JP2001035256A - Insulating material composition and insulating material using the same - Google Patents

Insulating material composition and insulating material using the same

Info

Publication number
JP2001035256A
JP2001035256A JP11209985A JP20998599A JP2001035256A JP 2001035256 A JP2001035256 A JP 2001035256A JP 11209985 A JP11209985 A JP 11209985A JP 20998599 A JP20998599 A JP 20998599A JP 2001035256 A JP2001035256 A JP 2001035256A
Authority
JP
Japan
Prior art keywords
insulating material
film
minutes
heat
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11209985A
Other languages
Japanese (ja)
Inventor
Toshimasa Eguchi
敏正 江口
Mitsuru Murata
満 村田
Mitsumoto Murayama
三素 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11209985A priority Critical patent/JP2001035256A/en
Publication of JP2001035256A publication Critical patent/JP2001035256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Formation Of Insulating Films (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulating material composition showing an extremely low dielectric constant and satisfactory insulation performance, superior in heat resistance and useful for electric appliances, electronic apparatuses and semiconductor equipment, and provide an insulating material using it. SOLUTION: This insulating material composition has a high polymer (A) made to have a low molecular weight by optical irradiation and a heat resistant material or its precursor as essential components. After forming a film on a base with this insulating material composition, the component (A) is made to have a low molecular weight through photodecomposition, and a fine air gap is formed in the film by vaporizing it by heating or by extracting and removing it from a solvent. Thereby, a heat resistant insulating material which is lows in dielectric constant can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁材に関するも
のであり、更に詳しくは、電気・電子機器用、半導体装
置用として優れた特性を有する絶縁材用組成物及びこれ
を用いた絶縁材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating material, and more particularly to a composition for an insulating material having excellent characteristics for electric / electronic devices and semiconductor devices, and an insulating material using the same. Things.

【0002】[0002]

【従来の技術】電気電子機器用、半導体装置用材料に求
められている特性のなかで、電気特性と耐熱性は、最も
重要な特性である。特に近年、回路の微細化と信号の高
速化に伴い、誘電率の低い絶縁材料が要求されている。
この2つの特性を両立させるための材料として、耐熱性
樹脂を用いた絶縁材が、期待されている。例えば、従来
から用いられている二酸化シリコン等の無機の絶縁材
は、高耐熱性を示すが、誘電率が高く、要求特性が高度
化している現在では、前述の特性について、両立が困難
になりつつある。ポリイミド樹脂に代表される耐熱性樹
脂は、電気特性と耐熱性に優れ、2つの特性の両立が、
可能であり、実際にプリント回路のカバーレイや半導体
装置のパッシベーション膜などに用いられている。
2. Description of the Related Art Among the characteristics required for materials for electric / electronic devices and semiconductor devices, electric characteristics and heat resistance are the most important characteristics. In particular, in recent years, with miniaturization of circuits and speeding up of signals, an insulating material having a low dielectric constant has been required.
An insulating material using a heat-resistant resin is expected as a material for achieving both of these characteristics. For example, conventionally used inorganic insulating materials such as silicon dioxide have high heat resistance, but have a high dielectric constant and the required characteristics are now sophisticated. It is getting. A heat-resistant resin represented by a polyimide resin has excellent electrical properties and heat resistance, and is compatible with both properties.
It is possible and actually used for a coverlay of a printed circuit or a passivation film of a semiconductor device.

【0003】しかしながら、近年の半導体の高機能化、
高性能化にともない、電気特性、耐熱性について著しい
向上が、必要とされているため、更に高性能な絶縁材
が、必要とされるようになっている。特に、誘電率につ
いて、2.5を下回るような低誘電率材料が、期待され
ており、従来の絶縁材では、必要とされる特性に達して
いない。これに対して、これまでに、耐熱性材料の前駆
体と熱分解性成分を有する液状材料を塗布し、加熱工程
により、この熱分解性成分を分解させて、空隙を形成す
ることにより絶縁材の誘電率を低減させることが、試み
られている。しかし、熱分解性成分を完全に分解・揮散
させるためには、高温・長時間の加熱工程が必要である
ことや、熱分解性成分を分解させる際に、空隙が潰れて
しまい、誘電率が効果的に低減できない場合があること
が、問題となっている。
[0003] However, in recent years, semiconductors have become more sophisticated,
With the increase in performance, remarkable improvements in electrical characteristics and heat resistance are required, so that a higher-performance insulating material is required. In particular, a low-dielectric material having a dielectric constant of less than 2.5 is expected, and a conventional insulating material does not reach required characteristics. On the other hand, to date, a liquid material having a precursor of a heat-resistant material and a heat-decomposable component has been applied, and this heat-decomposable component has been decomposed by a heating step to form voids. Attempts have been made to reduce the dielectric constant. However, in order to completely decompose and volatilize the thermally decomposable component, a heating step at a high temperature and for a long time is necessary. The problem is that it may not be possible to reduce it effectively.

【0004】[0004]

【発明が解決しようとする課題】本発明は、効率的な加
工方法で極めて低い誘電率と良好な絶縁性を示すととも
に、耐熱性にも優れた絶縁材用組成物及びこれを用いた
絶縁材を提供する事を目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to a composition for an insulating material which exhibits an extremely low dielectric constant and good insulating properties by an efficient processing method, and also has excellent heat resistance and an insulating material using the same. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記従来
の問題点を鑑み、鋭意検討を重ねた結果、以下の手段に
より本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned conventional problems, and as a result, completed the present invention by the following means.

【0006】すなわち、本発明は、 1.光照射によって低分子量化する高分子(A)と、耐
熱性材料またはその前駆体(B)とを必須成分とする絶
縁材用組成物、
That is, the present invention provides: A composition for an insulating material comprising a polymer (A) whose molecular weight is reduced by light irradiation and a heat-resistant material or its precursor (B) as essential components;

【0007】2.耐熱性材料またはその前駆体(B)
が、耐熱性高分子または耐熱性高分子前駆体である第1
項に記載の絶縁材用組成物、
[0007] 2. Heat-resistant material or its precursor (B)
Is a heat-resistant polymer or a heat-resistant polymer precursor,
The composition for an insulating material according to the item,

【0008】3.耐熱性高分子またはその前駆体(B)
が、ポリベンゾオキサゾールまたはポリベンゾオキサゾ
ール前駆体である第2項に記載の絶縁材用組成物、
[0008] 3. Heat-resistant polymer or its precursor (B)
The composition for insulating material according to claim 2, which is a polybenzoxazole or a polybenzoxazole precursor,

【0009】4.第1〜3項のいずれか1項に記載の絶
縁材用組成物を用いて、成分(A)を光照射により低分
子量化した後、該成分を揮散または抽出する工程を有す
る方法で製造されたことを特徴とする絶縁材、である。
4. The composition for an insulating material according to any one of Items 1 to 3, wherein the component (A) is produced by a method having a step of lowering the molecular weight by light irradiation and then volatilizing or extracting the component. An insulating material.

【0010】[0010]

【発明の実施の形態】本発明の絶縁材用組成物は、光照
射によって低分子量化する高分子(A)と、耐熱性材料
またはその前駆体(B)とを必須成分として成るもので
ある。成分(A)と成分(B)以外の成分として、溶剤
を用いることが可能であるが、成分(A)が成分(B)
を溶解する液体である場合は、成分(A)をもって溶剤
を兼ねることもできる。また、これらの成分以外に、光
増感剤、密着性付与剤、レベリング剤等を添加してもか
まわない。
BEST MODE FOR CARRYING OUT THE INVENTION The insulating material composition of the present invention comprises, as essential components, a polymer (A) whose molecular weight is reduced by light irradiation and a heat-resistant material or its precursor (B). . As a component other than the component (A) and the component (B), a solvent can be used, but the component (A) is used as the component (B).
In the case of a liquid that dissolves, the component (A) can also serve as a solvent. In addition to these components, a photosensitizer, an adhesion-imparting agent, a leveling agent, and the like may be added.

【0011】本発明の絶縁材用組成物は、次のような工
程により絶縁材とすることができる。第一に、絶縁材用
組成物の成分(A)が、また、成分(A)と成分(B)
以外の成分として光増感剤を用いる場合、成分(A)と
光増感剤が、感度を持たない波長の光照明下で、絶縁材
組成物を基板上にスピンコーター等を用いて塗布し、加
熱・製膜する。成分(B)が耐熱性材料前駆体である場
合には、この工程において、前駆体を反応させて耐熱性
材料とする。この工程における加熱温度は、成分(A)
が熱分解により揮散してしまわない温度範囲とする。
The insulating material composition of the present invention can be made into an insulating material by the following steps. First, the component (A) of the composition for insulating material includes the component (A) and the component (B).
In the case where a photosensitizer is used as a component other than the above, the component (A) and the photosensitizer are applied to a substrate using a spin coater or the like under a light illumination at a wavelength having no sensitivity. , Heating and film formation. When the component (B) is a heat-resistant material precursor, the precursor is reacted in this step to form a heat-resistant material. The heating temperature in this step depends on the component (A)
Is in a temperature range in which is not volatilized by thermal decomposition.

【0012】第二に、成分(A)が、また、光増感剤を
用いる場合、光増感剤が、感度を有する波長の光を露光
装置により照射して、成分(A)を光分解させて低分子
量化する。
Second, when the component (A) and a photosensitizer are used, the photosensitizer irradiates light having a wavelength having sensitivity with an exposure device to photodecompose the component (A). To reduce the molecular weight.

【0013】第三に、再度加熱することにより、低分子
量化した成分(A)を揮散させて除去する。または、低
分子量化した成分(A)が、可溶な溶剤をスピンコータ
ーを用いて基板上に散布、もしくは、上記基板を溶剤槽
に浸漬することにより、低分子量化した成分(A)を抽
出して、これを除去する。以上の工程によって、微細な
空隙を形成し、これにより低い誘電率の絶縁材を得るこ
とが出来るものである。
Third, by heating again, the low molecular weight component (A) is volatilized and removed. Alternatively, the low-molecular-weight component (A) is sprayed with a soluble solvent on a substrate using a spin coater, or the low-molecular-weight component (A) is extracted by immersing the substrate in a solvent bath. And remove it. Through the above steps, fine voids are formed, whereby an insulating material having a low dielectric constant can be obtained.

【0014】揮散により低分子量化した成分(A)を除
去する場合には、加熱する必要があるが、この場合に
は、低分子量化した成分(A)が揮散する温度以上、お
よび、微細な空隙が潰れることを避けるために、耐熱性
材料の融点もしくは耐熱性材料が高分子である場合には
そのガラス転移温度以下の温度で行う。
In order to remove the component (A) whose molecular weight has been reduced by volatilization, it is necessary to heat. In this case, the temperature is higher than the temperature at which the component (A) whose molecular weight has been reduced is volatilized, and fine particles are used. In order to avoid collapse of the voids, the heat treatment is performed at a melting point of the heat-resistant material or at a temperature lower than the glass transition temperature when the heat-resistant material is a polymer.

【0015】溶剤による低分子量化した成分(A)の抽
出を行う際には、加熱後の耐熱性材料が、溶解しない溶
剤を用いることが必要である。成分(B)において、前
駆体から加熱により得られる耐熱性材料は、一般的に耐
溶剤性が良好であるので、より好ましい。
When extracting the low molecular weight component (A) with a solvent, it is necessary to use a solvent in which the heat-resistant material after heating does not dissolve. In the component (B), a heat-resistant material obtained by heating the precursor is generally more preferable because it has good solvent resistance.

【0016】また、本発明で成分(A)や光増感剤の他
に、用いる耐熱性材料及び溶剤等は、光を吸収しないも
のを用いることが必要である。
Further, in addition to the component (A) and the photosensitizer in the present invention, it is necessary to use a heat-resistant material, a solvent and the like which do not absorb light.

【0017】本発明に用いる光照射によって低分子量化
する高分子(A)の例を挙げると、ポリメチルメタクリ
レート、ポリ(α−メチルスチレン)等であるが、これ
らに限られるものではない。低分子量化する前の分子量
は、5000以上であることが好ましく、低分子量化後
の分子量は、500以下であることが好ましいが、低分
子量化前後で揮散性または溶剤溶解性に大幅な差がつけ
ば、分子量の変化は上記に限られる必要は無い。
Examples of the polymer (A) whose molecular weight is reduced by light irradiation used in the present invention include polymethyl methacrylate and poly (α-methylstyrene), but are not limited thereto. The molecular weight before lowering the molecular weight is preferably 5,000 or more, and the molecular weight after lowering the molecular weight is preferably 500 or less, but there is a significant difference in volatility or solvent solubility before and after the lowering of the molecular weight. If so, the change in molecular weight need not be limited to the above.

【0018】本発明に用いる耐熱性材料またはその前駆
体(B)の例を挙げると、ポリイミド、ポリアミド酸、
ポリアミド酸エステル、ポリイソイミド、ポリアミドイ
ミド、ポリアミド、ビスマレイミド、ポリベンゾオキサ
ゾール、ポリヒドロキシアミド、ポリベンゾチアゾー
ル、ポリシロキサン、ポリシルセスキオキサン、ポリシ
ラザン等であるがこれらに限られるものではない。これ
らの中でもポリベンゾオキサゾールとポリヒドロキシア
ミド等のポリベンゾオキサゾール前駆体は、得られる絶
縁材の誘電率が低く耐熱性も高いので好ましい。
Examples of the heat-resistant material or its precursor (B) used in the present invention include polyimide, polyamic acid,
Examples include, but are not limited to, polyamic acid esters, polyisoimides, polyamideimides, polyamides, bismaleimides, polybenzoxazoles, polyhydroxyamides, polybenzothiazoles, polysiloxanes, polysilsesquioxanes, and polysilazanes. Among them, polybenzoxazole precursors such as polybenzoxazole and polyhydroxyamide are preferable because the resulting insulating material has a low dielectric constant and high heat resistance.

【0019】本発明の絶縁材用組成物の成分として溶剤
を用いる場合に、好ましい溶剤の例を挙げると、N,N
−ジメチルアセトアミド、N−メチル−2−ピロリド
ン、プロピレングリコールモノメチルエーテル、プロピ
レングリコールモノメチルエーテルアセテート、ジエチ
レングリコールモノメチルエーテル、γ−ブチロラクト
ン、キシレン等であるがこれらに限定されるものではな
い。また、これらを2種以上同時に用いてもかまわな
い。
When a solvent is used as a component of the composition for insulating material of the present invention, examples of preferred solvents include N, N
-Dimethylacetamide, N-methyl-2-pyrrolidone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, γ-butyrolactone, xylene and the like, but are not limited thereto. Further, two or more of these may be used at the same time.

【0020】本発明の絶縁材用樹脂組成物は、光照射に
よって低分子量化する高分子(A)と耐熱性材料または
その前駆体(B)を均一に混合して得られる。成分
(A)は、成分(B)に対して重量比で5〜90%添加
するのが好ましい。さらに好ましくは10〜70%の範
囲で添加するものである。5%より低いと空隙率が小さ
く、誘電率が下がらず、90%より高いと機械的強度や
接着性が低下し、吸水率が高くなる等の影響がでる。
The resin composition for an insulating material of the present invention is obtained by uniformly mixing a polymer (A) whose molecular weight is reduced by light irradiation and a heat-resistant material or its precursor (B). Component (A) is preferably added in an amount of 5 to 90% by weight based on component (B). More preferably, it is added in the range of 10 to 70%. If it is lower than 5%, the porosity is small, and the dielectric constant does not decrease. If it is higher than 90%, the mechanical strength and adhesiveness are reduced, and the water absorption is increased.

【0021】本発明の絶縁材の誘電率を低減するために
形成される微少な空隙は、好ましくはその直径が50n
m以下のものであり、さらに好ましくは平均粒径で10
nm以下のものである。また、微少な空隙の割合として
は、絶縁材の形成物全体に対し、5〜90vol%が好
ましいが、さらに好ましくは10〜70vol%であ
る。
The minute voids formed to reduce the dielectric constant of the insulating material of the present invention preferably have a diameter of 50 n.
m or less, and more preferably an average particle size of 10
nm or less. The ratio of the minute voids is preferably from 5 to 90 vol%, more preferably from 10 to 70 vol%, based on the whole formed material of the insulating material.

【0022】本発明の絶縁材用組成物を用い、前記の方
法で加熱・製膜する工程、光照射する工程、及び光照射
によって低分子量化した高分子を揮散もしくは抽出して
除去する工程により、誘電率の低い絶縁材を形成するこ
とができる。光照射は、200nm前後の波長の光を照
射できる低圧水銀灯を光源とした深紫外線露光装置等を
用いて行うことができる。また、加熱は揮散した成分を
排気できる加熱装置で行うことが好ましい。
Using the insulating material composition of the present invention, the steps of heating and forming a film by the above-described methods, irradiating with light, and removing or removing by volatilizing or extracting the polymer whose molecular weight has been reduced by the irradiation of light. In addition, an insulating material having a low dielectric constant can be formed. Light irradiation can be performed using a deep ultraviolet exposure apparatus or the like using a low-pressure mercury lamp capable of emitting light having a wavelength of about 200 nm as a light source. The heating is preferably performed by a heating device capable of exhausting the volatilized components.

【0023】[0023]

【実施例】以下に、実施例により、本発明を具体的に説
明するが、実施例の内容になんら限定されるものではな
い。
EXAMPLES The present invention will be described below in more detail with reference to Examples, but it should not be construed that the invention is limited thereto.

【0024】「実施例1」 (1)ポリイミドの合成 攪拌装置、窒素導入管、原料投入口を備えたセパラブル
フラスコ中、2,2’−ビス(4−(4,4’−アミノ
フェノキシ)フェニル)ヘキサフルオロプロパン5.1
8g(0.01mol)と2,2’−ビス(トリフルオ
ロメチル)−4,4’−ジアミノビフェニル9.60g
(0.03mol)を、乾燥したN−メチル−2−ピロ
リドン(以下NMPと略す)200gに溶解した。乾燥
窒素下、10℃に溶液を冷却して、ビフェニルテトラカ
ルボン酸二無水物2.94g(0.01mol)とヘキ
サフルオロイソプロピリデン−2,2−ビス(フタル酸
無水物)13.32g(0.03mol)を投入した。
投入から5時間後に室温まで戻し、室温で2時間攪拌
し、ポリイミド前駆体であるポリアミド酸の溶液を得
た。このポリアミド酸溶液に、ピリジン50gを加えた
後、無水酢酸0.05molを滴下し、系の温度を70
℃に保って、7時間イミド化反応を行った。この溶液を
20倍量の水中に滴下して、沈殿を回収し、60℃で7
2時間真空乾燥して、耐熱性高分子材料であるポリイミ
ドの固形物を得た。
Example 1 (1) Synthesis of polyimide 2,2′-bis (4- (4,4′-aminophenoxy)) was placed in a separable flask equipped with a stirrer, a nitrogen inlet tube, and a raw material inlet. Phenyl) hexafluoropropane 5.1
8 g (0.01 mol) and 9.60 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl
(0.03 mol) was dissolved in 200 g of dried N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). The solution was cooled to 10 ° C under dry nitrogen, and 2.94 g (0.01 mol) of biphenyltetracarboxylic dianhydride and 13.32 g of hexafluoroisopropylidene-2,2-bis (phthalic anhydride) were added. .03 mol).
Five hours after the introduction, the temperature was returned to room temperature, and the mixture was stirred at room temperature for 2 hours to obtain a solution of polyamic acid as a polyimide precursor. After adding 50 g of pyridine to the polyamic acid solution, 0.05 mol of acetic anhydride was added dropwise, and the temperature of the system was reduced to 70%.
The imidation reaction was carried out for 7 hours while maintaining the temperature. This solution was added dropwise to 20 times the volume of water, and the precipitate was collected.
Vacuum drying was performed for 2 hours to obtain a solid material of polyimide which is a heat-resistant polymer material.

【0025】(2)耐熱性高分子材料のガラス転移温度
及び誘電率の測定 上記により合成したポリイミド5.0gを、NMP1
5.0gに溶解し、離形処理したガラス基板上に塗布し
た後、オーブン中120℃で30分間保持後、230℃
で90分間保持して成膜し、基板から膜を剥がした後、
さらに400℃で90分加熱し、ポリイミドのフィルム
とした。このポリイミドのガラス転移温度を示差走査熱
量計により測定したところ、335℃であった。さら
に、上記により得たポリイミド5.0gをNMP20.
0gに溶解した後、厚さ200nmのタンタルを成膜し
たシリコンウエハ上にスピンコートした。100℃で2
分間プリベークした後に、窒素雰囲気のオーブン中で1
50℃30分間加熱後、毎分5℃の昇温速度で250℃
まで温度を上げ、250℃で60分間保持後、さらに毎
分10℃の昇温速度で350℃まで温度を上げ、350
℃で5分間保持し、厚さ0.8μmのポリイミドの被膜
を得た。この皮膜上に、面積0.1cm2のアルミの電
極を蒸着により形成し、基板のタンタルとの間のキャパ
シタンスをLCRメーターにより測定した。膜厚、電極
面積、キャパシタンスからポリイミドの誘電率を算出し
たところ、2.9であった。
(2) Measurement of Glass Transition Temperature and Dielectric Constant of Heat-Resistant Polymer Material 5.0 g of the polyimide synthesized as above was added to NMP1
After dissolving in 5.0 g and applying it on a release-treated glass substrate, it was kept in an oven at 120 ° C. for 30 minutes, and then 230 ° C.
After holding the film for 90 minutes, peeling off the film from the substrate,
It was further heated at 400 ° C. for 90 minutes to obtain a polyimide film. The glass transition temperature of this polyimide was 335 ° C. as measured by a differential scanning calorimeter. Further, 5.0 g of the polyimide obtained above was added to NMP20.
After dissolving in 0 g, a 200 nm-thick tantalum film was spin-coated on a silicon wafer. 2 at 100 ° C
After pre-baking for 1 minute,
After heating at 50 ° C for 30 minutes, 250 ° C at a rate of 5 ° C / minute
The temperature was raised at 250 ° C. for 60 minutes, and then raised to 350 ° C. at a rate of 10 ° C./min.
C. for 5 minutes to obtain a 0.8 .mu.m thick polyimide film. An aluminum electrode having an area of 0.1 cm 2 was formed on this film by vapor deposition, and the capacitance between the electrode and tantalum on the substrate was measured by an LCR meter. The dielectric constant of the polyimide calculated from the film thickness, the electrode area, and the capacitance was 2.9.

【0026】(3)光照射によって低分子量化する高分
子の分子量と、低分子量化後の揮散する温度の測定 絶縁材用組成物の調製に用いるためのポリメチルメタク
リレートの分子量を、GPCにより測定したところ、ポ
リスチレン換算の数平均分子量は、2.5×104であ
った。このポリメチルメタクリレート10mgを、熱重
量分析(TG/DTA)のサンプルパンに入れ、200
Wの低圧水銀灯を用いた紫外線露光装置により、5分間
紫外線を照射した。その後、毎分5℃の昇温速度でTG
/DTAにより、低分子量化後の揮散する温度を測定し
たところ110℃であった。
(3) Measurement of molecular weight of polymer whose molecular weight is reduced by light irradiation and temperature of volatilization after molecular weight reduction The molecular weight of polymethyl methacrylate to be used for preparing a composition for insulating material is measured by GPC. As a result, the number average molecular weight in terms of polystyrene was 2.5 × 10 4 . 10 mg of this polymethyl methacrylate was placed in a sample pan for thermogravimetric analysis (TG / DTA),
Ultraviolet light was irradiated for 5 minutes by an ultraviolet exposure apparatus using a low-pressure mercury lamp of W. Thereafter, the TG was heated at a rate of 5 ° C./min.
The temperature at which volatilization after molecular weight reduction was measured by / DTA was 110 ° C.

【0027】(4)絶縁材用組成物の調製と絶縁材の製
造 上記により得たポリイミド10.0gを、NMP50.
0gに溶解した後、前記と同じポリメチルメタクリレー
ト5.0gを加えて攪拌し、絶縁材用組成物を得た。波
長400nm以下の紫外線を遮光した環境下、この絶縁
材用組成物を、厚さ200nmのタンタルを成膜したシ
リコンウエハ上にスピンコートした。100℃で2分間
プリベークした後に、窒素雰囲気のオーブン中で150
℃30分間加熱後、毎分5℃の昇温速度で300℃まで
温度を上げ、300℃で30分間保持した後に、毎分1
0℃の速度で温度を下げて室温に戻した。オーブンから
ウエハを取り出し、200Wの低圧水銀灯を用いた紫外
線露光装置により5分間紫外線を照射した。その後、換
気装置付きのオーブンを用い、空気雰囲気中で200℃
で4時間加熱した。このようにして厚さ0.8μmの絶
縁材の被膜を得た。この絶縁材の皮膜上に、面積0.1
cm2のアルミの電極を蒸着により形成し、基板のタン
タルとの間のキャパシタンスをLCRメーターにより測
定した。膜厚、電極面積、キャパシタンスから絶縁材の
誘電率を算出したところ、2.4であった。対数混合法
の式を用いて誘電率から計算した結果、絶縁材膜の空隙
率は約18%であった。また、TEMで観察した結果、
絶縁材膜の空隙の径は平均5nmであった。
(4) Preparation of Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyimide obtained above was added to NMP50.
After dissolving in 0 g, the same polymethyl methacrylate (5.0 g) as above was added and stirred to obtain an insulating material composition. The composition for an insulating material was spin-coated on a silicon wafer on which a 200 nm-thick tantalum film was formed in an environment in which ultraviolet light having a wavelength of 400 nm or less was shielded from light. After pre-baking at 100 ° C. for 2 minutes, 150 ° C. in an oven under a nitrogen atmosphere.
After heating at 30 ° C. for 30 minutes, the temperature was raised to 300 ° C. at a rate of 5 ° C./minute, and the temperature was maintained at 300 ° C. for 30 minutes.
The temperature was lowered at a rate of 0 ° C. to room temperature. The wafer was taken out of the oven and irradiated with ultraviolet rays for 5 minutes by an ultraviolet exposure apparatus using a 200 W low-pressure mercury lamp. Then, using an oven with a ventilator, 200 ° C. in an air atmosphere
For 4 hours. Thus, a 0.8 μm-thick insulating film was obtained. An area of 0.1 on the insulation film
An aluminum electrode of cm 2 was formed by vapor deposition, and the capacitance between the electrode and tantalum on the substrate was measured by an LCR meter. The dielectric constant of the insulating material calculated from the film thickness, the electrode area, and the capacitance was 2.4. As a result of calculating from the dielectric constant using the equation of the logarithmic mixing method, the porosity of the insulating film was about 18%. Also, as a result of observation by TEM,
The average diameter of the voids in the insulating material film was 5 nm.

【0028】「実施例2」 (1)ポリイミド前駆体の合成 実施例1のポリイミドの合成で、前駆体の合成において
用いた2,2’−ビス(4−(4,4’−アミノフェノ
キシ)フェニル)ヘキサフルオロプロパン5.18g
(0.01mol)と2,2’−ビス(トリフルオロメ
チル)−4,4’−ジアミノビフェニル9.60g
(0.03mol)を4,4’−ジアミノジフェニルエ
ーテル8.01g(0.04mol)に、ビフェニルテ
トラカルボン酸二無水物2.94g(0.01mol)
とヘキサフルオロイソプロピリデン−2,2−ビス(フ
タル酸無水物)13.32g(0.03mol)とをピ
ロメリット酸二無水物8.72(0.04mol)に換
えた以外は、実施例1と同様にしてポリイミド前駆体で
あるポリアミド酸の溶液を得た。この溶液を20倍量の
水中に滴下して沈殿を回収し、25℃で72時間真空乾
燥して耐熱性高分子材料であるポリイミドの前駆体であ
るポリアミド酸の固形物を得た。
Example 2 (1) Synthesis of Polyimide Precursor In the synthesis of the polyimide in Example 1, 2,2′-bis (4- (4,4′-aminophenoxy) used in the synthesis of the precursor was used. 5.18 g of phenyl) hexafluoropropane
(0.01 mol) and 9.60 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl
(0.03 mol) to 4.01 g (0.04 mol) of 4,4′-diaminodiphenyl ether and 2.94 g (0.01 mol) of biphenyltetracarboxylic dianhydride
Example 1 except that 13.32 g (0.03 mol) of hexafluoroisopropylidene-2,2-bis (phthalic anhydride) was replaced with 8.72 (0.04 mol) of pyromellitic dianhydride. In the same manner as in the above, a solution of a polyamic acid as a polyimide precursor was obtained. This solution was dropped into a 20-fold amount of water to collect a precipitate, followed by vacuum drying at 25 ° C. for 72 hours to obtain a solid of polyamic acid, which is a precursor of polyimide as a heat-resistant polymer material.

【0029】(2)耐熱性高分子材料のガラス転移温度
及び誘電率の測定 上記により合成したポリアミド酸5.0gを、NMP2
0.0gに溶解し、離形処理したガラス基板上に塗布し
た後、オーブン中120℃で30分間保持後、250℃
で90分間保持して成膜し、基板から膜を剥がした後、
さらに450℃で90分加熱し、ポリイミドのフィルム
とした。このポリイミドのガラス転移温度を示差走査熱
量計により測定したところ、419℃であった。さら
に、上記により合成したポリアミド酸5.0gを、NM
P20.0gに溶解した後、厚さ200nmのタンタル
を成膜したシリコンウエハ上にスピンコートした。10
0℃で2分間プリベークした後に、窒素雰囲気のオーブ
ン中で150℃30分間加熱後、毎分5℃の昇温速度で
250℃まで温度を上げ、250℃で60分間保持後、
さらに毎分10℃の昇温速度で350℃まで温度を上
げ、350℃で5分間保持し、厚さ0.8μmのポリイ
ミドの被膜を得た。以下実施例1と同様にしてこのポリ
イミドの誘電率を測定したところ3.1であった。
(2) Measurement of Glass Transition Temperature and Dielectric Constant of Heat-Resistant Polymer Material 5.0 g of the polyamic acid synthesized as described above was added to NMP2
After dissolving it in 0.0 g and applying it on a release-treated glass substrate, it was kept in an oven at 120 ° C. for 30 minutes, and then 250 ° C.
After holding the film for 90 minutes, peeling off the film from the substrate,
It was further heated at 450 ° C. for 90 minutes to obtain a polyimide film. The glass transition temperature of this polyimide was 419 ° C. as measured by a differential scanning calorimeter. Further, 5.0 g of the polyamic acid synthesized above was added to NM
After dissolving in 20.0 g of P, a 200 nm thick tantalum film was spin-coated on a silicon wafer. 10
After pre-baking at 0 ° C. for 2 minutes, heating at 150 ° C. for 30 minutes in a nitrogen atmosphere oven, increasing the temperature to 250 ° C. at a rate of 5 ° C./min, and holding at 250 ° C. for 60 minutes,
Further, the temperature was raised to 350 ° C. at a rate of 10 ° C./min and maintained at 350 ° C. for 5 minutes to obtain a 0.8 μm-thick polyimide film. Thereafter, the dielectric constant of this polyimide was measured in the same manner as in Example 1, and it was 3.1.

【0030】(3)絶縁材用組成物の調製と絶縁材の製
造 上記により合成したポリアミド酸10.0gをNMP5
0.0gに溶解した後、実施例1で用いたものと同じポ
リメチルメタクリレート9.0gを加えて攪拌し、絶縁
材用組成物を得た。波長400nm以下の紫外線を遮光
した環境下、この絶縁材用組成物を、厚さ200nmの
タンタルを成膜したシリコンウエハ上にスピンコートし
た。100℃で2分間プリベークした後に、窒素雰囲気
のオーブン中で、150℃30分間加熱後、毎分5℃の
昇温速度で250℃まで温度を上げ、250℃で60分
間保持後、さらに毎分10℃の昇温速度で350℃まで
温度を上げ、350℃で5分間保持した後に、毎分10
℃の速度で温度を下げて室温に戻した。オーブンからウ
エハを取り出し、200Wの低圧水銀灯を用いた紫外線
露光装置により5分間紫外線を照射した。その後、30
℃に温度を制御したテトラヒドロフラン中に、24時間
ウエハを浸漬した後、100℃で1時間乾燥した。この
ようにして厚さ0.8μmの絶縁材の被膜を得た。以下
実施例1と同様にしてこの絶縁材の誘電率を測定したと
ころ2.4であった。対数混合法の式を用いて誘電率か
ら計算した結果、絶縁材膜の空隙率は約23%であっ
た。また、TEMで観察した結果、絶縁材膜の空隙の径
は平均5nmであった。
(3) Preparation of Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyamic acid synthesized as described above was added to NMP5
After dissolving in 0.0 g, the same polymethyl methacrylate as used in Example 1 (9.0 g) was added and stirred to obtain a composition for an insulating material. The composition for an insulating material was spin-coated on a silicon wafer on which a 200 nm-thick tantalum film was formed in an environment in which ultraviolet light having a wavelength of 400 nm or less was shielded from light. After pre-baking at 100 ° C. for 2 minutes, heating in a nitrogen atmosphere oven at 150 ° C. for 30 minutes, then increasing the temperature to 250 ° C. at a rate of 5 ° C./minute, holding at 250 ° C. for 60 minutes, and further every minute The temperature was raised to 350 ° C. at a temperature increasing rate of 10 ° C., and the temperature was maintained at 350 ° C. for 5 minutes.
The temperature was lowered to room temperature at a rate of ° C. The wafer was taken out of the oven and irradiated with ultraviolet rays for 5 minutes by an ultraviolet exposure apparatus using a 200 W low-pressure mercury lamp. Then 30
The wafer was immersed in tetrahydrofuran whose temperature was controlled at ° C for 24 hours, and then dried at 100 ° C for 1 hour. Thus, a 0.8 μm-thick insulating film was obtained. Thereafter, the dielectric constant of this insulating material was measured in the same manner as in Example 1, and it was 2.4. As a result of calculating from the dielectric constant using the logarithmic mixing method, the porosity of the insulating film was about 23%. As a result of observation with a TEM, the diameter of the voids in the insulating film was 5 nm on average.

【0031】「実施例3」 (1)ポリベンゾオキサゾールの合成 4,4’−ヘキサフルオロイソプロピリデンジフェニル
−1,1’−ジカルボン酸25g、塩化チオニル45m
l及び乾燥ジメチルホルムアミド0.5mlを反応容器
に入れ、60℃で2時間反応させた。反応終了後、過剰
の塩化チオニルを加熱及び減圧により留去した。析出物
をヘキサンを用いて再結晶を行い、4,4’−ヘキサフ
ルオロイソプロピリデンジフェニル−1,1’ジカルボ
ン酸クロリドを得た。攪拌装置、窒素導入管、滴下漏斗
を付けたセパラブルフラスコ中、2,2’−ビス(3ー
アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロ
パン7.32g(0.02mol)を、乾燥したジメチ
ルアセトアミド100gに溶解し、ピリジン3.96g
(0.05mol)を添加後、乾燥窒素導入下、−15
℃でジメチルアセトアミド50gに、上記により合成し
た4,4’−ヘキサフルオロイソプロピリデンジフェニ
ル−1,1’−ジカルボン酸クロリド8.58g(0.
02mol)を溶解したものを30分掛けて滴下した。
滴下終了後、室温まで戻し、室温で5時間攪拌した。そ
の後、反応液を水1000ml中に滴下し、沈殿物を集
め、40℃で48時間真空乾燥することによりポリベン
ゾオキサゾール前駆体であるポリヒドロキシアミドの固
形物を得た。このポリヒドロキシアミドをNMP200
gに溶解した溶液に、ピリジン50gを加えた後、無水
酢酸0.03molを滴下し、系の温度を70℃に保っ
て7時間オキサゾール化反応を行った。この溶液を20
倍量の水中に滴下して沈殿を回収し、60℃で72時間
真空乾燥して耐熱性高分子材料であるポリベンゾオキサ
ゾールの固形物を得た。
Example 3 (1) Synthesis of polybenzoxazole 25 g of 4,4'-hexafluoroisopropylidenediphenyl-1,1'-dicarboxylic acid, 45 m of thionyl chloride
l and 0.5 ml of dry dimethylformamide were placed in a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The precipitate was recrystallized using hexane to obtain 4,4'-hexafluoroisopropylidenediphenyl-1,1'dicarboxylic acid chloride. In a separable flask equipped with a stirrer, a nitrogen introducing tube, and a dropping funnel, 7.32 g (0.02 mol) of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added to 100 g of dried dimethylacetamide. 3.96 g of pyridine
(0.05 mol), and then -15 under dry nitrogen introduction.
8.55 g of 4,4'-hexafluoroisopropylidenediphenyl-1,1'-dicarboxylic acid chloride synthesized above was added to 50 g of dimethylacetamide at 50 ° C (0.5 g).
02mol) was added dropwise over 30 minutes.
After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was dropped into 1000 ml of water, and the precipitate was collected and vacuum-dried at 40 ° C. for 48 hours to obtain a solid substance of polyhydroxyamide, a polybenzoxazole precursor. This polyhydroxyamide is converted to NMP200
After adding 50 g of pyridine to the solution dissolved in g, 0.03 mol of acetic anhydride was added dropwise, and the oxazolation reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. Add this solution to 20
The precipitate was collected by dropping it in double the volume of water, and vacuum-dried at 60 ° C. for 72 hours to obtain a solid substance of polybenzoxazole, which is a heat-resistant polymer material.

【0032】(2)耐熱性高分子材料のガラス転移温度
及び誘電率の測定 上記により合成したポリヒドロキシアミド5.0gを、
NMP20.0gに溶解し、離形処理したガラス基板上
に塗布した後、オーブン中120℃で30分間保持後、
240℃で90分間保持して成膜し、基板から膜を剥が
した後、さらに400℃で90分間加熱し、ポリベンゾ
オキサゾールのフィルムとした。このポリベンゾオキサ
ゾールのガラス転移温度を示差走査熱量計により測定し
たところ、362℃であった。さらに上記により合成し
たポリヒドロキシアミド5.0gを、NMP20.0g
に溶解した後、厚さ200nmのタンタルを成膜したシ
リコンウエハ上にスピンコートした。100℃で2分間
プリベークした後に、窒素雰囲気のオーブン中で150
℃30分間加熱後、毎分5℃の昇温速度で300℃まで
温度を上げ、300℃で30分間保持後、厚さ0.8μ
mのポリベンゾオキサゾールの被膜を得た。以下実施例
1と同様にしてこのポリベンゾオキサゾールの誘電率を
測定したところ2.6であった。
(2) Measurement of glass transition temperature and dielectric constant of heat-resistant polymer material 5.0 g of polyhydroxyamide synthesized as described above was
After dissolving in 20.0 g of NMP and applying it on a glass substrate subjected to mold release treatment, it was kept in an oven at 120 ° C. for 30 minutes,
A film was formed by holding the film at 240 ° C. for 90 minutes, and after peeling the film from the substrate, the film was further heated at 400 ° C. for 90 minutes to obtain a polybenzoxazole film. The glass transition temperature of this polybenzoxazole was 362 ° C. as measured by a differential scanning calorimeter. Further, 5.0 g of the polyhydroxyamide synthesized above was added to 20.0 g of NMP.
And then spin-coated on a 200 nm thick tantalum film-formed silicon wafer. After pre-baking at 100 ° C. for 2 minutes, 150 ° C. in an oven under a nitrogen atmosphere.
After heating at 30 ° C for 30 minutes, the temperature was raised to 300 ° C at a rate of 5 ° C / minute, and after holding at 300 ° C for 30 minutes, the thickness was 0.8 µm.
m of polybenzoxazole was obtained. Thereafter, the dielectric constant of this polybenzoxazole was measured in the same manner as in Example 1, and was 2.6.

【0033】(3)絶縁材用組成物の調製と絶縁材の製
造 上記により合成したポリベンゾオキサゾール5.0g
を、NMP20.0gに溶解した後、実施例1で用いた
ものと同じポリメチルメタクリレート4.0gを添加し
て攪拌し、絶縁材用組成物を得た。波長400nm以下
の紫外線を遮光した環境下、この絶縁材用組成物を、厚
さ200nmのタンタルを成膜したシリコンウエハ上に
スピンコートした。100℃で2分間プリベークした後
に、窒素雰囲気のオーブン中で150℃30分間加熱
後、毎分5℃の昇温速度で300℃まで温度を上げ、3
00℃で30分間保持した後に、毎分10℃の速度で温
度を下げて室温に戻した。オーブンからウエハを取り出
し、200Wの低圧水銀灯を用いた紫外線露光装置によ
り5分間紫外線を照射した。その後、換気装置付きのオ
ーブンを用い、空気雰囲気中で200℃で4時間加熱し
た。このようにして厚さ0.8μmの絶縁材の被膜を得
た。以下実施例1と同様にしてこの絶縁材の誘電率を測
定したところ2.1であった。対数混合法の式を用いて
誘電率から計算した結果、絶縁材膜の空隙率は約22%
であった。また、TEMで観察した結果、絶縁材膜の空
隙の径は平均5nmであった。
(3) Preparation of Composition for Insulating Material and Production of Insulating Material 5.0 g of polybenzoxazole synthesized as described above
Was dissolved in 20.0 g of NMP, and 4.0 g of the same polymethyl methacrylate as used in Example 1 was added thereto and stirred to obtain a composition for an insulating material. The composition for an insulating material was spin-coated on a silicon wafer on which a 200 nm-thick tantalum film was formed in an environment in which ultraviolet light having a wavelength of 400 nm or less was shielded from light. After pre-baking at 100 ° C. for 2 minutes, heating at 150 ° C. for 30 minutes in an oven in a nitrogen atmosphere, then increasing the temperature to 300 ° C. at a rate of 5 ° C./min.
After holding at 00 ° C. for 30 minutes, the temperature was lowered at a rate of 10 ° C. per minute and returned to room temperature. The wafer was taken out of the oven and irradiated with ultraviolet rays for 5 minutes by an ultraviolet exposure apparatus using a 200 W low-pressure mercury lamp. Then, it heated at 200 degreeC for 4 hours in air atmosphere using the oven with a ventilation device. Thus, a 0.8 μm-thick insulating film was obtained. Thereafter, the dielectric constant of this insulating material was measured in the same manner as in Example 1 and found to be 2.1. As a result of calculating from the dielectric constant using the equation of the logarithmic mixing method, the porosity of the insulating film is about 22%.
Met. As a result of observation with a TEM, the diameter of the voids in the insulating film was 5 nm on average.

【0034】「実施例4」 (1)ポリヒドロキシアミドの合成 2,2’−ビス(トリフルオロメチル)ビフェニル−
4,4’−ジカルボン酸22g、塩化チオニル45ml
及び乾燥ジメチルホルムアミド0.5mlを反応容器に
入れ、60℃で2時間反応させた。反応終了後、過剰の
塩化チオニルを加熱及び減圧により留去した。析出物を
ヘキサンを用いて再結晶を行い、2,2’−ビス(トリ
フルオロメチル)ビフェニル−4,4’−ジカルボン酸
クロリドを得た。攪拌装置、窒素導入管、滴下漏斗を付
けたセパラブルフラスコ中、2,2’−ビス(3ーアミ
ノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン
7.32g(0.02mol)を、乾燥したジメチルア
セトアミド100gに溶解し、ピリジン3.96g
(0.05mol)を添加後、乾燥窒素導入下、−15
℃でジメチルアセトアミド50gに、上記により合成し
た2,2’−ビス(トリフルオロメチル)ビフェニル−
4,4’−ジカルボン酸クロリド8.30(0.02m
ol)を溶解したものを30分掛けて滴下した。滴下終
了後、室温まで戻し、室温で5時間攪拌した。その後、
反応液を水1000ml中に滴下し、沈殿物を集め、4
0℃で48時間真空乾燥することにより耐熱性高分子材
料であるポリベンゾオキサゾールの前駆体であるポリヒ
ドロキシアミドの固形物を得た。
Example 4 (1) Synthesis of polyhydroxyamide 2,2'-bis (trifluoromethyl) biphenyl-
4,4'-dicarboxylic acid 22g, thionyl chloride 45ml
And 0.5 ml of dry dimethylformamide was put into a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The precipitate was recrystallized using hexane to obtain 2,2′-bis (trifluoromethyl) biphenyl-4,4′-dicarboxylic acid chloride. In a separable flask equipped with a stirrer, a nitrogen introducing tube, and a dropping funnel, 7.32 g (0.02 mol) of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added to 100 g of dried dimethylacetamide. 3.96 g of pyridine
(0.05 mol), and then -15 under dry nitrogen introduction.
At 50 ° C., 50 g of dimethylacetamide was added to 2,2′-bis (trifluoromethyl) biphenyl-
4,4'-dicarboxylic acid chloride 8.30 (0.02m
ol) was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. afterwards,
The reaction solution was dropped into 1000 ml of water, and the precipitate was collected.
By vacuum drying at 0 ° C. for 48 hours, a solid substance of polyhydroxyamide, which is a precursor of polybenzoxazole, which is a heat-resistant polymer material, was obtained.

【0035】(2)耐熱性高分子材料のガラス転移温度
及び誘電率の測定 上記により合成したポリヒドロキシアミド5.0gを、
NMP20.0gに溶解し、離形処理したガラス基板上
に塗布した後、オーブン中120℃で30分間保持後、
240℃で90分間保持して成膜し、基板から膜を剥が
した後、さらに400℃で90分間加熱し、耐熱性高分
子材料であるポリベンゾオキサゾールのフィルムとし
た。このポリベンゾオキサゾールのガラス転移温度を示
差走査熱量計により測定したところ、410℃であっ
た。さらに上記により合成したポリヒドロキシアミド
5.0gを、NMP20.0gに溶解した後、厚さ20
0nmのタンタルを成膜したシリコンウエハ上にスピン
コートした。100℃で2分間プリベークした後に、窒
素雰囲気のオーブン中で150℃30分間加熱後、毎分
5℃の昇温速度で350℃まで温度を上げ、350℃で
5分間保持後、厚さ0.8μmのポリベンゾオキサゾー
ルの被膜を得た。以下実施例1と同様にして、このポリ
ベンゾオキサゾールの誘電率を測定したところ2.6で
あった。
(2) Measurement of Glass Transition Temperature and Dielectric Constant of Heat-Resistant Polymer Material 5.0 g of polyhydroxyamide synthesized as described above was
After dissolving in 20.0 g of NMP and applying it on a glass substrate subjected to mold release treatment, it was kept in an oven at 120 ° C. for 30 minutes,
The film was formed by holding the film at 240 ° C. for 90 minutes, and after peeling off the film from the substrate, the film was further heated at 400 ° C. for 90 minutes to obtain a polybenzoxazole film as a heat-resistant polymer material. The glass transition temperature of this polybenzoxazole was measured by a differential scanning calorimeter, and was 410 ° C. Furthermore, after dissolving 5.0 g of the polyhydroxyamide synthesized as described above in 20.0 g of NMP,
Spin coating was performed on a silicon wafer on which a 0 nm tantalum film was formed. After prebaking at 100 ° C. for 2 minutes, heating at 150 ° C. for 30 minutes in an oven in a nitrogen atmosphere, raising the temperature to 350 ° C. at a rate of 5 ° C./minute, holding at 350 ° C. for 5 minutes, and then forming a layer having a thickness of 0.1 mm. An 8 μm polybenzoxazole coating was obtained. Thereafter, the dielectric constant of this polybenzoxazole was measured in the same manner as in Example 1, and it was 2.6.

【0036】(3)絶縁材用組成物の調製と絶縁材の製
造 上記により合成したポリヒドロキシアミド10.0gを
NMP50.0gに溶解した後、実施例1で用いたもの
と同じポリメチルメタクリレート9.0gを添加して攪
拌し、絶縁材用組成物を得た。波長400nm以下の紫
外線を遮光した環境下、この絶縁材用組成物を、厚さ2
00nmのタンタルを成膜したシリコンウエハ上にスピ
ンコートした。100℃で2分間プリベークした後に、
窒素雰囲気のオーブン中で150℃30分間加熱後、毎
分5℃の昇温速度で350℃まで温度を上げ、350℃
で5分間保持した後に、毎分10℃の速度で温度を下げ
て室温に戻した。オーブンからウエハを取り出し、20
0Wの低圧水銀灯を用いた紫外線露光装置により5分間
紫外線を照射した。その後、換気装置付きのオーブンを
用い、空気雰囲気中で200℃で4時間加熱した。この
ようにして厚さ0.8μmの絶縁材の被膜を得た。以下
実施例1と同様にして、この絶縁材の誘電率を測定した
ところ2.1であった。対数混合法の式を用いて誘電率
から計算した結果、絶縁材膜の空隙率は約22%であっ
た。また、TEMで観察した結果、絶縁材膜の空隙の径
は平均5nmであった。
(3) Preparation of Composition for Insulating Material and Production of Insulating Material After dissolving 10.0 g of the polyhydroxyamide synthesized above in 50.0 g of NMP, the same polymethyl methacrylate 9 as used in Example 1 was dissolved. 0.0g was added and stirred to obtain a composition for insulating material. In an environment in which ultraviolet light having a wavelength of 400 nm or less is shielded, this insulating material
Spin coating was performed on a silicon wafer on which tantalum of 00 nm was formed. After pre-baking at 100 ° C for 2 minutes,
After heating at 150 ° C. for 30 minutes in a nitrogen atmosphere oven, the temperature was raised to 350 ° C. at a rate of 5 ° C./min.
After holding for 5 minutes at, the temperature was lowered at a rate of 10 ° C. per minute and returned to room temperature. Remove the wafer from the oven,
Ultraviolet light was irradiated for 5 minutes by an ultraviolet exposure apparatus using a 0 W low-pressure mercury lamp. Then, it heated at 200 degreeC for 4 hours in air atmosphere using the oven with a ventilation device. Thus, a 0.8 μm-thick insulating film was obtained. Thereafter, the dielectric constant of this insulating material was measured in the same manner as in Example 1, and it was 2.1. As a result of calculation from the dielectric constant using the logarithmic mixing method, the porosity of the insulating film was about 22%. As a result of observation with a TEM, the diameter of the voids in the insulating film was 5 nm on average.

【0037】「実施例5」 (1)耐熱性材料の融点及び誘電率の測定 ペルヒドロキシポリシラザンの10%キシレン溶液を、
離形処理したガラス基板上に塗布した後、80℃のオー
ブン中で30分間乾燥した。続いて、温度95℃、湿度
80%の温湿度槽中で3時間処理した後、空気雰囲気の
オーブン中で350℃で1時間処理し、シリカを主成分
とする耐熱性材料を得た。この耐熱性材料の融点を示差
走査熱量計により測定したところ、500℃以下の範囲
で融点は確認されず、500℃以上であることがわかっ
た。さらに、ペルヒドロキシポリシラザンの10%キシ
レン溶液を、厚さ200nmのタンタルを成膜したシリ
コンウエハ上にスピンコートした。その後、80℃のオ
ーブン中で30分間乾燥した。続いて、温度95℃、湿
度80%の温湿度槽中で3時間処理した後、空気雰囲気
のオーブン中で350℃で1時間処理し、厚さ0.8μ
mの耐熱性材料の被膜を得た。以下実施例1と同様にし
て、この絶縁材の誘電率を測定したところ6.0であっ
た。
Example 5 (1) Measurement of Melting Point and Dielectric Constant of Heat-Resistant Material A 10% xylene solution of perhydroxypolysilazane was
After being applied on a release-treated glass substrate, it was dried in an oven at 80 ° C. for 30 minutes. Subsequently, the substrate was treated in a temperature / humidity bath at a temperature of 95 ° C. and a humidity of 80% for 3 hours, and then treated at 350 ° C. for 1 hour in an oven in an air atmosphere to obtain a heat-resistant material containing silica as a main component. When the melting point of this heat-resistant material was measured with a differential scanning calorimeter, the melting point was not confirmed in the range of 500 ° C. or less, and was found to be 500 ° C. or more. Further, a 10% xylene solution of perhydroxypolysilazane was spin-coated on a 200-nm-thick silicon wafer on which tantalum was formed. Then, it was dried in an oven at 80 ° C. for 30 minutes. Subsequently, after treating for 3 hours in a temperature / humidity bath at a temperature of 95 ° C. and a humidity of 80%, a treatment was carried out at 350 ° C. for 1 hour in an oven in an air atmosphere, and a thickness of 0.8 μm
m was obtained. Thereafter, the dielectric constant of this insulating material was measured in the same manner as in Example 1 and found to be 6.0.

【0038】(2)光照射によって低分子量化する高分
子の分子量と、低分子量化後の揮散する温度の測定 絶縁材用組成物の調製に用いるためのポリ(α−メチル
スチレン)の分子量をGPCにより測定したところ、ポ
リスチレン換算の数平均分子量は、5.0×104であ
った。このポリメチルメタクリレート10mgを熱重量
分析(TG/DTA)のサンプルパンに入れ、200W
の低圧水銀灯を用いた紫外線露光装置により5分間紫外
線を照射した。その後、毎分5℃の昇温速度でTG/D
TAにより、低分子量化後の揮散する温度を測定したと
ころ165℃であった。
(2) Measurement of the molecular weight of the polymer whose molecular weight is reduced by light irradiation and the temperature at which it volatilizes after the molecular weight reduction. The molecular weight of poly (α-methylstyrene) to be used for preparing the insulating material composition is as follows. As measured by GPC, the number average molecular weight in terms of polystyrene was 5.0 × 10 4 . 10 mg of this polymethyl methacrylate was placed in a thermogravimetric analysis (TG / DTA) sample pan, and 200 W
UV light was applied for 5 minutes by an ultraviolet light exposure apparatus using a low-pressure mercury lamp. Thereafter, the TG / D was heated at a rate of 5 ° C./min.
It was 165 degreeC when the volatilization temperature after molecular weight reduction was measured by TA.

【0039】(3)絶縁材用組成物の調製と絶縁材の製
造 ペルヒドロキシポリシラザンの10%キシレン溶液50
gに前記のポリ(α−メチルスチレン)7.0gを添加
して攪拌し、絶縁材用組成物を得た。波長400nm以
下の紫外線を遮光した環境下、この絶縁材用組成物を、
厚さ200nmのタンタルを成膜したシリコンウエハ上
にスピンコートした。80℃で2分間プリベークした後
に、温度95℃、湿度80%の温湿度槽中で3時間処理
し、続いて空気雰囲気のオーブン中で150℃30分加
熱後、毎分5℃の昇温速度で250℃まで温度を上げ、
250℃で180分間保持した後に、毎分10℃の速度
で温度を下げて室温に戻した。オーブンからウエハを取
り出し、200Wの低圧水銀灯を用いた紫外線露光装置
により5分間紫外線を照射した。その後、換気装置付き
のオーブンを用い、空気雰囲気中で200℃で4時間加
熱した。このようにして厚さ0.8μmの絶縁材の被膜
を得た。以下実施例1と同様にして、この絶縁材の誘電
率を測定したところ2.3であった。対数混合法の式を
用いて誘電率から計算した結果、絶縁材膜の空隙率は約
54%であった。また、TEMで観察した結果、絶縁材
膜の空隙の径は平均5nmであった。
(3) Preparation of composition for insulating material and production of insulating material 10% xylene solution of perhydroxypolysilazane 50
Then, 7.0 g of the above-mentioned poly (α-methylstyrene) was added to the resulting mixture and stirred to obtain a composition for an insulating material. In an environment in which ultraviolet light having a wavelength of 400 nm or less is shielded, the composition for an insulating material is
Spin coating was performed on a silicon wafer having a thickness of 200 nm formed with tantalum. After pre-baking at 80 ° C for 2 minutes, it is treated in a temperature / humidity bath at a temperature of 95 ° C and a humidity of 80% for 3 hours, subsequently heated in an air atmosphere oven at 150 ° C for 30 minutes, and then heated at a rate of 5 ° C per minute. To raise the temperature to 250 ° C,
After holding at 250 ° C. for 180 minutes, the temperature was lowered at a rate of 10 ° C. per minute to room temperature. The wafer was taken out of the oven and irradiated with ultraviolet rays for 5 minutes by an ultraviolet exposure apparatus using a 200 W low-pressure mercury lamp. Then, it heated at 200 degreeC for 4 hours in air atmosphere using the oven with a ventilation device. Thus, a 0.8 μm-thick insulating film was obtained. Thereafter, the dielectric constant of this insulating material was measured in the same manner as in Example 1, and it was 2.3. As a result of calculation from the dielectric constant using the logarithmic mixing method, the porosity of the insulating material film was about 54%. As a result of observation with a TEM, the diameter of the voids in the insulating film was 5 nm on average.

【0040】「比較例1」実施例2の絶縁材用組成物の
調整において、用いたポリメチルメタクリレート9.0
gを添加しない以外は、全て実施例2と同様にして被膜
を得た。得られた耐熱性樹脂の誘電率は2.6であっ
た。また、TEMによる観察で、被膜の空隙は観察され
なかった。
Comparative Example 1 In the preparation of the insulating material composition of Example 2, the polymethyl methacrylate 9.0 used was used.
A coating was obtained in the same manner as in Example 2 except that g was not added. The dielectric constant of the obtained heat-resistant resin was 2.6. In addition, no porosity of the film was observed by TEM observation.

【0041】「比較例2」実施例4の絶縁材用組成物の
調整において、用いたポリメチルメタクリレート9.0
gのかわりにポリプロピレングリコール9.0gを添加
した以外は、全て実施例4と同様にして組成物を調整し
た後、皮膜を得た。得られた耐熱性樹脂の誘電率は2.
6であった。また、TEMによる観察で、皮膜の空隙は
観察されなかった。
Comparative Example 2 In the preparation of the insulating material composition of Example 4, the polymethyl methacrylate 9.0 used was used.
The composition was adjusted in the same manner as in Example 4 except that 9.0 g of polypropylene glycol was added instead of g, and a film was obtained. The dielectric constant of the obtained heat-resistant resin is 2.
It was 6. In addition, no porosity of the film was observed by TEM observation.

【0042】実施例1〜5においては、誘電率が2.1
〜2.4と非常に低い耐熱性樹脂を得ることが出来た。
In Examples 1 to 5, the dielectric constant was 2.1.
A very low heat-resistant resin of ~ 2.4 was obtained.

【0043】比較例1では、光照射によって低分子量化
する高分子を成分中に有しておらず、絶縁材膜中に空隙
を形成していないため、誘電率を低減できなかった。
In Comparative Example 1, the dielectric constant was not able to be reduced because the component which did not contain a polymer whose molecular weight was reduced by light irradiation and did not form voids in the insulating film.

【0044】比較例2では、添加したポリプロピレング
リコールが光照射によって低分子量化する高分子でなく
絶縁材膜中に空隙を形成していないために、誘電率を低
減できなかった。
In Comparative Example 2, the dielectric constant could not be reduced because the added polypropylene glycol was not a polymer whose molecular weight was reduced by light irradiation and did not form voids in the insulating film.

【0045】[0045]

【発明の効果】本発明の絶縁材用樹脂組成物及びこれを
用いた絶縁材は、電気特性および耐熱性に優れたもので
あり、これらの特性が要求される様々な分野、例えば半
導体用の層間絶縁膜、多層回路の層間絶縁膜などとして
有用な絶縁材料である。
The resin composition for insulating material of the present invention and the insulating material using the same are excellent in electrical properties and heat resistance, and are used in various fields where these properties are required, for example, for semiconductors. It is an insulating material useful as an interlayer insulating film, an interlayer insulating film of a multilayer circuit, and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08J 9/26 CFG C08J 9/26 CFG 5G305 102 102 C09D 5/25 C09D 5/25 179/04 179/04 B Fターム(参考) 4F070 AA18 AA32 AA55 AB11 HA02 HB14 4F074 AA32 AA48 AA74 CB03 CB04 CB17 CB28 CC30X CC50 DA03 DA47 4J002 BC092 BG062 CM041 GQ01 4J038 CC081 CC082 CG141 CG142 DH001 DH002 DJ001 DJ002 DJ021 DJ022 DJ031 DJ032 DJ051 DJ052 DK001 DK002 DL001 DL002 DL031 DL032 KA03 KA06 NA14 NA21 PA17 PB09 5F058 AA10 AC02 AF04 AG01 AH01 AH02 5G305 AA06 AA07 AA11 AB10 AB24 BA09 BA14 CA20 CA21 CA26 CA32 CD12 CD20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C08J 9/26 CFG C08J 9/26 CFG 5G305 102 102 C09D 5/25 C09D 5/25 179/04 179 / 04 BF term (reference) 4F070 AA18 AA32 AA55 AB11 HA02 HB14 4F074 AA32 AA48 AA74 CB03 CB04 CB17 CB28 CC30X CC50 DA03 DA47 4J002 BC092 BG062 CM041 GQ01 4J038 CC081 CC082 DJ001 DJ1 002 DJ01 002 DL002 DL031 DL032 KA03 KA06 NA14 NA21 PA17 PB09 5F058 AA10 AC02 AF04 AG01 AH01 AH02 5G305 AA06 AA07 AA11 AB10 AB24 BA09 BA14 CA20 CA21 CA26 CA32 CD12 CD20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光照射によって低分子量化する高分子
(A)と、耐熱性材料またはその前駆体(B)とを必須
成分とする絶縁材用組成物。
1. An insulating composition comprising a polymer (A) whose molecular weight is reduced by light irradiation and a heat-resistant material or its precursor (B) as essential components.
【請求項2】 耐熱性材料またはその前駆体(B)が、
耐熱性高分子または耐熱性高分子前駆体である請求項1
記載の絶縁材用組成物。
2. The heat-resistant material or a precursor (B) thereof,
2. A heat-resistant polymer or a heat-resistant polymer precursor.
The composition for an insulating material according to the above.
【請求項3】 耐熱性高分子またはその前駆体(B)
が、ポリベンゾオキサゾールまたはポリベンゾオキサゾ
ール前駆体である請求項2記載の絶縁材用組成物。
3. A heat-resistant polymer or its precursor (B)
3. The composition for an insulating material according to claim 2, wherein is a polybenzoxazole or a polybenzoxazole precursor.
【請求項4】 請求項1〜3のいずれか1項に記載の絶
縁材用組成物を用いて、成分(A)を光照射により低分
子量化した後、該成分を揮散または抽出する工程を有す
る方法で製造されたことを特徴とする絶縁材。
4. A step of using the composition for an insulating material according to claim 1 to lower the molecular weight of the component (A) by light irradiation, and then volatilizing or extracting the component. An insulating material manufactured by a method having the above.
JP11209985A 1999-07-23 1999-07-23 Insulating material composition and insulating material using the same Pending JP2001035256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11209985A JP2001035256A (en) 1999-07-23 1999-07-23 Insulating material composition and insulating material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11209985A JP2001035256A (en) 1999-07-23 1999-07-23 Insulating material composition and insulating material using the same

Publications (1)

Publication Number Publication Date
JP2001035256A true JP2001035256A (en) 2001-02-09

Family

ID=16581962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11209985A Pending JP2001035256A (en) 1999-07-23 1999-07-23 Insulating material composition and insulating material using the same

Country Status (1)

Country Link
JP (1) JP2001035256A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279174A (en) * 2000-03-28 2001-10-10 Sumitomo Bakelite Co Ltd Coating varnish for insulating film and insulating film
WO2003024448A2 (en) 2001-09-14 2003-03-27 Methylgene, Inc. Inhibitors of histone deacetylase
JP2015232115A (en) * 2014-05-14 2015-12-24 学校法人神奈川大学 Curable composition, method for producing cured product using the same, and method for remelting cured product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279174A (en) * 2000-03-28 2001-10-10 Sumitomo Bakelite Co Ltd Coating varnish for insulating film and insulating film
JP4586230B2 (en) * 2000-03-28 2010-11-24 住友ベークライト株式会社 Coating varnish for insulating film and insulating film
WO2003024448A2 (en) 2001-09-14 2003-03-27 Methylgene, Inc. Inhibitors of histone deacetylase
JP2015232115A (en) * 2014-05-14 2015-12-24 学校法人神奈川大学 Curable composition, method for producing cured product using the same, and method for remelting cured product

Similar Documents

Publication Publication Date Title
KR0165126B1 (en) Process for making thick multilayers polyimide
JP2997124B2 (en) Photopaintable coating from hydrogensilsesquioxane resin
TW201817778A (en) Polyimide precursor, photosensitive resin composition including the same, production method of patterned hardened film using the same, hardened film, patterned hardened film and semiconductor device
US5889141A (en) Photoimageable compositions comprising polyquinoline polymer and diazo compound
JP2536620B2 (en) Method for producing polyimide resin
JP2001098224A (en) Silica-based film, method of forming silica-based film, and electronic component having silica-based film
JP2001035256A (en) Insulating material composition and insulating material using the same
JP2540669B2 (en) Method for producing thick multilayers of polyimide
JP3681106B2 (en) Organic insulating film material and organic insulating film
JP2001098160A (en) Resin composition for insulating material and insulating material using the same
JP2001011181A (en) Resin composition for electrical insulation material and electrical insulation material using the same
JP4945858B2 (en) Organic insulating film material and organic insulating film
TW201841984A (en) Photosensitive resin composition, cured pattern production method, cured product, interlayer insulating film, cover coat layer, surface protective layer, and electronic component
TW201839038A (en) Lithographic compositions and methods of use thereof
US5885745A (en) Photoimageable compositions comprising polyquinoline polymer and photogenerable acid precursor
JP2001256829A (en) Composition for insulating material and insulating material and its manufacturing method
JP2001226599A (en) Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same
JP4528377B2 (en) Porous polymer thin film and semiconductor device
JPH04170431A (en) Fluorinated aromatic polyamide, derivative thereof, and use and production thereof
JP2000265057A (en) Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin
TWI258056B (en) Photosensitive polyimide/silica organic-inorganic hybrid thin film material, its preparation and applications
JP2001283638A (en) Resin composition for insulating material and insulating material using the same
JP3012198B2 (en) Method for producing polyimidesiloxane film for electric or electronic component
JP4004004B2 (en) Polybenzoxazole precursor, resin composition for insulating material, and insulating material using the same
JP2001332544A (en) Method of manufacturing insulating material