JP3686773B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP3686773B2
JP3686773B2 JP07191299A JP7191299A JP3686773B2 JP 3686773 B2 JP3686773 B2 JP 3686773B2 JP 07191299 A JP07191299 A JP 07191299A JP 7191299 A JP7191299 A JP 7191299A JP 3686773 B2 JP3686773 B2 JP 3686773B2
Authority
JP
Japan
Prior art keywords
oxygen
containing gas
combustion chamber
supply pipe
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07191299A
Other languages
Japanese (ja)
Other versions
JP2000268839A (en
Inventor
和正 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP07191299A priority Critical patent/JP3686773B2/en
Publication of JP2000268839A publication Critical patent/JP2000268839A/en
Application granted granted Critical
Publication of JP3686773B2 publication Critical patent/JP3686773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質型燃料電池に関し、特に、反応容器内に燃焼室仕切板を用いて燃焼室と反応室を形成した固体電解質型燃料電池に関する。
【0002】
【従来技術】
従来の固体電解質型燃料電池は、図9に示すように、反応容器51内に、空気室仕切板53、燃焼室仕切板55、燃料ガス室仕切板57を用いて酸素含有ガス室A、燃焼室B、反応室C、燃料ガス室Dが形成されている。
【0003】
反応容器51内に収容された複数の有底筒状の固体電解質型燃料電池セル59は、燃焼室仕切板55に形成された複数のセル挿入孔60にそれぞれ挿入固定され、その開口部61は燃焼室仕切板55から燃焼室B内に突出しており、その内部には空気室仕切板53に固定された空気導入管63の一端が挿入されている。
【0004】
燃焼室仕切板55には、余剰の燃料ガスを燃焼室Bに導入するための余剰燃料ガス噴出孔64が形成されており、燃料ガス室仕切板57には、燃料ガスを反応室C内に供給するための供給孔が形成されている。
【0005】
また、反応容器51には、例えば水素からなる燃料ガスを導入する燃料ガス供給管65、例えば空気からなる酸素含有ガスを供給する酸素含有ガス供給管67、燃焼室B内で燃焼したガスを排出するための排気管69が形成されている。
【0006】
燃料ガス供給管65は燃料ガス室Dに開口し、酸素含有ガス供給管67は酸素含有ガス室Aに開口し、排気管69は燃焼室Bに開口している。
【0007】
固体電解質型燃料電池セル59は、円筒状のポーラスな空気極の表面に固体電解質層が形成され、この固体電解質層の表面に燃料極層が形成され、さらに、集電体層が空気極層と固体電解質層に接合されて構成されている。
【0008】
このような固体電解質型燃料電池は、酸素含有ガス室Aからの空気を、空気導入管63を介して固体電解質型燃料電池セル59内にそれぞれ供給し、かつ、燃料ガス室Dからの燃料ガスを複数の固体電解質型燃料電池セル59間に供給し、反応室Cにて反応させ、余剰の空気と余剰の燃料ガスを燃焼室Bにて燃焼させ、燃焼したガスが排気管69から外部に排出される。
【0009】
反応室C内の反応は、固体電解質型燃料電池セル59内に供給された空気がポーラスな空気極層を固体電解質層に向けて拡散し、また燃料ガスが固体電解質型燃料電池セル59の外側から固体電解質層に向けて拡散し、この固体電解質にて生じる。
【0010】
【発明が解決しようとする課題】
しかしながら、従来の固体電解質型燃料電池は、高温の燃焼ガスを全て排気管69から排出していたため、エネルギー損失が大きかった。更に、発電用酸化剤ガスである空気の予熱が、燃焼室B内を通る空気導入管63のみと限られていたために十分ではなかった。また燃焼室B及び排気管69は、高温の燃焼ガスに曝されるため熱的負荷が大きく、燃焼室Bを形成するための反応容器の劣化が著しいという問題があった。
【0011】
本発明は、酸素含有ガスの予熱区間を拡大して予熱を十分とすることができ、排気ガスを再利用できるため発電システムとしてのエネルギー効率を向上できるとともに、排気管への熱的負荷を軽減できる固体電解質型燃料電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の固体電解質型燃料電池は、反応容器内に燃焼室仕切板を用いて燃焼室と反応室を形成し、複数の有底筒状の固体電解質型燃料電池セルを、前記燃焼室仕切板に形成された複数のセル挿入孔に、開口部が前記燃焼室仕切板から前記燃焼室側に突出するようにそれぞれ挿入固定するとともに、前記反応容器に酸素含有ガス供給管と燃料ガス供給管を設け、さらに前記反応容器に前記燃焼室の燃焼ガスを排出する排気管を設けてなり、前記酸素含有ガス供給管の酸素含有ガスを前記固体電解質型燃料電池セル内にそれぞれ供給し、かつ、前記燃料ガス供給管の燃料ガスを前記反応室内の前記固体電解質型燃料電池セル間に供給して反応させる固体電解質型燃料電池であって、前記酸素含有ガス供給管を前記排気管に対し二重管構造とするかまたは当接させるとともに、前記燃焼室を形成する前記反応容器の外周面に当接させたことを特徴とするものである。
【0013】
ここで、酸素含有ガス供給管内に排気管が挿入されており、前記排気管内を燃焼ガスが、前記酸素含有ガス供給管と前記排気管との間を酸素含有ガスが流れることが望ましい。
【0014】
【作用】
本発明の固体電解質型燃料電池では、酸素含有ガス供給管を排気管に沿って設けたので、従来、酸素含有ガスの予熱は、燃焼室内の空気導入管のみで行われていたが、排気管表面においても熱交換ができることとなり、予熱区間を延長でき、酸素含有ガスの予熱を十分行うことができる。また、従来、排気ガスとして外部に放出していた、燃焼ガスの熱エネルギーを酸素含有ガスの予熱として再利用でき、発電システムとしてのエネルギー効率を向上できる。さらに、高温の排気管と、低温の酸素含有ガス供給管との間で熱交換することにより、排気管の表面を冷却することができ、排気管の熱的負荷を軽減でき、排気管の寿命を向上することができる。
【0015】
また、酸素含有ガス供給管内に排気管を挿入し、排気管内に燃焼ガスを、酸素含有ガス供給管と排気管との間に酸素含有ガスを流すことにより、酸素含有ガスの予熱をさらに十分行うことができるとともに、排気管の熱的負荷をさらに軽減することができる。
【0016】
さらにまた、酸素含有ガス供給管が、燃焼室を形成する反応容器の外面に沿った反応容器当接部を有することにより、酸素含有ガスの予熱を、燃焼室を形成する反応容器の表面においても行うことができ、酸素含有ガスの予熱をさらに十分行うことができるとともに、燃焼室を形成する高温の反応容器の表面と、低温の酸素含有ガスとの間で熱交換することにより、反応容器の表面を冷却することができ、反応容器における熱的負荷を軽減でき、反応容器の寿命を向上することができる。
【0017】
【発明の実施の形態】
本発明の固体電解質型燃料電池は、図1に示すように、反応容器1内に、空気室仕切板3、燃焼室仕切板5、燃料ガス室仕切板7を用いて酸素含有ガスA、燃焼室B、反応室C、燃料ガス室Dが形成されている。
【0018】
反応容器1内に収容された複数の有底筒状の固体電解質型燃料電池セル9は、燃焼室仕切板5に形成された複数のセル挿入孔6にそれぞれ挿入固定され、その開口部10は燃焼室仕切板5から燃焼室B内に突出しており、その内部には、空気室仕切板3に挿入固定された空気導入管11の一端が挿入されている。
【0019】
燃焼室仕切板5には、図2に示すように、余剰の燃料ガスを燃焼室Bに導入するための多数の余剰燃料ガス噴出孔12が形成されており、燃料ガス室仕切板7には、図1に示したように、燃料ガスを反応室C内に供給するための多数の供給孔14が形成されている。
【0020】
そして、反応容器1には、例えば水素からなる燃料ガスを導入する燃料ガス導入管13、空気からなる酸素含有ガスを導入する酸素含有ガス供給管17、燃焼室B内で燃焼したガスを排出するための排気管19が設けられている。即ち、燃料ガス導入管13の一端は燃料ガス室Dに開口しており、酸素含有ガス供給管17の一端は酸素含有ガス室Aに開口し、排気管19の一端は燃焼室Bに開口している。
【0021】
また、酸素含有ガス供給管17は、図3乃至図5に示すように、酸素含有ガス供給管17内に排気管19が挿入された二重管部a、燃焼室Bを形成する反応容器1の外周面に沿って環状に形成された反応容器当接部b、予熱された酸素含有ガスを酸素含有ガス室Aに導入する導入部cとから構成されている。
【0022】
酸素含有ガス供給管17の一端は、排気管19の一端の開口位置と対向する位置に開口している。
【0023】
酸素含有ガス供給管17の二重管部aでは、排気管19内を燃焼ガスが、酸素含有ガス供給管17と排気管19との間を酸素含有ガスが流れることになる。
【0024】
また、酸素含有ガスの体積に対し熱交換面積をできるだけ大きくするという点から、酸素含有ガス供給管17の内壁面と排気管19の外周面との隙間d1 、反応容器1の外周面と反応容器当接部bの内面との間隔d2 は、10mm以下であることが望ましい。
尚、セル9は、図6に示すように、例えば、支持管としてのLaMnO3 系空気極層25と、この空気極層25の表面に形成されたY2 3 安定化ZrO2 からなる固体電解質層26と、固体電解質層26の表面に形成されたNi−ジルコニア系の燃料極層27と、空気極層25と電気的に接続されるLaCrO3 系よりなるインターコネクタ28とから構成されている。
【0025】
そして、図7に示すように、一方のセル9のインターコネクタ28を、他方のセル9の燃料極層27にNi金属繊維等の接続部材31を介して、他方のセル9の燃料極層27に接続して、複数のセル9が電気的に接続され、スタック33が構成されており、このようなスタック33が、図1に示したように、反応容器1内に収容されて固体電解質型燃料電池が構成されている。反応容器1内には、一つのセル9のインターコネクタ28に接続された電極35と、他方のセル9の燃料極層27に接続された電極37が配置されており、これらの電極35、37を介して電力が取り出される。
【0026】
このような固体電解質型燃料電池は、例えば空気を酸素含有ガス供給管17から空気導入管11を介してセル9内に導入するとともに、燃料ガス供給管13から例えば水素を導入し、燃料ガス室仕切板7の分散孔で分散してセル9の外部に導入することにより行われ、余剰の空気と燃料ガスは燃焼室B内で燃焼させられ、排気管19から外部に排出される。
【0027】
固体電解質型燃料電池セル一本のガスの流れを説明すると、水素ガス(燃料ガス)はセル下方から導入され、発電により酸化されながら上方へと進む。一方空気(酸化含有ガス)は空気導入管11を介してセル上方よりセル内部下方へ導入される。そしてセル内部下方より上部へと流れる。セル上部より排出された空気は発電で消費されなかった水素ガスと反応し、燃焼室B内で燃焼する。
【0028】
以上のように構成された固体電解質型燃料電池では、酸素含有ガス供給管17内に排気管19を挿入し、排気管19内に燃焼ガスを、酸素含有ガス供給管17と排気管19との間に酸素含有ガスを流すことにより、排気管19外表面において排気管19内の燃焼ガスと、酸素含有ガス供給管17内の酸素含有ガスとの間で熱交換できることとなり、予熱区間を大幅に延長でき、酸素含有ガスの予熱を十分行うことができるとともに、従来、排気ガスとして外部に放出していた燃焼ガスの熱エネルギーを酸素含有ガスの予熱として再利用でき、発電システムとしてのエネルギー効率を向上できる。
【0029】
また、高温の排気管19の外表面で熱交換することにより、排気管19の外表面を冷却することができ、排気管19の熱的負荷を軽減でき、排気管19の寿命を向上することができる。
【0030】
さらに、酸素含有ガス供給管17を、二重管部aと、反応容器1の外周面に沿って形成された反応容器当接部bと、導入部cとから構成したので、酸素含有ガスの予熱を、燃焼室Bの側面を形成する反応容器1の表面においても行うことができ、酸素含有ガスの予熱をさらに十分行うことができるとともに、燃焼室Bを形成する高温の反応容器1の表面と、低温の酸素含有ガスとの間で熱交換することにより、反応容器1の表面を冷却することができ、反応容器1における熱的負荷を軽減でき、反応容器1の寿命を向上することができる。
【0031】
尚、上記例では、酸素含有ガス供給管17を、二重管部aと、反応容器1の外周に沿って形成された反応容器当接部bと、導入部cとから構成した例について説明したが、本発明では、上記実施例に限定されるものではなく、例えば、図8に示すように、酸素含有ガス供給管17を、排気管19に沿った(当接した)状態で形成された当接部eと、当接部eから、予熱された酸素含有ガスを酸素含有ガス室Aに導入する導入部fとから構成しても良い。
【0032】
また、上記例では、酸素含有ガス供給管17に、燃焼室Bの側面を形成する反応容器1の外周面全体に沿って形成された反応容器当接部bを形成した例について説明したが、反応容器当接部は、反応容器1の外周全体に形成される必要はなく、例えば、半周でも良い。
【0033】
【発明の効果】
本発明の固体電解質型燃料電池では、酸素含有ガス供給管を排気管に沿って設けたので、酸素含有ガスの予熱区間を延長でき、酸素含有ガスの予熱を十分行うことができるとともに、燃焼ガスによる熱エネルギアーを回収して、発電システムとしてのエネルギー効率を向上でき、さらに、高温の排気管の表面と低温の酸素含有ガス供給管の表面で熱交換することにより、排気管の表面を冷却することができ、排気管の熱的負荷を軽減し、排気管の寿命を向上することができる。
【図面の簡単な説明】
【図1】本発明の固体電解質型燃料電池の模式図である。
【図2】燃焼室仕切板およびその近傍を示すもので、(a)は側面図、(b)は平面図である。
【図3】燃焼室の側面を形成する反応容器およびその近傍を示す斜視図である。
【図4】図1のx−x線に沿う断面図である。
【図5】酸素含有ガス供給管の二重管部を示す断面図である。
【図6】固体電解質型燃料電池セルの断面図である。
【図7】スタックを示す平面図である。
【図8】酸素含有ガス供給管を排気管に沿って形成した状態を示す側面図である。
【図9】従来の固体電解質型燃料電池の模式図である。
【符号の説明】
1・・・反応容器
5・・・燃焼室仕切板
6・・・セル挿入孔
9・・・固体電解質型燃料電池セル
10・・・開口部
11・・・空気導入管
13・・・燃料ガス供給管
17・・・酸素含有ガス供給管
19・・・排気管
B・・・燃焼室
C・・・反応室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell in which a combustion chamber and a reaction chamber are formed in a reaction vessel using a combustion chamber partition plate.
[0002]
[Prior art]
As shown in FIG. 9, the conventional solid oxide fuel cell has an oxygen-containing gas chamber A, a combustion chamber in a reaction vessel 51 using an air chamber partition plate 53, a combustion chamber partition plate 55, and a fuel gas chamber partition plate 57. A chamber B, a reaction chamber C, and a fuel gas chamber D are formed.
[0003]
A plurality of bottomed cylindrical solid oxide fuel cells 59 housed in the reaction vessel 51 are inserted and fixed in a plurality of cell insertion holes 60 formed in the combustion chamber partition plate 55, respectively. Projecting into the combustion chamber B from the combustion chamber partition plate 55, one end of an air introduction pipe 63 fixed to the air chamber partition plate 53 is inserted therein.
[0004]
The combustion chamber partition plate 55 is formed with an excess fuel gas injection hole 64 for introducing surplus fuel gas into the combustion chamber B. The fuel gas chamber partition plate 57 contains fuel gas into the reaction chamber C. A supply hole for supply is formed.
[0005]
Further, the reaction vessel 51 discharges the gas burned in the combustion chamber B, for example, a fuel gas supply pipe 65 for introducing a fuel gas made of hydrogen, for example, an oxygen-containing gas supply pipe 67 for supplying an oxygen-containing gas made of air. An exhaust pipe 69 for this purpose is formed.
[0006]
The fuel gas supply pipe 65 opens to the fuel gas chamber D, the oxygen-containing gas supply pipe 67 opens to the oxygen-containing gas chamber A, and the exhaust pipe 69 opens to the combustion chamber B.
[0007]
In the solid electrolyte fuel cell 59, a solid electrolyte layer is formed on the surface of a cylindrical porous air electrode, a fuel electrode layer is formed on the surface of the solid electrolyte layer, and the current collector layer is an air electrode layer. And joined to the solid electrolyte layer.
[0008]
In such a solid oxide fuel cell, air from the oxygen-containing gas chamber A is supplied into the solid electrolyte fuel cell 59 via the air introduction pipe 63 and the fuel gas from the fuel gas chamber D is supplied. Is supplied between the plurality of solid oxide fuel cells 59, reacted in the reaction chamber C, excess air and excess fuel gas are combusted in the combustion chamber B, and the burned gas is discharged from the exhaust pipe 69 to the outside. Discharged.
[0009]
In the reaction in the reaction chamber C, the air supplied into the solid electrolyte fuel cell 59 diffuses toward the solid electrolyte layer through the porous air electrode layer, and the fuel gas is outside the solid electrolyte fuel cell 59. To the solid electrolyte layer and is generated in this solid electrolyte.
[0010]
[Problems to be solved by the invention]
However, since the conventional solid oxide fuel cell exhausts all the high-temperature combustion gas from the exhaust pipe 69, the energy loss is large. Furthermore, the preheating of the air that is the oxidant gas for power generation is not sufficient because it is limited only to the air introduction pipe 63 that passes through the combustion chamber B. Further, the combustion chamber B and the exhaust pipe 69 are exposed to high-temperature combustion gas, so that there is a large thermal load, and there is a problem that the reaction vessel for forming the combustion chamber B is significantly deteriorated.
[0011]
The present invention expands the preheating section of the oxygen-containing gas to ensure sufficient preheating, and the exhaust gas can be reused, improving the energy efficiency of the power generation system and reducing the thermal load on the exhaust pipe An object of the present invention is to provide a solid oxide fuel cell.
[0012]
[Means for Solving the Problems]
The solid oxide fuel cell of the present invention includes a combustion chamber and a reaction chamber formed in a reaction vessel using a combustion chamber partition plate, and a plurality of bottomed cylindrical solid oxide fuel cell cells are connected to the combustion chamber partition plate. Are inserted and fixed to the plurality of cell insertion holes so that the openings protrude from the combustion chamber partition plate to the combustion chamber side, and an oxygen-containing gas supply pipe and a fuel gas supply pipe are connected to the reaction vessel. An exhaust pipe for discharging the combustion gas in the combustion chamber is provided in the reaction vessel, and the oxygen-containing gas in the oxygen-containing gas supply pipe is supplied into the solid oxide fuel cell, respectively, and a fuel gas is supplied between the solid electrolyte fuel cell of the reaction chamber solid electrolyte fuel cell reacting the fuel gas supply pipe, two against the oxygen-containing gas supply pipe, to the exhaust pipe double Tube structure Or is brought into contact, it is characterized in that the contact is allowed to the outer peripheral surface of said reaction vessel to form the combustion chamber.
[0013]
Here, it is desirable that an exhaust pipe is inserted in the oxygen-containing gas supply pipe, and that the combustion gas flows in the exhaust pipe and the oxygen-containing gas flows between the oxygen-containing gas supply pipe and the exhaust pipe.
[0014]
[Action]
In the solid oxide fuel cell of the present invention, since the oxygen-containing gas supply pipe is provided along the exhaust pipe, conventionally, the oxygen-containing gas is preheated only by the air introduction pipe in the combustion chamber. Heat exchange can be performed on the surface, the preheating section can be extended, and the oxygen-containing gas can be sufficiently preheated. In addition, the heat energy of the combustion gas, which has been conventionally released as exhaust gas, can be reused as preheating of the oxygen-containing gas, and the energy efficiency of the power generation system can be improved. Furthermore, by exchanging heat between the hot exhaust pipe and the low-temperature oxygen-containing gas supply pipe, the surface of the exhaust pipe can be cooled, the thermal load on the exhaust pipe can be reduced, and the life of the exhaust pipe Can be improved.
[0015]
Further, the oxygen-containing gas is preheated more sufficiently by inserting an exhaust pipe into the oxygen-containing gas supply pipe, flowing the combustion gas into the exhaust pipe, and flowing the oxygen-containing gas between the oxygen-containing gas supply pipe and the exhaust pipe. And the thermal load on the exhaust pipe can be further reduced.
[0016]
Furthermore, since the oxygen-containing gas supply pipe has a reaction container abutting portion along the outer surface of the reaction vessel forming the combustion chamber, preheating of the oxygen-containing gas can be performed on the surface of the reaction vessel forming the combustion chamber. The oxygen-containing gas can be sufficiently preheated, and the reaction vessel can be preheated by exchanging heat between the surface of the high-temperature reaction vessel forming the combustion chamber and the low-temperature oxygen-containing gas. The surface can be cooled, the thermal load in the reaction vessel can be reduced, and the life of the reaction vessel can be improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the solid oxide fuel cell of the present invention includes an air chamber partition plate 3, a combustion chamber partition plate 5, and a fuel gas chamber partition plate 7 in a reaction vessel 1. A chamber B, a reaction chamber C, and a fuel gas chamber D are formed.
[0018]
A plurality of bottomed cylindrical solid oxide fuel cells 9 housed in the reaction vessel 1 are respectively inserted and fixed in a plurality of cell insertion holes 6 formed in the combustion chamber partition plate 5, and the openings 10 are It protrudes from the combustion chamber partition plate 5 into the combustion chamber B, and one end of an air introduction pipe 11 inserted and fixed to the air chamber partition plate 3 is inserted therein.
[0019]
As shown in FIG. 2, the combustion chamber partition plate 5 is formed with a number of surplus fuel gas ejection holes 12 for introducing surplus fuel gas into the combustion chamber B. The fuel gas chamber partition plate 7 has As shown in FIG. 1, a number of supply holes 14 for supplying fuel gas into the reaction chamber C are formed.
[0020]
For example, a fuel gas introduction pipe 13 for introducing a fuel gas made of hydrogen, an oxygen-containing gas supply pipe 17 for introducing an oxygen-containing gas made of air, and a gas burned in the combustion chamber B are discharged into the reaction vessel 1. An exhaust pipe 19 is provided. That is, one end of the fuel gas introduction pipe 13 opens to the fuel gas chamber D, one end of the oxygen-containing gas supply pipe 17 opens to the oxygen-containing gas chamber A, and one end of the exhaust pipe 19 opens to the combustion chamber B. ing.
[0021]
Further, as shown in FIGS. 3 to 5, the oxygen-containing gas supply pipe 17 includes a double-pipe part a in which an exhaust pipe 19 is inserted into the oxygen-containing gas supply pipe 17 and a reaction vessel 1 that forms a combustion chamber B. The reaction vessel contact portion b is formed in an annular shape along the outer peripheral surface of the gas, and the introduction portion c introduces the preheated oxygen-containing gas into the oxygen-containing gas chamber A.
[0022]
One end of the oxygen-containing gas supply pipe 17 opens at a position facing the opening position of one end of the exhaust pipe 19.
[0023]
In the double pipe portion a of the oxygen-containing gas supply pipe 17, the combustion gas flows in the exhaust pipe 19, and the oxygen-containing gas flows between the oxygen-containing gas supply pipe 17 and the exhaust pipe 19.
[0024]
Further, since the heat exchange area is increased as much as possible with respect to the volume of the oxygen-containing gas, the gap d 1 between the inner wall surface of the oxygen-containing gas supply pipe 17 and the outer peripheral surface of the exhaust pipe 19, the reaction with the outer peripheral surface of the reaction vessel 1. The distance d 2 from the inner surface of the container contact part b is preferably 10 mm or less.
As shown in FIG. 6, the cell 9 includes, for example, a LaMnO 3 air electrode layer 25 as a support tube and a Y 2 O 3 stabilized ZrO 2 formed on the surface of the air electrode layer 25. An electrolyte layer 26, a Ni-zirconia-based fuel electrode layer 27 formed on the surface of the solid electrolyte layer 26, and a LaCrO 3 -based interconnector 28 that is electrically connected to the air electrode layer 25. Yes.
[0025]
Then, as shown in FIG. 7, the interconnector 28 of one cell 9 is connected to the fuel electrode layer 27 of the other cell 9 via a connecting member 31 such as Ni metal fiber, and the fuel electrode layer 27 of the other cell 9. A plurality of cells 9 are electrically connected to each other to form a stack 33. Such a stack 33 is accommodated in the reaction vessel 1 as shown in FIG. A fuel cell is configured. In the reaction vessel 1, an electrode 35 connected to the interconnector 28 of one cell 9 and an electrode 37 connected to the fuel electrode layer 27 of the other cell 9 are disposed. Power is taken out via
[0026]
In such a solid oxide fuel cell, for example, air is introduced into the cell 9 from the oxygen-containing gas supply pipe 17 through the air introduction pipe 11, and hydrogen is introduced from the fuel gas supply pipe 13, for example. The dispersion is carried out by dispersing in the dispersion holes of the partition plate 7 and introducing it into the outside of the cell 9. Excess air and fuel gas are combusted in the combustion chamber B and discharged to the outside through the exhaust pipe 19.
[0027]
The gas flow of one solid oxide fuel cell will be described. Hydrogen gas (fuel gas) is introduced from below the cell and proceeds upward while being oxidized by power generation. On the other hand, air (oxidation-containing gas) is introduced from the upper part of the cell to the lower part of the cell through the air introduction pipe 11. And it flows from the inside of the cell to the top. The air discharged from the upper part of the cell reacts with the hydrogen gas not consumed by the power generation and burns in the combustion chamber B.
[0028]
In the solid oxide fuel cell configured as described above, the exhaust pipe 19 is inserted into the oxygen-containing gas supply pipe 17, the combustion gas is inserted into the exhaust pipe 19, and the oxygen-containing gas supply pipe 17 and the exhaust pipe 19 are connected. By flowing the oxygen-containing gas between them, heat exchange can be performed between the combustion gas in the exhaust pipe 19 and the oxygen-containing gas in the oxygen-containing gas supply pipe 17 on the outer surface of the exhaust pipe 19, greatly increasing the preheating section. The oxygen-containing gas can be preheated sufficiently, and the heat energy of the combustion gas that has been released to the outside as exhaust gas can be reused as the preheating of the oxygen-containing gas. It can be improved.
[0029]
In addition, by exchanging heat on the outer surface of the high-temperature exhaust pipe 19, the outer surface of the exhaust pipe 19 can be cooled, the thermal load on the exhaust pipe 19 can be reduced, and the life of the exhaust pipe 19 can be improved. Can do.
[0030]
Furthermore, since the oxygen-containing gas supply pipe 17 is composed of the double-pipe part a, the reaction container contact part b formed along the outer peripheral surface of the reaction container 1, and the introduction part c, Preheating can also be performed on the surface of the reaction vessel 1 that forms the side surface of the combustion chamber B, the oxygen-containing gas can be preheated more sufficiently, and the surface of the high-temperature reaction vessel 1 that forms the combustion chamber B Heat exchange with the low-temperature oxygen-containing gas, the surface of the reaction vessel 1 can be cooled, the thermal load on the reaction vessel 1 can be reduced, and the life of the reaction vessel 1 can be improved. it can.
[0031]
In the above example, an example in which the oxygen-containing gas supply pipe 17 is constituted by the double pipe part a, the reaction container contact part b formed along the outer periphery of the reaction container 1, and the introduction part c will be described. However, the present invention is not limited to the above-described embodiment. For example, as shown in FIG. 8, the oxygen-containing gas supply pipe 17 is formed along (exposed to) the exhaust pipe 19. The contact part e and the introduction part f for introducing the preheated oxygen-containing gas into the oxygen-containing gas chamber A from the contact part e may be used.
[0032]
Moreover, although the said example demonstrated the example which formed the reaction container contact part b formed along the whole outer peripheral surface of the reaction container 1 which forms the side surface of the combustion chamber B in the oxygen containing gas supply pipe 17, The reaction container contact portion does not need to be formed on the entire outer periphery of the reaction container 1, and may be, for example, a half periphery.
[0033]
【The invention's effect】
In the solid oxide fuel cell of the present invention, since the oxygen-containing gas supply pipe is provided along the exhaust pipe, the preheating section of the oxygen-containing gas can be extended, the oxygen-containing gas can be sufficiently preheated, and the combustion gas The energy efficiency of the power generation system can be improved by recovering the heat energy from the heat source, and the surface of the exhaust pipe is cooled by exchanging heat between the surface of the hot exhaust pipe and the surface of the low-temperature oxygen-containing gas supply pipe. It is possible to reduce the thermal load on the exhaust pipe and improve the life of the exhaust pipe.
[Brief description of the drawings]
FIG. 1 is a schematic view of a solid oxide fuel cell of the present invention.
2A and 2B show a combustion chamber partition plate and its vicinity, in which FIG. 2A is a side view and FIG. 2B is a plan view.
FIG. 3 is a perspective view showing a reaction vessel forming a side surface of a combustion chamber and the vicinity thereof.
4 is a cross-sectional view taken along line xx of FIG.
FIG. 5 is a cross-sectional view showing a double pipe portion of an oxygen-containing gas supply pipe.
FIG. 6 is a cross-sectional view of a solid oxide fuel cell.
FIG. 7 is a plan view showing a stack.
FIG. 8 is a side view showing a state in which an oxygen-containing gas supply pipe is formed along the exhaust pipe.
FIG. 9 is a schematic view of a conventional solid oxide fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reaction container 5 ... Combustion chamber partition plate 6 ... Cell insertion hole 9 ... Solid oxide fuel cell 10 ... Opening part 11 ... Air introduction pipe 13 ... Fuel gas Supply pipe 17 ... Oxygen-containing gas supply pipe 19 ... Exhaust pipe B ... Combustion chamber C ... Reaction chamber

Claims (2)

反応容器内に燃焼室仕切板を用いて燃焼室と反応室を形成し、複数の有底筒状の固体電解質型燃料電池セルを、前記燃焼室仕切板に形成された複数のセル挿入孔に、開口部が前記燃焼室仕切板から前記燃焼室側に突出するようにそれぞれ挿入固定するとともに、前記反応容器に酸素含有ガス供給管と燃料ガス供給管を設け、さらに前記反応容器に前記燃焼室の燃焼ガスを排出する排気管を設けてなり、前記酸素含有ガス供給管の酸素含有ガスを前記固体電解質型燃料電池セル内にそれぞれ供給し、かつ、前記燃料ガス供給管の燃料ガスを前記反応室内の前記固体電解質型燃料電池セル間に供給して反応させる固体電解質型燃料電池であって、前記酸素含有ガス供給管を前記排気管に対し二重管構造とするかまたは当接させるとともに、前記燃焼室を形成する前記反応容器の外周面に当接させたことを特徴とする固体電解質型燃料電池。A combustion chamber and a reaction chamber are formed in the reaction vessel using a combustion chamber partition plate, and a plurality of bottomed cylindrical solid oxide fuel cells are inserted into a plurality of cell insertion holes formed in the combustion chamber partition plate. , The opening is inserted and fixed so as to protrude from the combustion chamber partition plate toward the combustion chamber, and the reaction vessel is provided with an oxygen-containing gas supply pipe and a fuel gas supply pipe, and the reaction vessel is further provided with the combustion chamber. An exhaust pipe for discharging the combustion gas is supplied, the oxygen-containing gas of the oxygen-containing gas supply pipe is supplied into the solid oxide fuel cell, and the fuel gas of the fuel gas supply pipe is supplied to the reaction a solid oxide fuel cell to react with supplied between the room of the solid oxide fuel cell, the oxygen-containing gas supply pipe, causes or is abutting a double-pipe structure against the exhaust pipe , said Solid oxide fuel cell which is characterized in that is brought into contact with the outer peripheral surface of said reaction vessel to form a baked chamber. 酸素含有ガス供給管内に排気管が挿入されており、前記排気管内を燃焼ガスが、前記酸素含有ガス供給管と前記排気管との間を酸素含有ガスが流れることを特徴とする請求項1記載の固体電解質型燃料電池。The exhaust pipe is inserted in the oxygen-containing gas supply pipe, and the combustion gas flows in the exhaust pipe, and the oxygen-containing gas flows between the oxygen-containing gas supply pipe and the exhaust pipe. Solid oxide fuel cell.
JP07191299A 1999-03-17 1999-03-17 Solid oxide fuel cell Expired - Fee Related JP3686773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07191299A JP3686773B2 (en) 1999-03-17 1999-03-17 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07191299A JP3686773B2 (en) 1999-03-17 1999-03-17 Solid oxide fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004317999A Division JP4084795B2 (en) 2004-11-01 2004-11-01 Solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2000268839A JP2000268839A (en) 2000-09-29
JP3686773B2 true JP3686773B2 (en) 2005-08-24

Family

ID=13474235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07191299A Expired - Fee Related JP3686773B2 (en) 1999-03-17 1999-03-17 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3686773B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794086B2 (en) * 2001-08-30 2011-10-12 京セラ株式会社 Solid electrolyte fuel cell
JP2004134181A (en) * 2002-10-09 2004-04-30 Nissan Motor Co Ltd Fuel cell container structure
US7425382B2 (en) 2003-07-15 2008-09-16 Hewlett-Packard Development Company, L.P. Fuel cell assembly

Also Published As

Publication number Publication date
JP2000268839A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
JP4585218B2 (en) Fuel cell assembly
JP5156766B2 (en) Fuel cell assembly
JP4325924B2 (en) Fuel cell
JP3317535B2 (en) Fuel cell
JP3545958B2 (en) Solid oxide fuel cell
JP4654567B2 (en) Solid oxide fuel cell and method of operating the same
JP3796182B2 (en) Fuel cell
JP4758074B2 (en) Fuel cell assembly and fuel cell
JP4513281B2 (en) Fuel cell
JP4794086B2 (en) Solid electrolyte fuel cell
JP3686773B2 (en) Solid oxide fuel cell
JP2007018966A (en) Fuel cell
JP4814497B2 (en) Fuel cell
JP2020047399A (en) Fuel cell device
JP2005339906A (en) Fuel cell
JP4084795B2 (en) Solid electrolyte fuel cell
JP3585381B2 (en) Solid oxide fuel cell
JP3585363B2 (en) Solid oxide fuel cell
JP2005100818A (en) Fuel cell
JP4031674B2 (en) Fuel cell
JP4859359B2 (en) Operation method of fuel cell
JP2004103552A (en) Preheating method at start up time of solid electrolyte fuel cell
JP4018916B2 (en) Fuel cell, cell stack and fuel cell
JP2006079974A (en) Cell stack
JP2001043888A (en) Fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees