JP2005085520A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2005085520A
JP2005085520A JP2003313717A JP2003313717A JP2005085520A JP 2005085520 A JP2005085520 A JP 2005085520A JP 2003313717 A JP2003313717 A JP 2003313717A JP 2003313717 A JP2003313717 A JP 2003313717A JP 2005085520 A JP2005085520 A JP 2005085520A
Authority
JP
Japan
Prior art keywords
current collector
gas
fuel
electrode current
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003313717A
Other languages
Japanese (ja)
Other versions
JP4300947B2 (en
Inventor
Akbay Taner
アクベイ タナー
Norihisa Chitose
範壽 千歳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2003313717A priority Critical patent/JP4300947B2/en
Publication of JP2005085520A publication Critical patent/JP2005085520A/en
Application granted granted Critical
Publication of JP4300947B2 publication Critical patent/JP4300947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance power generating efficiency by preventing useless exhaust of gas in the peripheral part of a fuel electrode current collector and an opposite diffusion phenomenon of gas to a fuel electrode side. <P>SOLUTION: A solid oxide fuel cell has a seal-less structure in which a fuel electrode layer and an oxidizing agent electrode layer are arranged on each side of a solid electrolyte layer, a fuel electrode current collector 6 and an oxidizing agent electrode current collector each made of a porous metallic material 23 are arranged on the outside of the fuel electrode layer and the oxidizing agent electrode layer respectively, a separator is arranged on the outside of the fuel electrode current collector 6 and the oxidizing agent electrode current collector, and fuel gas and oxidizing agent gas are supplied to the fuel electrode layer and the oxidizing agent electrode layer through the fuel electrode current collector and the oxidizing agent electrode current collector from the separator. A cover 20 in which a gas exhaust hole is installed is arranged so as to cover the peripheral part of the fuel electrode current collector 6, and exhausting portions of excess gas exhausted from the peripheral part are regulated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体酸化物形燃料電池に関し、詳しくは、燃料極集電体におけるガスの逆拡散現象を防止して発電効率の向上を図ったガスシールレス構造の固体酸化物形燃料電池に関する。   The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell having a gas sealless structure in which a gas back diffusion phenomenon in a fuel electrode current collector is prevented to improve power generation efficiency.

酸化物イオン伝導体からなる固体電解質層を空気極層(酸化剤極層)と燃料極層との間に挟んだ積層構造を持つ固体酸化物形燃料電池は、第三世代の発電用燃料電池として開発が進んでいる。固体酸化物形燃料電池では、空気極側に酸素(空気)が、燃料極側には燃料ガス(H2 、CO等)が供給される。空気極と燃料極は、ガスが固体電解質との界面に到達することができるように、いずれも多孔質とされている。 A solid oxide fuel cell having a laminated structure in which a solid electrolyte layer made of an oxide ion conductor is sandwiched between an air electrode layer (oxidant electrode layer) and a fuel electrode layer is a third generation fuel cell for power generation. Development is progressing. In a solid oxide fuel cell, oxygen (air) is supplied to the air electrode side, and fuel gas (H 2 , CO, etc.) is supplied to the fuel electrode side. The air electrode and the fuel electrode are both porous so that the gas can reach the interface with the solid electrolyte.

空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で、空気極から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極の方向に向かって固体電解質層内を拡散移動する。燃料極との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2 O、CO2 等)を生じ、燃料極に電子を放出する。 Oxygen supplied to the air electrode side passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer. At this part, it receives electrons from the air electrode and converts them into oxide ions (O 2− ). Ionized. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode. Oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and emit electrons to the fuel electrode.

因みに、燃料に水素を用いた場合の電極反応は次のようになる。
空気極: 1/2 O2 + 2e- → O2-
燃料極: H2 + O2- → H2 O+2e-
全体 : H2 + 1/2 O2 → H2
Incidentally, the electrode reaction when hydrogen is used as the fuel is as follows.
Air electrode: 1/2 O 2 + 2e → O 2−
Fuel electrode: H 2 + O 2− → H 2 O + 2e
Overall: H 2 +1/2 O 2 → H 2 O

固体電解質層は、酸化物イオンの移動媒体であると同時に、燃料ガスと空気を直接接触させないための隔壁としても機能するため、ガス不透過性の緻密な構造となっている。この固体電解質層は、酸化物イオン伝導性が高く、空気極側の酸化性雰囲気から燃料極側の還元性雰囲気までの条件下で化学的に安定で、熱衝撃に強い材料から構成する必要があり、かかる要件を満たす材料として、イットリアを添加した安定化ジルコニア(YSZ)が一般的に使用されている。   The solid electrolyte layer is a moving medium for oxide ions and also functions as a partition wall for preventing direct contact between the fuel gas and air, and thus has a dense structure that is impermeable to gas. This solid electrolyte layer should have a high oxide ion conductivity, be chemically stable under conditions from the oxidizing atmosphere on the air electrode side to the reducing atmosphere on the fuel electrode side, and be made of a material that is resistant to thermal shock. There is generally used stabilized zirconia (YSZ) to which yttria is added as a material satisfying such requirements.

一方、電極である空気極(カソード)層と燃料極(アノード)層はいずれも電子伝導性の高い材料から構成する必要がある。空気極材料は、700℃前後の高温の酸化性雰囲気中で化学的に安定でなければならないため、金属は不適当であり、電子伝導性を持つペロブスカイト型酸化物材料、具体的にはLaMnO3 もしくはLaCoO3 、または、これらのLaの一部をSr、Ca等に置換した固溶体が一般に使用されている。また、燃料極材料は、Ni、Coなどの金属、或いはNi−YSZ、Co−YSZなどのサーメットが一般的である。 On the other hand, both the air electrode (cathode) layer and the fuel electrode (anode) layer, which are electrodes, must be made of a material having high electron conductivity. Since the air electrode material must be chemically stable in a high-temperature oxidizing atmosphere around 700 ° C., the metal is inappropriate, and a perovskite-type oxide material having electron conductivity, specifically LaMnO 3 Alternatively, LaCoO 3 or a solid solution in which a part of these La is substituted with Sr, Ca or the like is generally used. The fuel electrode material is generally a metal such as Ni or Co, or a cermet such as Ni—YSZ or Co—YSZ.

固体酸化物形燃料電池には、1000℃前後の高温で作動させる高温作動型のものと、700℃前後の低温で作動させる低温作動型のものとがある。低温作動型の固体酸化物形燃料電池は、例えば電解質であるイットリアを添加した安定化ジルコニア(YSZ)の厚さを10μm程度まで薄膜化して電解質の抵抗を低くし、低温でも燃料電池として発電するように改良された発電セルを使用する。   Solid oxide fuel cells include a high-temperature operation type that operates at a high temperature of about 1000 ° C. and a low-temperature operation type that operates at a low temperature of about 700 ° C. A low temperature operation type solid oxide fuel cell, for example, stabilizes the thickness of stabilized zirconia (YSZ) added with yttria as an electrolyte to a thickness of about 10 μm to reduce the resistance of the electrolyte, and generates electricity as a fuel cell even at low temperatures. So that the improved power generation cell is used.

高温の固体酸化物形燃料電池では、セパレータには、例えばランタンクロマイト(LaCrO3 )等の電子伝導性を有するセラミックスが用いられるが、低温作動型の固体酸化物形燃料電池では、ステンレス等の金属材料を使用することができる。 In a high-temperature solid oxide fuel cell, ceramics having electronic conductivity such as lanthanum chromite (LaCrO 3 ) is used as a separator. In a low-temperature operation type solid oxide fuel cell, a metal such as stainless steel is used. Material can be used.

また、固体酸化物形燃料電池の構造には、円筒型、モノリス型、及び平板積層型の3種類が提案されている。それらの構造のうち、低温作動型の固体酸化物形燃料電池には、金属のセパレータを使用できることから、金属のセパレータに形状付与しやすい平板積層型の構造が適している。   Three types of solid oxide fuel cell structures have been proposed: a cylindrical type, a monolith type, and a flat plate type. Among these structures, since a metal separator can be used for a low temperature operation type solid oxide fuel cell, a flat plate type structure that is easy to give a shape to the metal separator is suitable.

平板積層型の固体酸化物形燃料電池のスタックは、発電セル、集電体、セパレータを交互に積層した構造を持つ。一対のセパレータが発電セルを両面から挟んで、一方は空気極集電体を介して空気極と、他方は燃料極集電体を介して燃料極と接している。燃料極集電体には、Ni基合金等のスポンジ状の多孔質体を使用することができ、空気極集電体には、Ag基合金等の同じくスポンジ状の多孔質体を使用することができる。スポンジ状の多孔質体は、集電機能、ガス透過機能、均一ガス拡散機能、クッション機能、熱膨脹差吸収機能等を兼ね備えるので、多機能の集電体材料として適している。   A stack of flat plate type solid oxide fuel cells has a structure in which power generation cells, current collectors, and separators are alternately stacked. A pair of separators sandwich the power generation cell from both sides, one being in contact with the air electrode via the air electrode current collector and the other being in contact with the fuel electrode via the fuel electrode current collector. A sponge-like porous body such as a Ni-based alloy can be used for the fuel electrode current collector, and a sponge-like porous body such as an Ag-based alloy can be used for the air electrode current collector. Can do. A sponge-like porous body has a current collecting function, a gas permeation function, a uniform gas diffusion function, a cushion function, a thermal expansion difference absorption function, and the like, and is therefore suitable as a multifunctional current collector material.

セパレータは、発電セル間を電気接続すると共に、発電セルに対してガスを供給する機能を有するもので、燃料ガスをセパレータ外周面から導入してセパレータの燃料極層に対向する面から吐出させる燃料ガス通路と、酸化剤ガスをセパレータ外周面から導入してセパレータの酸化剤極層に対向する面から吐出させる酸化剤ガス通路を備えている。   The separator has a function of electrically connecting the power generation cells and supplying gas to the power generation cells. The fuel is introduced from the outer peripheral surface of the separator and discharged from the surface facing the separator fuel electrode layer. A gas passage and an oxidant gas passage for introducing an oxidant gas from the outer peripheral surface of the separator and discharging the gas from a surface facing the oxidant electrode layer of the separator are provided.

ところで、この種の固体酸化物形燃料電池では、発電セルの外周部のガスシール機構を備えていないシールレス構造の固体酸化物形燃料電池がある(従来は、発電セルの外周部にガスシール機構を施した構造が一般的であり、そのガスシール機構として、特許文献1が開示されている)。
シールレス構造の固体酸化物形燃料電池は、発電セルの外周部のシール機構を無くすことで構造を単純化し、生産性の向上が図れると共に、構成部材間の熱膨脹差に基づくトラブルを無くすことができるというメリットを有する。
特開平9−115530号公報
By the way, in this type of solid oxide fuel cell, there is a solid oxide fuel cell having a sealless structure that does not include a gas seal mechanism at the outer peripheral portion of the power generation cell (conventionally, a gas seal is provided at the outer peripheral portion of the power generation cell. The structure which gave the mechanism is common, and patent documents 1 are indicated as the gas seal mechanism).
A solid oxide fuel cell with a sealless structure simplifies the structure by eliminating the sealing mechanism at the outer periphery of the power generation cell, improving productivity, and eliminating troubles due to differences in thermal expansion between components. It has the merit of being able to.
JP-A-9-115530

しかしながら、シールレス構造の固体酸化物形燃料電池は、上記したようなメリットの他、シールレス構造が故の問題点も有していた。   However, the solid oxide fuel cell having the sealless structure has problems due to the sealless structure in addition to the above-described advantages.

即ち、シールレス構造では、運転時に発電セル内に燃料ガスと酸化剤ガスを供給して発電反応を生じさせると共に、発電反応に使用されなかった残余のガス(排ガス)を発電セルの外周部からセル外部に放出するようになっている。
従って、発電セル周部における流通ガスと外周部を流れる空気の線速度の相違から、発電セル外の空気を逆に燃料極側に巻き込む、所謂、逆拡散現象が生じ易い構造であり、運転時に、この逆拡散空気と発電セル内の燃料ガスが燃焼反応して電極反応に使用可能な燃料ガスを消費し、発電性能が低下するという問題や、この燃焼反応による局部的な温度上昇で発電セル内の熱応力分布が不均一となり、燃料電池スタックの寿命を極度に短縮させるという問題等を有していた。
That is, in the sealless structure, fuel gas and oxidant gas are supplied into the power generation cell during operation to cause a power generation reaction, and residual gas (exhaust gas) that has not been used for the power generation reaction is discharged from the outer periphery of the power generation cell. It discharges outside the cell.
Therefore, because of the difference in the linear velocity between the gas flowing in the peripheral part of the power generation cell and the air flowing in the outer peripheral part, the so-called reverse diffusion phenomenon, in which the air outside the power generation cell is entrapped in the reverse direction, is likely to occur. The problem is that this back-diffused air and the fuel gas in the power generation cell undergo a combustion reaction and consumes a fuel gas that can be used for the electrode reaction, resulting in a decrease in power generation performance and a local temperature rise due to this combustion reaction. There is a problem that the thermal stress distribution in the inside becomes uneven and the life of the fuel cell stack is extremely shortened.

本発明は、このようなシールレス構造特有の問題点に鑑み、燃料極集電体の外周部におけるガスの逆拡散現象を防止して、発電効率の向上を図った固体酸化物形燃料電池を提供することを目的としている。   In view of such problems inherent to the sealless structure, the present invention provides a solid oxide fuel cell that prevents the gas back-diffusion phenomenon in the outer peripheral portion of the anode current collector and improves the power generation efficiency. It is intended to provide.

すなわち、請求項1に記載の本発明は、固体電解質層の両面に燃料極層と酸化剤極層を配置し、当該燃料極層と酸化剤極層の外側にそれぞれ多孔質金属体で成る燃料極集電体と酸化剤極集電体を配置し、当該燃料極集電体と酸化剤極集電体の外側にセパレータを配置し、当該セパレータから前記燃料極集電体および酸化剤極集電体を通して前記燃料極層および酸化剤極層に燃料ガスおよび酸化剤ガスを供給するシールレス構造の固体酸化物形燃料電池において、前記燃料極集電体の外周部を覆うように、ガス排出孔を有するカバーを配設し、外周部から排出される余剰ガスの排出箇所を制限する構成とした。   That is, according to the present invention, the fuel electrode layer and the oxidant electrode layer are disposed on both sides of the solid electrolyte layer, and the fuel is composed of a porous metal body on the outside of the fuel electrode layer and the oxidant electrode layer. An electrode current collector and an oxidant electrode current collector are disposed, a separator is disposed outside the fuel electrode current collector and the oxidant electrode current collector, and the fuel electrode current collector and the oxidant electrode current collector are disposed from the separator. In a solid oxide fuel cell having a sealless structure for supplying fuel gas and oxidant gas to the fuel electrode layer and oxidant electrode layer through an electric body, gas is discharged so as to cover the outer periphery of the fuel electrode current collector A cover having a hole is provided, and the exhaust gas exhausted from the outer periphery is restricted.

また、請求項2に記載の本発明は、請求項1に記載の固体酸化物形燃料電池において、前記カバーは縁部に複数の係止爪を備えており、当該係止爪にて前記多孔質金属体の両面もしくは片面を支持する構成とした。
また、請求項3に記載の本発明は、請求項1または請求項2の何れかに記載の固体酸化物形燃料電池において、前記カバーは、耐熱性金属で構成されている。耐熱性金属材としては、カンタル、インコネル、ニクロム等が使用できる。
The present invention according to claim 2 is the solid oxide fuel cell according to claim 1, wherein the cover includes a plurality of locking claws at an edge portion, and the porous claw is formed by the locking claws. It was set as the structure which supports the both surfaces or single side | surface of a solid metal body.
According to a third aspect of the present invention, in the solid oxide fuel cell according to the first or second aspect, the cover is made of a heat-resistant metal. As the heat-resistant metal material, Kanthal, Inconel, Nichrome or the like can be used.

請求項1から請求項3に記載の構成によれば、燃料極集電体の外周部からの燃料ガスの無駄な排出や、燃料極側へのガスの逆拡散現象を防止することができ、発電効率を向上し、燃料電池の高出力密度化が図れる。   According to the configuration of claim 1 to claim 3, it is possible to prevent wasteful discharge of the fuel gas from the outer peripheral portion of the anode current collector and the reverse diffusion phenomenon of the gas to the anode side, The power generation efficiency can be improved and the output density of the fuel cell can be increased.

以上説明したように、本発明によれば、燃料極集電体の外周部を覆うように、ガス排出孔を設けたカバーを配設し、外周部から排出される余剰ガスの排出箇所を制限するように構成したので、燃料極集電体の外周部からの無駄なガスの放出や、外部から燃料極側へのガスの逆拡散現象が防止される。これにより、発電効率が向上し、燃料電池の高出力密度化が図れると共に、燃料電池の高寿命化が図れる。   As described above, according to the present invention, a cover provided with a gas discharge hole is provided so as to cover the outer peripheral portion of the anode current collector, and the discharge location of excess gas discharged from the outer peripheral portion is limited. Thus, it is possible to prevent the unnecessary gas from being discharged from the outer peripheral portion of the fuel electrode current collector and the reverse diffusion phenomenon of the gas from the outside to the fuel electrode side. As a result, the power generation efficiency is improved, the fuel cell can have a high output density, and the life of the fuel cell can be extended.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

先ず、本発明が適用された固体酸化物形燃料電池の全体構成を図2および図3を用いて説明する。図2は固体酸化物形燃料電池の要部を示す分解断面図、図3は同要部の分解斜視図である。
図中、符号1は燃料電池スタックを示している。この燃料電池スタック1は、固体電解質層2の両面に燃料極層3と空気極層(酸化剤極層)4を配した発電セル5と、燃料極層3の外側の燃料極集電体6と、空気極層4の外側の空気極集電体(酸化剤極集電体)7と、各集電体6、7の外側のセパレータ8を順番に積層した構造を有する。
First, the overall configuration of a solid oxide fuel cell to which the present invention is applied will be described with reference to FIGS. FIG. 2 is an exploded cross-sectional view showing the main part of the solid oxide fuel cell, and FIG. 3 is an exploded perspective view of the main part.
In the figure, reference numeral 1 denotes a fuel cell stack. The fuel cell stack 1 includes a power generation cell 5 in which a fuel electrode layer 3 and an air electrode layer (oxidant electrode layer) 4 are arranged on both surfaces of a solid electrolyte layer 2, and a fuel electrode current collector 6 outside the fuel electrode layer 3. And an air electrode current collector (oxidant electrode current collector) 7 outside the air electrode layer 4 and a separator 8 outside the current collectors 6 and 7 are sequentially stacked.

ここで、固体電解質層2は、イットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層3は、Ni、Co等の金属あるいはNi−YSZ、Co−YSZ等のサーメットで構成され、空気極層4は、LaMnO3 、LaCoO3 等で構成され、燃料極集電体6は、Ni基合金等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体7は、Ag基合金等のスポンジ状の多孔質焼結金属板で構成され、セパレータ8は、ステンレス等で構成されている。 Here, the solid electrolyte layer 2 is made of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 3 is made of a metal such as Ni or Co or a cermet such as Ni—YSZ or Co—YSZ. The air electrode layer 4 is made of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 6 is made of a sponge-like porous sintered metal plate such as a Ni-based alloy, and the air electrode current collector 7 is made of The separator 8 is made of stainless steel or the like, and is made of a sponge-like porous sintered metal plate such as an Ag-based alloy.

セパレータ8は、発電セル5間を電気接続すると共に、発電セル5に対してガスを供給する機能を有するもので、内部に燃料ガスをセパレータ8の外周面から導入してセパレータ8の燃料極集電体6に対向する面のほぼ中央部から吐出させる燃料ガス通路11と、酸化剤ガスをセパレータ8の外周面から導入してセパレータ8の空気極集電体7に対向する面から吐出させる酸化剤ガス通路12を有している。但し、両端のセパレータ8(8A、8B)は、ガス通路11、12の何れか一方のみを有する。   The separator 8 has a function of electrically connecting the power generation cells 5 and supplying gas to the power generation cells 5. The fuel gas is introduced into the separator 8 from the outer peripheral surface thereof to collect the fuel electrode of the separator 8. A fuel gas passage 11 that is discharged from the substantially central portion of the surface facing the electric body 6 and an oxidation gas that is introduced from the outer peripheral surface of the separator 8 and discharged from the surface of the separator 8 that faces the air electrode current collector 7. An agent gas passage 12 is provided. However, the separators 8 (8A, 8B) at both ends have only one of the gas passages 11, 12.

また この燃料電池スタック1の側方には、図2に示すように、各セパレータ8の燃料ガス通路11に接続管13を通して燃料ガスを供給する燃料用マニホールド15と、各セパレータ8の酸化剤ガス通路12に接続管14を通して酸化剤ガス(空気)を供給する酸化剤用マニホールド16とが、発電セル5の積層方向に延在して設けられている。   Further, on the side of the fuel cell stack 1, as shown in FIG. 2, a fuel manifold 15 for supplying fuel gas to the fuel gas passage 11 of each separator 8 through the connection pipe 13, and an oxidant gas for each separator 8. An oxidant manifold 16 for supplying an oxidant gas (air) to the passage 12 through the connection pipe 14 extends in the stacking direction of the power generation cells 5.

また、この固体酸化物形燃料電池は、発電セル5の外周部にガス漏れ防止シールを設けないシールレス構造とされており、運転時には、図4に示すように、燃料ガス通路11および酸化剤ガス通路12を通してセパレータ8の略中心部から発電セル5に向けて供給される燃料ガスおよび酸化剤ガス(空気)を発電セル5の外周方向に拡散させながら燃料極層3および空気極層4の全面に行き渡らせて発電反応を生じさせると共に、発電反応で消費されなかった残余の高温ガスを、発電セル5の外周部から外に自由に排出するようになっている。また、各集電体6、7の外周部も外部に開放されていることから、各集電体6、7内を拡散するガスの一部は集電体6、7の空孔を通して外周部の全面より排出されている。   In addition, this solid oxide fuel cell has a sealless structure in which a gas leakage prevention seal is not provided on the outer peripheral portion of the power generation cell 5, and during operation, as shown in FIG. The fuel electrode layer 3 and the air electrode layer 4 are diffused while the fuel gas and the oxidant gas (air) supplied from the substantially central portion of the separator 8 through the gas passage 12 toward the power generation cell 5 are diffused toward the outer periphery of the power generation cell 5. The power generation reaction is caused to spread over the entire surface, and the remaining high-temperature gas that has not been consumed in the power generation reaction is freely discharged from the outer peripheral portion of the power generation cell 5 to the outside. Further, since the outer peripheral portions of the current collectors 6 and 7 are also opened to the outside, a part of the gas diffusing in the current collectors 6 and 7 passes through the holes of the current collectors 6 and 7 and is thus It is discharged from the whole surface.

そして、このようなシールレス構造において、本実施形態では、特に、燃料極集電体6においては、図1に示すように、集電体を構成する円形の多孔質金属体23の外周部を覆うように、リング状の金属カバー20が配設される構成としている。カバー20は多孔出金属体23の外周面に密着するように配設するのが好ましい。また、このカバー20は、例えば、カンタル、インコネル、ニクロム等の導電性、且つ、耐熱性の金属で構成されており、その周側部の全周に亘って多数のガス排出孔21が所定の間隔で形成されている。尚、このガス排出孔21は、例えば、4〜8個程度と少なくしても良いが、周側部の全周に亘って均一に設けてあることが好ましい。   In such a sealless structure, in this embodiment, particularly in the anode current collector 6, as shown in FIG. 1, the outer peripheral portion of the circular porous metal body 23 constituting the current collector is provided. A ring-shaped metal cover 20 is disposed so as to cover it. The cover 20 is preferably disposed so as to be in close contact with the outer peripheral surface of the porous metal body 23. Further, the cover 20 is made of a conductive and heat-resistant metal such as Kanthal, Inconel, Nichrome, etc., and a large number of gas discharge holes 21 are formed over the entire circumference of the peripheral side portion. It is formed at intervals. The number of the gas discharge holes 21 may be as small as 4 to 8, for example, but it is preferable that the gas discharge holes 21 are provided uniformly over the entire circumference of the peripheral side portion.

また、カバー20の上下周縁部には、中抜きされた台形状の係止爪22が多数形成されており、これら係止爪22の基部を図示のように直角に折り曲げることにより、多孔質金属体23はその上下面を支持されるようになっている。
カバー20は金属製であるから、加工性は良く、且つ、その導電性から積層時にセパレータ8と発電セル5との電気的接続に支障を来すことはない。
また、係止爪22に中抜き22aを設けることで、この係止爪22がセパレータ8から供給される燃料ガスの積層方向の流通に妨げとならないようになっている。尚、係止爪22は片側のみに設けて多孔質金属体23の何れか一方を支持するようにしても良い。
Further, a plurality of trapezoidal trapezoidal locking claws 22 that are hollowed out are formed on the upper and lower peripheral edges of the cover 20, and the base of the locking claws 22 is bent at a right angle as shown in the figure, thereby forming a porous metal. The body 23 is supported on its upper and lower surfaces.
Since the cover 20 is made of metal, the workability is good, and the electrical connection between the separator 8 and the power generation cell 5 is not hindered due to its conductivity.
Further, by providing the engagement claw 22 with the hollow 22a, the engagement claw 22 does not interfere with the flow of the fuel gas supplied from the separator 8 in the stacking direction. Note that the locking claw 22 may be provided only on one side to support any one of the porous metal bodies 23.

このように、多孔質金属体23の外周面をリング状のカバー20で覆う構造にすることにより、燃料極集電体6の外周部より排出されるガスの排出箇所をガス排出孔21部分のみに制限することができ、その結果、多孔質金属体23内を拡散する燃料ガスが、その外周部全体より排出されることが回避されて、発電反応に寄与しない燃料ガスの外周部からの排出量を抑えると共に、その分燃料ガスを効率的に発電セル5側に供給することができるようになる。   In this way, by forming a structure in which the outer peripheral surface of the porous metal body 23 is covered with the ring-shaped cover 20, the gas discharged from the outer peripheral portion of the fuel electrode current collector 6 can be discharged only at the gas discharge hole 21 portion. As a result, it is avoided that the fuel gas diffusing in the porous metal body 23 is discharged from the entire outer peripheral portion, and the fuel gas that does not contribute to the power generation reaction is discharged from the outer peripheral portion. While suppressing the amount, the fuel gas can be efficiently supplied to the power generation cell 5 side accordingly.

加えて、カバー20により、燃料極側への空気の逆拡散現象が防止され、発電セル内部において発生した燃焼反応により電極反応に使用可能な燃料ガスが消費され発電性能を低下させるという問題や燃焼による局部的な温度上昇で発電セル内の熱応力分布が不均一となり、燃料電池スタック1の寿命を短縮させるというシールレス構造特有の問題を極力無くすことができる。これにより、発電効率を向上し、燃料電池の高出力密度化が図れると共に、燃料電池スタック1の高寿命化が図れるようになる。   In addition, the cover 20 prevents a back diffusion phenomenon of air to the fuel electrode side, and a problem that combustion power generated in the power generation cell consumes fuel gas that can be used for the electrode reaction and deteriorates power generation performance. Due to the local temperature rise caused by the above, the thermal stress distribution in the power generation cell becomes non-uniform, and the problem peculiar to the sealless structure that shortens the life of the fuel cell stack 1 can be eliminated as much as possible. As a result, the power generation efficiency can be improved, the output density of the fuel cell can be increased, and the life of the fuel cell stack 1 can be increased.

また、発電セル5、集電体6、7、セパレータ8の積層過程において、燃料極集電体6の多孔質金属体23は、この金属製カバー20により積層方向の加重に対するガイド板の役目を果たすことから、積層時の圧力により多孔質金属体23が過度に押し潰されることはなく、積層後も多孔質金属体23には略球状の空孔が確保されており、当多孔質金属体23内において均一で良好なガスの流れを確保することができる。   In the stacking process of the power generation cell 5, the current collectors 6, 7 and the separator 8, the porous metal body 23 of the anode current collector 6 serves as a guide plate for the load in the stacking direction by the metal cover 20. Therefore, the porous metal body 23 is not excessively crushed by the pressure at the time of stacking, and the porous metal body 23 has a substantially spherical hole after the stacking. A uniform and good gas flow can be ensured in the gas tank 23.

因みに、通常、多孔質金属体として、厚み約2mm程度のものが使用されており、金属カバー20を有しない空気極集電体7の場合は、積層時の圧力で多孔質金属体が厚さ0.7mm程度に押し潰されてしまうが、当空気極集電体7には、元来、必要反応量の約2倍程の多量の空気が供給されるため、集電体内でのガス拡散性や発電セル側へのガス供給量等に問題は生じない。   Incidentally, a porous metal body having a thickness of about 2 mm is usually used, and in the case of the air electrode current collector 7 not having the metal cover 20, the porous metal body is thick due to the pressure at the time of lamination. Although it is crushed to about 0.7 mm, the air electrode current collector 7 is originally supplied with a large amount of air that is about twice as much as the required reaction amount. There is no problem in the performance and the amount of gas supplied to the power generation cell.

このように、多孔質金属体23の外周面をカバー20で覆うことにより、燃料極集電体6をより厚くすることができ、多孔質金属体23の厚みが増せば燃料ガスの流量を多くすることができる。集電体内に供給された多量の燃料ガスは、このカバー20の配設により、外周部からの無駄な排出が制限されており、よって、集電体内に拡散したガスは効率良く発電セル5側に供給されるようになる。   Thus, by covering the outer peripheral surface of the porous metal body 23 with the cover 20, the anode current collector 6 can be made thicker, and if the thickness of the porous metal body 23 increases, the flow rate of the fuel gas increases. can do. A large amount of the fuel gas supplied into the current collector is restricted from being discharged from the outer peripheral portion by the arrangement of the cover 20, so that the gas diffused in the current collector is efficiently disposed on the power generation cell 5 side. Will be supplied to.

本発明の実施形態による燃料極集電体を示し、(a)は上面図、(b)は側面図、(c)は底面図。The fuel-electrode current collector by embodiment of this invention is shown, (a) is a top view, (b) is a side view, (c) is a bottom view. 本発明が適用された固体酸化物形燃料電池の要部を示す分解断面図。The exploded sectional view showing the important section of the solid oxide fuel cell to which the present invention was applied. 同、要部の分解斜視図。The exploded perspective view of the principal part same as the above. 燃料電池スタックの要部概略構成図で、運転時のガスの流れを示す。It is a principal part schematic block diagram of a fuel cell stack, and shows the gas flow at the time of operation.

符号の説明Explanation of symbols

2 固体電解質層
3 燃料極層
4 酸化剤極層(空気極層)
6 燃料極集電体
7 酸化剤極集電体(空気極集電体)
8 セパレータ
20 カバー
21 ガス排出孔
22 係止爪
23 多孔質金属体
2 Solid electrolyte layer 3 Fuel electrode layer 4 Oxidant electrode layer (air electrode layer)
6 Fuel electrode current collector 7 Oxidant electrode current collector (air electrode current collector)
8 Separator 20 Cover
21 Gas discharge hole 22 Locking claw 23 Porous metal body

Claims (3)

固体電解質層の両面に燃料極層と酸化剤極層を配置し、当該燃料極層と酸化剤極層の外側にそれぞれ多孔質金属体で成る燃料極集電体と酸化剤極集電体を配置し、当該燃料極集電体と酸化剤極集電体の外側にセパレータを配置し、当該セパレータから前記燃料極集電体および酸化剤極集電体を通して前記燃料極層および酸化剤極層に燃料ガスおよび酸化剤ガスを供給するシールレス構造の固体酸化物形燃料電池において、
前記燃料極集電体の外周部を覆うように、ガス排出孔を有するカバーを配設し、外周部から排出される余剰ガスの排出箇所を制限したことを特徴とする固体酸化物形燃料電池。
A fuel electrode layer and an oxidant electrode layer are arranged on both sides of the solid electrolyte layer, and a fuel electrode current collector and an oxidant electrode current collector made of a porous metal body are respectively disposed outside the fuel electrode layer and the oxidant electrode layer. A separator is disposed outside the fuel electrode current collector and the oxidant electrode current collector, and the fuel electrode layer and the oxidant electrode layer are passed from the separator through the fuel electrode current collector and the oxidant electrode current collector. In a solid oxide fuel cell having a sealless structure for supplying fuel gas and oxidant gas to
A solid oxide fuel cell characterized in that a cover having a gas discharge hole is provided so as to cover the outer peripheral portion of the fuel electrode current collector, and the exhaust gas exhaust locations discharged from the outer peripheral portion are limited. .
前記カバーは縁部に複数の係止爪を備えており、当該係止爪にて前記多孔質金属体の両面もしくは片面を支持することを特徴とする請求項1に記載の固体酸化物形燃料電池。 2. The solid oxide fuel according to claim 1, wherein the cover includes a plurality of locking claws at an edge, and supports both or one side of the porous metal body with the locking claws. battery. 前記カバーは、カンタル、インコネル、ニクロム等の耐熱性金属で構成されることを特徴とする請求項1または請求項2の何れかに記載の固体酸化物形燃料電池。 3. The solid oxide fuel cell according to claim 1, wherein the cover is made of a heat-resistant metal such as Kanthal, Inconel, or Nichrome.
JP2003313717A 2003-09-05 2003-09-05 Solid oxide fuel cell Expired - Fee Related JP4300947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313717A JP4300947B2 (en) 2003-09-05 2003-09-05 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313717A JP4300947B2 (en) 2003-09-05 2003-09-05 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2005085520A true JP2005085520A (en) 2005-03-31
JP4300947B2 JP4300947B2 (en) 2009-07-22

Family

ID=34414561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313717A Expired - Fee Related JP4300947B2 (en) 2003-09-05 2003-09-05 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4300947B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074666A1 (en) * 2005-12-28 2007-07-05 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
WO2007077724A1 (en) 2005-12-28 2007-07-12 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP2008084682A (en) * 2006-09-27 2008-04-10 Kyocera Corp Flat plate type fuel cell
WO2010110480A1 (en) 2009-03-26 2010-09-30 Honda Motor Co., Ltd. Fuel cell
WO2010113630A1 (en) 2009-04-02 2010-10-07 本田技研工業株式会社 Fuel cell
US8129067B2 (en) 2006-01-31 2012-03-06 Honda Motor Co., Ltd. Fuel cell
US8247128B2 (en) 2006-01-31 2012-08-21 Honda Motor Co., Ltd. Fuel cell
US8865363B2 (en) 2009-04-02 2014-10-21 Honda Motor Co., Ltd. Fuel cell
US8916308B2 (en) 2008-04-28 2014-12-23 Honda Motor Co., Ltd. Fuel cell
US8932778B2 (en) 2008-04-28 2015-01-13 Honda Motor Co., Ltd. Fuel cell with fuel gas outlets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279576A (en) * 1988-04-30 1989-11-09 Tonen Corp Plane plate type solid electrolyte fuel cell
JP2000003715A (en) * 1998-04-15 2000-01-07 Fuji Electric Corp Res & Dev Ltd Solid electrolyte fuel cell
JP2000323154A (en) * 1999-05-13 2000-11-24 Mitsubishi Materials Corp Flat type fuel cell
JP2003100323A (en) * 2001-09-27 2003-04-04 Mitsubishi Materials Corp Power collector and its manufacturing method, and solid electrolyte type fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279576A (en) * 1988-04-30 1989-11-09 Tonen Corp Plane plate type solid electrolyte fuel cell
JP2000003715A (en) * 1998-04-15 2000-01-07 Fuji Electric Corp Res & Dev Ltd Solid electrolyte fuel cell
JP2000323154A (en) * 1999-05-13 2000-11-24 Mitsubishi Materials Corp Flat type fuel cell
JP2003100323A (en) * 2001-09-27 2003-04-04 Mitsubishi Materials Corp Power collector and its manufacturing method, and solid electrolyte type fuel cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179899A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell and fuel cell stack
WO2007077724A1 (en) 2005-12-28 2007-07-12 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
WO2007074666A1 (en) * 2005-12-28 2007-07-05 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US9401515B2 (en) 2005-12-28 2016-07-26 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP4611194B2 (en) * 2005-12-28 2011-01-12 本田技研工業株式会社 Fuel cell and fuel cell stack
US8039169B2 (en) 2005-12-28 2011-10-18 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US8129067B2 (en) 2006-01-31 2012-03-06 Honda Motor Co., Ltd. Fuel cell
US8247128B2 (en) 2006-01-31 2012-08-21 Honda Motor Co., Ltd. Fuel cell
JP2008084682A (en) * 2006-09-27 2008-04-10 Kyocera Corp Flat plate type fuel cell
US8916308B2 (en) 2008-04-28 2014-12-23 Honda Motor Co., Ltd. Fuel cell
US8932778B2 (en) 2008-04-28 2015-01-13 Honda Motor Co., Ltd. Fuel cell with fuel gas outlets
WO2010110480A1 (en) 2009-03-26 2010-09-30 Honda Motor Co., Ltd. Fuel cell
US8652700B2 (en) 2009-03-26 2014-02-18 Honda Motor Co., Ltd. Fuel cell
US8865363B2 (en) 2009-04-02 2014-10-21 Honda Motor Co., Ltd. Fuel cell
JP2010244765A (en) * 2009-04-02 2010-10-28 Honda Motor Co Ltd Fuel cell
US9017894B2 (en) 2009-04-02 2015-04-28 Honda Motor Co., Ltd. Fuel cell
WO2010113630A1 (en) 2009-04-02 2010-10-07 本田技研工業株式会社 Fuel cell

Also Published As

Publication number Publication date
JP4300947B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP4654567B2 (en) Solid oxide fuel cell and method of operating the same
JP4300947B2 (en) Solid oxide fuel cell
JP4963195B2 (en) Separator and flat solid oxide fuel cell
JP4529393B2 (en) Solid oxide fuel cell
JP2005203258A (en) Solid oxide fuel cell
JP4512911B2 (en) Solid oxide fuel cell
EP1852929B1 (en) Solid oxide fuel cell
JP4461949B2 (en) Solid oxide fuel cell
JP4438315B2 (en) Preheating method at the start of operation of solid oxide fuel cell
JP4244579B2 (en) Flat stacked solid oxide fuel cell
JP4984374B2 (en) Fuel cell
JP4304889B2 (en) Solid oxide fuel cell
JP4678115B2 (en) Operation method and operation system of solid oxide fuel cell
JP2003331871A (en) Flat solid oxide fuel cell and separator
JP2002358980A (en) Solid electrolyte fuel cell
JP4654631B2 (en) Solid oxide fuel cell
JP2005294152A (en) Solid oxide fuel cell
JPH06196196A (en) Solid electrolyte type fuel cell
JP4461705B2 (en) Operation method of solid oxide fuel cell
JP2004335161A (en) Solid state oxide fuel cell, separator and operation method
JP2004227849A (en) Internally modified type fuel cell
JP4513396B2 (en) Solid oxide fuel cell
JP2006236597A (en) Separator for fuel cell and solid oxide fuel cell
JP5387821B2 (en) Flat type solid oxide fuel cell
JP2004055196A (en) Oxidant gas feeding mechanism for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees