す
る。次に、固体電解質2の面にニッケル−ジルコニア粉
末をスラリーとし塗布し、焼結させて燃料極3を形成す
る。
FIG. 1 shows a flat plate type S according to an embodiment of the present invention.
FIG. 2 is a perspective view of a single cell structure of OFC, and FIG.
It is sectional drawing of a module structure. The oxygen electrode 1 is a bottomed rectangular parallelepiped having a plurality of openings 6 on its upper surface. The oxygen electrode 1 is
Using La 0 .9 Sr 0 .1 MnO 3 powder as a material, a bottomed rectangular parallelepiped having an opening 6 was formed by a hydrostatic pressing method,
It is produced by making it a sintered body. The sintered body is a porous body having a porosity of 30%. Oxygen electrode 1 of this sintered body
Of the solid electrolyte 2 is masked, and the other surface is chemically vapor deposited (CVD) -electrochemical vapor deposition (EV).
A lanthanum chromite (LaCr 0 .95 Mg 0 .05 O 3 ) film having a thickness of 20 μm and doped with magnesium is formed as the interconnector 4 by the method D). Next, the mask is removed, and the position is 20 μm thick by the CVD-EVD method.
The zirconia (ZrO 2 ) film doped with yttria (Y 2 O 3 ) of 10 mol% is formed as the solid electrolyte 2. Next, nickel-zirconia powder is applied as a slurry to the surface of the solid electrolyte 2 and sintered to form the fuel electrode 3.

【0016】このようにして作製した単セル5を縦に並
べて、断熱容器10に収納し、単セル間をニッケルフェ
ルト8にて電気的に接続させ、SOFCモジュールを構
成する。酸素ガスは、酸素極1の開口部6から挿入され
た酸素ガス供給管7により単セル5の酸素極1内部に下
方から上方に向かって供給される。燃料ガスの水素ガス
は、単セル5の底部側よりニッケルフェルト8を通って
単セル5外面に供給される。電池反応に使用されない未
反応水素ガスは単セル5上部より取り出されて燃料ガス
と混合し、燃料極3への燃料ガスとしてリサイクルされ
る。また、一部の未反応水素ガスは、多孔板11を経て
燃焼室9に入り、未反応酸素ガスと混合・燃焼する。そ
の時発生する燃焼熱は、供給酸素ガスの余熱に使用され
る。
The single cells 5 thus produced are vertically arranged and housed in a heat insulating container 10, and the single cells are electrically connected by nickel felt 8 to form an SOFC module. The oxygen gas is supplied into the oxygen electrode 1 of the unit cell 5 from the lower side to the upper side by the oxygen gas supply pipe 7 inserted from the opening 6 of the oxygen electrode 1. Hydrogen gas as the fuel gas is supplied to the outer surface of the unit cell 5 from the bottom side of the unit cell 5 through the nickel felt 8. Unreacted hydrogen gas that is not used in the cell reaction is taken out from the upper part of the unit cell 5, mixed with fuel gas, and recycled as fuel gas to the fuel electrode 3. Further, a part of the unreacted hydrogen gas enters the combustion chamber 9 through the porous plate 11 and is mixed and burned with the unreacted oxygen gas. The combustion heat generated at that time is used as residual heat of the supplied oxygen gas.

【0017】以上のように構成した実施例の動作および
作用を述べる。本実施例では、酸素極1が直方体形状
で、その上面部に多数の開口部6を有する中空状の孔を
形成した有底形直方体となっており、この有底形直方体
の片面に固体電解質2,燃料極3を順次形成し、それと
反対の片面および底部、側部の各面にインタコネクター
4の緻密膜が形成してあり、酸素ガスは開口部6から挿
入された酸素ガス供給管7により酸素極1内部に供給さ
れ、酸素ガス供給管7の外壁部と開口部6の隙間より燃
焼室9に排出される。燃料ガスは有底形直方体外面の燃
料極3およびインタコネクター4の面に供給され、発電
部において酸素流と燃料流は平行流となるので、発電部
の温度分布・電流密度が均一化され、応力歪が改善され
て長期信頼性が高まる。酸素ガスと燃料ガスとは緻密膜
である固体電解質及びインタコネクターにより完全に分
離され、混合することはない。従って、従来の平板型S
OFCで行っている特別なガスシール処理を施すことな
くガス分離が達成される。
The operation and action of the embodiment configured as described above will be described. In this embodiment, the oxygen electrode 1 has a rectangular parallelepiped shape, and has a bottomed rectangular parallelepiped in which hollow holes having a large number of openings 6 are formed on the upper surface thereof, and the solid electrolyte is formed on one surface of the bottomed rectangular parallelepiped. 2, the fuel electrode 3 is sequentially formed, and a dense film of the interconnector 4 is formed on one surface, a bottom portion, and a side surface opposite to the fuel electrode 3, and oxygen gas is supplied through the opening 6 to the oxygen gas supply pipe 7 Is supplied to the inside of the oxygen electrode 1, and is discharged into the combustion chamber 9 through the gap between the outer wall of the oxygen gas supply pipe 7 and the opening 6. The fuel gas is supplied to the surfaces of the fuel electrode 3 and the interconnector 4 on the outer surface of the bottomed rectangular parallelepiped, and the oxygen flow and the fuel flow are parallel flows in the power generation part, so that the temperature distribution and current density of the power generation part are made uniform, Stress strain is improved and long-term reliability is enhanced. Oxygen gas and fuel gas are completely separated by the solid electrolyte and interconnector, which are dense membranes, and do not mix. Therefore, the conventional flat plate type S
Gas separation can be achieved without the special gas sealing process performed in OFC.

【0018】発電部での未利用の燃料ガスの大部分は有
底形直方体の単セル5の上部のリサイクル用排出口より
排出され、新しい燃料ガスと混合され、図略の改質器,
二酸化炭素除去装置を経て、発電部へ再供給され、発電
効率を高めることができる。また、一部の未利用燃料ガ
スは有底形直方体の単セル5の上面部に位置する燃料室
9に入る。一方、先に述べたように、有底形直方体の単
セル5の上面部の開口部6と酸素ガス供給管8の隙間よ
り排出される未利用の酸素ガスも燃焼室9に入る。そこ
で、未利用燃料ガスは酸素ガスと燃焼し、その時発生す
る燃焼熱は供給酸素ガスの余熱に利用される。
Most of the unused fuel gas in the power generation section is discharged from the recycling outlet at the top of the bottomed rectangular parallelepiped unit cell 5, mixed with new fuel gas, and the reformer (not shown),
It is re-supplied to the power generation unit via the carbon dioxide removal device, and the power generation efficiency can be increased. Further, a part of the unused fuel gas enters the fuel chamber 9 located on the upper surface of the unit cell 5 having a bottomed rectangular parallelepiped shape. On the other hand, as described above, the unused oxygen gas discharged from the gap between the opening 6 at the upper surface of the unit cell 5 having a bottomed rectangular parallelepiped and the oxygen gas supply pipe 8 also enters the combustion chamber 9. Therefore, the unused fuel gas burns with the oxygen gas, and the combustion heat generated at that time is used as the residual heat of the supplied oxygen gas.

【0019】単セル5間の電気的接続は、単セル5面の
燃料極3ともう一方の単セル5面のインタコネクター4
との間でニッケルフェルト8を介して行われる。電流の
流れは燃料極3、固体電解質2、酸素極1、インタコネ
クター4が積層して構成される各平板面に対して直角方
向になっており、円筒型SOFCの場合に生じる電極面
方向に電流の流れがないので、単セル5の内部抵抗が小
さくなり、高効率・高出力が実現できる。
The electrical connection between the unit cells 5 is performed by the fuel electrode 3 on one side of the unit cell 5 and the interconnector 4 on the other side of the unit cell 5.
Via nickel felt 8. The current flow is in a direction perpendicular to each flat plate surface formed by stacking the fuel electrode 3, the solid electrolyte 2, the oxygen electrode 1, and the interconnector 4, and in the direction of the electrode surface generated in the case of a cylindrical SOFC. Since there is no current flow, the internal resistance of the unit cell 5 is reduced, and high efficiency and high output can be realized.

【0020】上記の実施例において、燃料ガスとして水
素ガス、酸素ガスとして空気を用い、燃料利用率80
%、酸素利用率25%で、5cm角の3セルにて温度1
000℃で発電試験を行ったところ、高い発電効率50
%(LHV)、高い出力密度0.7w/cm2が得られ
た。
In the above embodiment, hydrogen gas is used as the fuel gas and air is used as the oxygen gas, and the fuel utilization rate is 80%.
%, Oxygen utilization rate 25%, temperature 3 in 5 cm square 3 cells
High power generation efficiency of 50
% (LHV), a high power density of 0.7 w / cm 2 was obtained.

【0021】[0021]

【発明の効果】以上の説明で明らかなように、本発明の
平板型固体電解質燃料電池は、発電部においてガスシー
ルレス構造をとっているので、ガスシール不良による燃
料ガスと酸素ガスの混合による発電損失は起こり得な
い。
As is clear from the above description, since the flat plate type solid electrolyte fuel cell of the present invention has the gas sealless structure in the power generation section, it is possible to mix the fuel gas and the oxygen gas due to the gas seal failure. No power generation loss can occur.

【0022】また、請求項2の発明によれば、特に、ガ
ス供給管内包セル構造により、燃料ガス流と酸素ガス流
は同一方向となり、セル内温度分布を交差型SOFCに
比べ低減できるので、信頼性の高い平板型固体電解質燃
料電池の実現を図ることができる。
According to the second aspect of the invention, in particular, the fuel gas flow and the oxygen gas flow are in the same direction due to the gas supply pipe-containing cell structure, so that the temperature distribution in the cell can be reduced as compared with the cross type SOFC. It is possible to realize a highly reliable flat plate solid oxide fuel cell.

【0023】また、請求項3の発明によれば、特に、セ
ルに流れる電流の向きがセル面と直角方向になるので、
セル内部抵抗が小さくなり、高効率・高出力が実現され
る。
According to the third aspect of the invention, in particular, the direction of the current flowing in the cell is perpendicular to the cell surface,
The internal resistance of the cell is reduced and high efficiency and high output are realized.

【0024】さらに、請求項4の発明によれば、特に、
燃料ガスをリサイクルさせることにより燃料の無駄を省
き、発電効率を向上させることができる。
Further, according to the invention of claim 4, in particular,
By recycling the fuel gas, waste of fuel can be eliminated and power generation efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す平板型固体電解質燃料
電池の単セル構造の斜視図
FIG. 1 is a perspective view of a single cell structure of a flat plate type solid electrolyte fuel cell showing an embodiment of the present invention.

【図2】上記実施例の平板型固体電解質燃料電池モジュ
ールの断面図
FIG. 2 is a sectional view of the flat plate type solid electrolyte fuel cell module of the above embodiment.

【符号の説明】[Explanation of symbols]

1…酸素極 2…固体電解質 3…燃料極 4…インタコネクター 5…単セル 6…開口部 7…酸素ガス供給管 8…ニッケルフェルト 9…燃焼室 10…断熱容器 11…多孔板 DESCRIPTION OF SYMBOLS 1 ... Oxygen electrode 2 ... Solid electrolyte 3 ... Fuel electrode 4 ... Interconnector 5 ... Single cell 6 ... Opening part 7 ... Oxygen gas supply pipe 8 ... Nickel felt 9 ... Combustion chamber 10 ... Thermal insulation container 11 ... Perforated plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料極,固体電解質,酸素極よりなる平
板型固体電解質燃料電池において、酸素極が、上面に多
数の開口部を有する中空状の孔を形成してある有底形直
方体であり、該有底形直方体の片面に前記固体電解質,
前記燃料極を形成し、それと反対の一方の片面および底
部,側部の面にインタコネクターの緻密膜を形成した単
セル構造体を構成していることを特徴とする平板型固体
電解質燃料電池。
1. A flat plate solid electrolyte fuel cell comprising a fuel electrode, a solid electrolyte and an oxygen electrode, wherein the oxygen electrode is a bottomed rectangular parallelepiped having a hollow hole having a large number of openings on the upper surface. The solid electrolyte on one side of the bottomed rectangular parallelepiped,
A flat plate type solid electrolyte fuel cell comprising the fuel electrode, and a single cell structure in which a dense film of an interconnector is formed on one surface, a bottom surface and a side surface opposite to the fuel electrode.
【請求項2】 酸素ガス供給管が有底直方体の酸素極上
面の開口部より挿入され、酸素ガスが該酸素ガス供給管
より酸素極内部に供給される構造を有することを特徴と
する請求項1記載の平板型固体電解質燃料電池。
2. An oxygen gas supply pipe is inserted from an opening on the upper surface of the oxygen electrode of a rectangular parallelepiped with a bottom, and oxygen gas is supplied to the inside of the oxygen electrode from the oxygen gas supply pipe. 1. The flat plate solid electrolyte fuel cell described in 1.
【請求項3】 単セル間の電気的接続がニッケルフェル
トで接続されていることを特徴とする請求項1記載の平
板型固体電解質燃料電池。
3. The flat plate type solid electrolyte fuel cell according to claim 1, wherein the electrical connection between the unit cells is made by nickel felt.
【請求項4】 燃料極から排出されるガスを、該燃料極
の燃料ガスとしてリサイクルする経路に導くことを特徴
とする請求項1記載の平板型固体電解質燃料電池。
4. The flat plate type solid electrolyte fuel cell according to claim 1, wherein the gas discharged from the fuel electrode is led to a path for recycling as the fuel gas of the fuel electrode.
JP4214442A 1992-08-12 1992-08-12 Flat type solid electrolyte fuel cell Pending JPH0660888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4214442A JPH0660888A (en) 1992-08-12 1992-08-12 Flat type solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4214442A JPH0660888A (en) 1992-08-12 1992-08-12 Flat type solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH0660888A true JPH0660888A (en) 1994-03-04

Family

ID=16655846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4214442A Pending JPH0660888A (en) 1992-08-12 1992-08-12 Flat type solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH0660888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122268B2 (en) 2001-04-23 2006-10-17 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
WO2011030625A1 (en) 2009-09-09 2011-03-17 コニカミノルタホールディングス株式会社 Fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122268B2 (en) 2001-04-23 2006-10-17 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
US8323845B2 (en) 2001-04-23 2012-12-04 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
WO2011030625A1 (en) 2009-09-09 2011-03-17 コニカミノルタホールディングス株式会社 Fuel cell

Similar Documents

Publication Publication Date Title
US4476197A (en) Integral manifolding structure for fuel cell core having parallel gas flow
JP4790577B2 (en) Solid oxide fuel cell module, fuel cell using the same, and manufacturing method thereof
JP4800439B1 (en) Fuel cell structure
JP4764597B2 (en) Solid oxide fuel cell and fuel cell stack
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
TWI811327B (en) Electrochemical module, assembly method for electrochemical module, electrochemical device, and energy system
JPH04298965A (en) Solid electrolyte type fuel cell and manufacture thereof
TWI729087B (en) Electrochemical element, electrochemical module, electrochemical device, and energy system
JP7353270B2 (en) Electrochemical elements, electrochemical modules, electrochemical devices and energy systems
JPH03219563A (en) Solid electrolyte type fuel cell
JP2023075221A (en) Electrochemical module, electrochemical device, and energy system
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
KR20200094876A (en) Solid oxide fuel cells and solid oxide electrolysis cells
JPH0589890A (en) Cell of solid electrolyte type fuel battery and power generating device using it
WO2020203897A1 (en) Electrochemical element, electrochemical element stacked body, electrochemical module, electrochemical device, and energy system
JPH02168568A (en) Fuel battery with solid electrolyte
JPH0660888A (en) Flat type solid electrolyte fuel cell
KR20110026944A (en) Solid oxide fuel cells and manufacturing method thereof
JPH05166518A (en) Cell for solid electrolyte fuel cell and power generating device using it
JP2004288493A (en) Solid electrolyte fuel cell assembly
US20220393219A1 (en) Fuel plenum and fuel cell stack including same
JP6013006B2 (en) Fuel cell
JP2693676B2 (en) Power generator
JP2004288374A (en) Solid electrolyte fuel cell assembly
JP4228895B2 (en) Solid oxide fuel cell