JP2000265057A - Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin - Google Patents

Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin

Info

Publication number
JP2000265057A
JP2000265057A JP11069882A JP6988299A JP2000265057A JP 2000265057 A JP2000265057 A JP 2000265057A JP 11069882 A JP11069882 A JP 11069882A JP 6988299 A JP6988299 A JP 6988299A JP 2000265057 A JP2000265057 A JP 2000265057A
Authority
JP
Japan
Prior art keywords
heat
resistant resin
temperature
precursor composition
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11069882A
Other languages
Japanese (ja)
Inventor
Toshimasa Eguchi
敏正 江口
Mitsuru Murata
満 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11069882A priority Critical patent/JP2000265057A/en
Publication of JP2000265057A publication Critical patent/JP2000265057A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a composition having a low permittivity and excellent heat resistance by including a heat-resistant resin precursor which forms a heat-resistant resin when heated and a solvent having a boiling point higher than the temperature at which the precursor reacts to form a heat-resistant resin and lower than the glass transition temperature of the heat-resistant resin. SOLUTION: This composition comprises a heat-resistant resin precursor which reacts to form a heat-resistant resin when heated and a solvent (e.g. 2-phenoxyethanol) having a boiling point higher than the temperature at which the heat-resistant resin precursor reacts to form a heat-resistant resin and lower than the glass transition temperature of the heat-resistant resin as essential components and contains, in addition, a fine inorganic filter (e.g. silicon oxide). The composition is reacted at a temperature lower than the boiling point of the solvent to form a heat-resistant resin and is heat-treated at a temperature lower than the glass transition temperature of the heat-resistant resin to obtain microvoid-containing heat-resistant resin. The heat-resistant resin precursor is exemplified by a polyimide precursor such as a polyamic acid or a polybenzoxazole such as polyhydroxamide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐熱性樹脂に関する
ものであり、更に詳しくは電気・電子機器用、半導体装
置用として優れた特性を有する耐熱性樹脂前駆体組成
物、耐熱性樹脂の製造方法及び耐熱性樹脂に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant resin, and more particularly, to a heat-resistant resin precursor composition having excellent characteristics for use in electric / electronic equipment and semiconductor devices, and a method for producing a heat-resistant resin. And heat-resistant resins.

【0002】[0002]

【従来の技術】電気電子機器用、半導体装置用材料に求
められている特性のなかで、電気特性と耐熱性は最も重
要な特性である。特に近年、回路の微細化と信号の高速
化に伴い、誘電率の低い絶縁材料が要求されている。こ
の2つの特性を両立させるための材料として耐熱性樹脂
が期待されている。例えば従来から用いられている二酸
化シリコン等の無機の絶縁材料は高耐熱性を示すが誘電
率が高く、要求特性が高度化している現在では、前述の
特性について両立が困難になりつつある。ポリイミド樹
脂に代表される耐熱性樹脂は、電気特性と耐熱性に優れ
2つの特性の両立が可能であり、実際にソルダーレジス
ト、カバーレイ、パッシベーション膜などに用いられて
いる。
2. Description of the Related Art Among the characteristics required for materials for electric / electronic devices and semiconductor devices, electric characteristics and heat resistance are the most important characteristics. In particular, in recent years, with miniaturization of circuits and speeding up of signals, an insulating material having a low dielectric constant has been required. A heat-resistant resin is expected as a material for satisfying these two characteristics. For example, conventionally used inorganic insulating materials such as silicon dioxide exhibit high heat resistance, but have a high dielectric constant, and at the same time, the required characteristics are becoming more sophisticated. A heat-resistant resin represented by a polyimide resin is excellent in electric properties and heat resistance and can achieve both of the two properties, and is actually used for a solder resist, a coverlay, a passivation film, and the like.

【0003】しかしながら近年の半導体の高機能化、高
性能化にともない、電気特性、耐熱性について著しい向
上が必要とされているため、更に高性能な樹脂が必要と
されるようになっている。特に誘電率について2.5を
下回るような低誘電率材料が期待されており、従来の耐
熱性樹脂では必要とされる特性に達していない。これま
でに、ポリイミドにおいては樹脂組成物中にポリイミド
以外の熱分解性樹脂を含有させ、加熱工程によりこの熱
分解性樹脂を分解させて空隙を形成することにより耐熱
性樹脂の形成物の誘電率を低減させることが試みられて
いるが、半導体用途では加熱工程が通常無酸素状態で行
われるために、炭化した熱分解性樹脂が残存し、絶縁性
が不良となることが問題となっている。
[0003] However, with the recent advancement of functions and performance of semiconductors, remarkable improvements in electrical characteristics and heat resistance have been required, so that higher performance resins have been required. In particular, a low dielectric constant material having a dielectric constant of less than 2.5 is expected, and does not reach the characteristics required by conventional heat-resistant resins. Until now, in the case of polyimide, the resin composition contains a thermally decomposable resin other than the polyimide, and the heating step decomposes the thermally decomposable resin to form voids, thereby forming a dielectric constant of the heat resistant resin formed product. However, in semiconductor applications, since the heating step is usually performed in an oxygen-free state, the carbonized pyrolyzable resin remains, and the insulating property becomes a problem. .

【0004】[0004]

【発明が解決しようとする課題】本発明は極めて低い誘
電率と良好な絶縁性を示すとともに耐熱性にも優れた耐
熱性樹脂前駆体組成物、耐熱性樹脂の製造方法及び耐熱
性樹脂を提供する事を目的とする。
SUMMARY OF THE INVENTION The present invention provides a heat-resistant resin precursor composition, a method for producing a heat-resistant resin, and a heat-resistant resin, which exhibit an extremely low dielectric constant, good insulation properties and excellent heat resistance. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記従来
の問題点を鑑み、鋭意検討を重ねた結果、以下の手段に
より本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned conventional problems, and as a result, completed the present invention by the following means.

【0006】すなわち、 1.加熱による反応により耐熱性樹脂を生成する耐熱性
樹脂前駆体(A)と、沸点が前記耐熱性樹脂前駆体が反
応して耐熱性樹脂を生成する温度より高くかつ前記の耐
熱性樹脂のガラス転移温度より低い溶剤(B)とを必須
成分とする耐熱性樹脂前駆体組成物、
That is, 1. A heat-resistant resin precursor (A) that generates a heat-resistant resin by a reaction by heating; and a glass transition of the heat-resistant resin having a boiling point higher than a temperature at which the heat-resistant resin precursor reacts to form a heat-resistant resin. A heat-resistant resin precursor composition containing a solvent (B) lower than the temperature as an essential component,

【0007】2.耐熱性樹脂がポリイミドである前記1
の耐熱性樹脂前駆体組成物、
[0007] 2. The heat-resistant resin is polyimide,
Heat-resistant resin precursor composition,

【0008】3.耐熱性樹脂がポリベンゾオキサゾール
である前記1の耐熱性樹脂前駆体組成物、
[0008] 3. The heat-resistant resin precursor composition according to 1, wherein the heat-resistant resin is polybenzoxazole,

【0009】4.耐熱性樹脂がフッ素またはフルオロア
ルキル基を有する前記2または前記3の耐熱性樹脂前駆
体組成物、
4. The heat-resistant resin precursor composition according to the above 2 or 3, wherein the heat-resistant resin has a fluorine or fluoroalkyl group,

【0010】5.前記1〜4のいずれかに記載の耐熱性
樹脂前駆体組成物を、前記1中の溶剤(B)の沸点より
低い温度で反応させて耐熱性樹脂とした後に、前記1中
の溶剤(B)の沸点より高くかつ前記の耐熱性樹脂のガ
ラス転移温度より低い温度で熱処理する工程を有する耐
熱性樹脂の製造方法、
[0010] 5. After reacting the heat-resistant resin precursor composition according to any one of the above 1 to 4 at a temperature lower than the boiling point of the solvent (B) in the above 1 to form a heat-resistant resin, the solvent (B A) a method for producing a heat-resistant resin having a step of heat-treating at a temperature higher than the boiling point and lower than the glass transition temperature of the heat-resistant resin;

【0011】6.前記5の製造方法により製造されたも
のである耐熱性樹脂、である。
6. A heat-resistant resin produced by the production method of the above item 5.

【0012】[0012]

【発明の実施の形態】本発明の耐熱性樹脂前駆体組成物
は、加熱による反応により耐熱性樹脂を生成する耐熱性
樹脂前駆体(A)と、沸点が前記耐熱性樹脂前駆体が反
応して耐熱性樹脂を生成する温度より高くかつ前記の耐
熱性樹脂のガラス転移温度より低い溶剤(B)とを必須
成分としてなり、これを溶剤(B)の沸点より低い温度
で反応させて耐熱性樹脂とした後に、溶剤(B)の沸点
より高くかつ前記の耐熱性樹脂のガラス転移温度より低
い温度で熱処理する工程により誘電率の低い耐熱性樹脂
を得るものである。
BEST MODE FOR CARRYING OUT THE INVENTION The heat-resistant resin precursor composition of the present invention is obtained by reacting the heat-resistant resin precursor (A), which produces a heat-resistant resin by a reaction by heating, with the heat-resistant resin precursor having a boiling point. And a solvent (B) which is higher than the temperature at which the heat-resistant resin is formed and lower than the glass transition temperature of the heat-resistant resin, and is reacted at a temperature lower than the boiling point of the solvent (B) to form a heat-resistant resin. After the resin is formed, a heat-resistant resin having a low dielectric constant is obtained by a heat treatment at a temperature higher than the boiling point of the solvent (B) and lower than the glass transition temperature of the heat-resistant resin.

【0013】これは、耐熱性樹脂前駆体(A)を加熱に
よる反応により耐熱性樹脂を生成した後に、前記耐熱性
樹脂のガラス転移温度より低い温度で残存している溶剤
(B)を揮散させることにより微少な空隙を形成する
か、または前記耐熱性樹脂の密度を低減することにより
耐熱性樹脂の形成物全体の誘電率を低減させるものであ
る。
In this method, after the heat-resistant resin precursor (A) is reacted by heating to form a heat-resistant resin, the remaining solvent (B) is volatilized at a temperature lower than the glass transition temperature of the heat-resistant resin. In this way, minute voids are formed, or the density of the heat-resistant resin is reduced, thereby reducing the dielectric constant of the entire heat-resistant resin formed product.

【0014】本発明の耐熱性樹脂の誘電率を低減するた
めに形成される微少な空隙は、その直径が50nm以下
のものであり、好ましくは10nm以下のものである。
また、微少な空隙の割合としては、耐熱性樹脂の形成物
全体に対し、5〜90vol%が好ましい。
The minute voids formed to reduce the dielectric constant of the heat-resistant resin of the present invention have a diameter of 50 nm or less, preferably 10 nm or less.
The ratio of the minute voids is preferably 5 to 90 vol% based on the entire heat-resistant resin formed product.

【0015】本方法では不揮発性の熱分解性樹脂成分を
用いないので、炭化物が残存せず良好な絶縁性が得られ
る。
In the present method, a non-volatile heat-decomposable resin component is not used, so that good insulating properties can be obtained without leaving carbides.

【0016】また、本発明中に用いる耐熱性樹脂前駆体
は、加熱による反応により耐熱性樹脂となった後は溶剤
(B)に不溶であるかまたは溶解性が非常に低下し、か
つ樹脂の分子鎖が運動を開始するガラス転移温度が溶剤
の沸点より高いために、溶剤成分が揮散する際に微細な
空隙がつぶれてしまうかまたは樹脂が凝集して密度が高
くなることを防ぐことができる。
Further, the heat-resistant resin precursor used in the present invention is insoluble or has a very low solubility in the solvent (B) after being converted into a heat-resistant resin by a reaction by heating, and Since the glass transition temperature at which the molecular chain starts to move is higher than the boiling point of the solvent, it is possible to prevent the minute voids from being crushed or the resin from aggregating and increasing the density when the solvent component volatilizes. .

【0017】本発明中の加熱による反応により耐熱性樹
脂を生成する耐熱性樹脂前駆体(A)の例としては、ポ
リアミド酸、ポリアミド酸エステル、ポリイソイミド等
のポリイミド前駆体や、ポリヒドロキシアミド、ポリヒ
ドロキシアミドエステル等のポリベンゾオキサゾール前
駆体、ポリメルカプトアミド等のポリベンゾチアゾール
前駆体、ビスマレイミド、ビスナジイミド等が挙げられ
るがこれらに限定されるものではない。これらのうち、
ポリイミドおよびポリベンゾキサゾールは、耐熱性以外
にも不純物濃度の低さなど電子機器用、半導体装置用と
して必要な特性にも優れているので、これらの前駆体を
用いることが特に好ましい。さらに、これらの耐熱性樹
脂がフッ素またはフルオロアルキル基を樹脂化学構造中
に有する場合、特に誘電率を低くできるので好ましい。
Examples of the heat-resistant resin precursor (A) which produces a heat-resistant resin by a reaction by heating in the present invention include polyimide precursors such as polyamic acid, polyamic acid ester and polyisoimide; Examples include, but are not limited to, polybenzoxazole precursors such as hydroxyamide esters, polybenzothiazole precursors such as polymercaptoamide, bismaleimide, bisnadiimide, and the like. Of these,
Since polyimide and polybenzoxazole are excellent in characteristics required for electronic devices and semiconductor devices such as low impurity concentration in addition to heat resistance, it is particularly preferable to use these precursors. Further, it is preferable that these heat-resistant resins have a fluorine or fluoroalkyl group in the resin chemical structure, since the dielectric constant can be particularly reduced.

【0018】本発明中の、沸点が前記耐熱性樹脂前駆体
が反応して耐熱性樹脂を生成する温度より高くかつ前記
の耐熱性樹脂のガラス転移温度より低い溶剤(B)は、
組み合わせる耐熱性樹脂の種類により異なるが、ポリイ
ミド前駆体が反応してポリイミドを生成する温度が一般
的な化学構造のポリイミドにおいては200℃以上であ
り、上に挙げたその他の耐熱性樹脂前駆体が反応する温
度はこれより高いことから沸点が200℃以上であるこ
とが必須であり、好ましくは沸点が220℃以上であ
る。
In the present invention, the solvent (B) having a boiling point higher than the temperature at which the heat-resistant resin precursor reacts to form a heat-resistant resin and lower than the glass transition temperature of the heat-resistant resin is
Depending on the type of heat-resistant resin to be combined, the temperature at which the polyimide precursor reacts to form a polyimide is 200 ° C. or higher in a polyimide having a general chemical structure, and the other heat-resistant resin precursors listed above are used. Since the reaction temperature is higher than this, it is essential that the boiling point be 200 ° C. or higher, and preferably the boiling point is 220 ° C. or higher.

【0019】一方、本発明中の耐熱性樹脂のガラス転移
温度は、ポリイミド等では分子鎖の化学構造により20
0℃程度のものから400℃以上のものまで多くの種類
のものがあるが、半導体装置に要求される耐熱性を有す
る必要があることから一般的には300℃以上であるこ
とが好ましく、さらにはガラス転移温度は高いほど好ま
しい。
On the other hand, the glass transition temperature of the heat-resistant resin in the present invention is set to 20 due to the chemical structure of the molecular chain of polyimide or the like.
Although there are many types from about 0 ° C. to 400 ° C. or higher, it is generally preferable to be 300 ° C. or higher because it is necessary to have heat resistance required for a semiconductor device. The higher the glass transition temperature, the better.

【0020】すなわち、本発明の前記溶剤(B)の沸点
の上限は、好ましくは300℃以下であるが、耐熱性樹
脂のガラス転移温度がより高い場合には、その温度以下
の範囲であればより高温であってもかまわない。このよ
うな溶剤の例を挙げると、2−フェノキシエタノール、
トリエチレングリコールモノブチルエーテル、テトラエ
チレングリコール、テトラエチレングリコールモノメチ
ルエーテル、テトラエチレングリコールモノメチルエー
テルアセテート、テトラエチレングリコールジメチルエ
ーテル、テトラプロピレングリコールモノメチルエーテ
ル、テトラプロピレングリコールモノメチルエーテルア
セテート、テトラプロピレングリコールジメチルエーテ
ル等であるがこれらに限定されるものではない。
That is, the upper limit of the boiling point of the solvent (B) of the present invention is preferably 300 ° C. or lower, but when the glass transition temperature of the heat-resistant resin is higher, the boiling point is within the range. It may be higher temperature. Examples of such solvents include 2-phenoxyethanol,
Triethylene glycol monobutyl ether, tetraethylene glycol, tetraethylene glycol monomethyl ether, tetraethylene glycol monomethyl ether acetate, tetraethylene glycol dimethyl ether, tetrapropylene glycol monomethyl ether, tetrapropylene glycol monomethyl ether acetate, tetrapropylene glycol dimethyl ether, etc. It is not limited to.

【0021】本発明の耐熱性樹脂前駆体組成物は液状な
いしペースト状であり、塗布、加熱して固形の樹脂の形
成物を得るものである。このために、本発明の耐熱性樹
脂前駆体組成物では、耐熱性樹脂前駆体組成物の保存安
定性や塗布性を得る目的および形成後の樹脂の厚さと空
隙率を制御する目的で上記の溶剤以外に耐熱性樹脂前駆
体が反応する温度以下の沸点を有する溶剤を使用するこ
とができる。このような溶剤として好ましいものの例を
挙げると、N−メチル−2−ピロリドン、ジメチルホル
ムアミド、ジメチルアセトアミド、テトラヒドロフラ
ン、ジエチレングリコールモノメチルエーテル、ジエチ
レングリコールモノエチルエーテル、プロピレングリコ
ールモノメチルエーテル、プロピレングリコールモノブ
チルエーテル、プロピレングリコールモノメチルエーテ
ルアセテート、トルエン、キシレン、メチルエチルケト
ン、メチルイソブチルケトン、シクロヘキサノン、シク
ロペンタノン等であるが、これらに限られるものではな
い。また、これらを2種以上同時に用いてもかまわな
い。
The heat-resistant resin precursor composition of the present invention is in the form of a liquid or paste, and is applied and heated to obtain a solid resin formed product. For this reason, in the heat-resistant resin precursor composition of the present invention, the above-mentioned for the purpose of obtaining the storage stability and applicability of the heat-resistant resin precursor composition and for controlling the thickness and porosity of the formed resin. In addition to the solvent, a solvent having a boiling point equal to or lower than the temperature at which the heat-resistant resin precursor reacts can be used. Preferred examples of such a solvent include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, tetrahydrofuran, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, and propylene glycol monomethyl. Examples thereof include, but are not limited to, ether acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, and the like. Further, two or more of these may be used at the same time.

【0022】本発明の耐熱性樹脂前駆体組成物は、微細
な無機フィラーを含有したペースト状で用いることもで
きる。無機フィラーとして好ましいものの例を挙げる
と、酸化珪素、酸化アルミニウム、酸化チタン、水酸化
アルミニウム等であるがこれらに限定されるものではな
い。
The heat-resistant resin precursor composition of the present invention can be used in the form of a paste containing a fine inorganic filler. Preferred examples of the inorganic filler include silicon oxide, aluminum oxide, titanium oxide, aluminum hydroxide, and the like, but are not limited thereto.

【0023】本発明の耐熱性樹脂前駆体組成物を用い、
前記の製造方法により加熱硬化させることにより誘電率
の低い耐熱性樹脂を形成することができる。加熱硬化は
揮散した成分を排気できるオーブンで行うことが好まし
く、耐熱性樹脂の酸化による誘電率の増加を避けるため
に不活性ガス雰囲気中で行うことが好ましい。
Using the heat-resistant resin precursor composition of the present invention,
A heat-resistant resin having a low dielectric constant can be formed by heat-curing according to the above-described manufacturing method. The heat curing is preferably performed in an oven that can exhaust the volatilized components, and is preferably performed in an inert gas atmosphere to avoid an increase in the dielectric constant due to oxidation of the heat-resistant resin.

【0024】[0024]

【実施例】以下に実施例により本発明を具体的に説明す
るが、実施例の内容になんら限定されるものではない。
EXAMPLES The present invention will be described in detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0025】「実施例1」 (1)ポリイミド前駆体の合成 攪拌装置、窒素導入管、原料投入口を備えたセパラブル
フラスコ中、2,2,−ビス(4−(4,4’−アミノ
フェノキシ)フェニル)ヘキサフルオロプロパン5.1
8g(0.01mol)と2,2’−ビス(トリフルオ
ロメチル)−4,4’−ジアミノビフェニル9.60g
(0.03mol)を乾燥したN−メチル−2−ピロリ
ドン(以下NMPと略す)200gに溶解する。乾燥窒
素下、10℃に溶液を冷却してピロメリット酸二無水物
6.54(0.03mol)とヘキサフルオロイソプロ
ピリデン−2,2−ビス(フタル酸無水物)4.44g
(0.01mol)を投入した。投入から5時間後に室
温まで戻し、室温で2時間攪拌し、ポリイミド前駆体で
あるポリアミド酸の溶液を得た。この溶液を20倍量の
水中に滴下して沈殿を回収し、25℃で72時間真空乾
燥してポリアミド酸の固形物を得た。
Example 1 (1) Synthesis of Polyimide Precursor In a separable flask equipped with a stirrer, a nitrogen inlet tube, and a raw material inlet, 2,2, -bis (4- (4,4′-amino) Phenoxy) phenyl) hexafluoropropane 5.1
8 g (0.01 mol) and 9.60 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl
(0.03 mol) is dissolved in 200 g of dried N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). The solution was cooled to 10 ° C. under dry nitrogen, and pyromellitic dianhydride 6.54 (0.03 mol) and hexafluoroisopropylidene-2,2-bis (phthalic anhydride) 4.44 g.
(0.01 mol). Five hours after the introduction, the temperature was returned to room temperature, and the mixture was stirred at room temperature for 2 hours to obtain a solution of polyamic acid as a polyimide precursor. This solution was dropped into 20 times the volume of water to collect the precipitate, and dried under vacuum at 25 ° C. for 72 hours to obtain a solid of polyamic acid.

【0026】(2)前駆体より樹脂を生成する温度と樹
脂のガラス転移温度の測定 上記により合成したポリアミド酸がポリイミドへと反応
する温度を示差熱天秤により調べたところおよそ220
℃であった。また、このポリアミド酸5.0gをNMP
15.0gに溶解し、離形処理したガラス基板上に塗布
した後オーブン中120℃で30分保持後230℃で9
0分保持して成膜し、基板から膜を剥がした後さらに4
00℃で90分加熱し、耐熱性樹脂であるポリイミドの
フィルムとした。このポリイミドのガラス転移温度を動
的粘弾性測定により測定したところ、345℃であっ
た。
(2) Measurement of the temperature at which the resin is formed from the precursor and the glass transition temperature of the resin The temperature at which the polyamic acid synthesized as described above reacts with the polyimide was measured by a differential thermobalance to be about 220.
° C. 5.0 g of this polyamic acid was added to NMP.
After dissolving in 15.0 g and applying it on a glass substrate subjected to mold release treatment, it was kept in an oven at 120 ° C. for 30 minutes and then at 230 ° C. for 9 minutes.
Hold for 0 minutes to form a film, and after removing the film from the substrate,
Heating was performed at 00 ° C. for 90 minutes to obtain a polyimide film as a heat-resistant resin. The glass transition temperature of this polyimide was 345 ° C. as measured by dynamic viscoelasticity measurement.

【0027】(3)前駆体組成物の調整と耐熱性樹脂の
製造 上記により合成したポリアミド酸10.0gをNMP4
0.0gに溶解した後、2−フェノキシエタノール(沸
点245℃)6.0gを添加して攪拌し、耐熱性樹脂前
駆体組成物を得た。厚さ100nmのクロムを成膜した
シリコンウエハ上に、この耐熱性樹脂前駆体組成物をス
ピンコートした後、窒素雰囲気のオーブン中で加熱硬化
した。加熱硬化の際は、120℃で30分保持後230
℃で120分間保持した後、320℃で180分保持
し、345℃まで温度を上げた後90分間かけて徐々に
室温まで温度を戻した。このようにして厚さ0.8μm
の耐熱性樹脂の被膜を得た。この皮膜上に面積1cm2
のアルミの電極を蒸着により形成し、基板のクロムとの
間のキャパシタンスをLCRメーターにより測定した。
膜厚、電極面積、キャパシタンスから耐熱性樹脂の誘電
率を算出したところ、2.4であった。
(3) Preparation of Precursor Composition and Production of Heat-Resistant Resin 10.0 g of the polyamic acid synthesized above was added to NMP4
After dissolving in 0.0 g, 6.0 g of 2-phenoxyethanol (boiling point: 245 ° C.) was added and stirred to obtain a heat-resistant resin precursor composition. This heat-resistant resin precursor composition was spin-coated on a silicon wafer on which a chromium film having a thickness of 100 nm was formed, and then cured by heating in an oven in a nitrogen atmosphere. In the case of heat curing, after holding at 120 ° C. for 30 minutes, 230
After holding at 120 ° C. for 120 minutes, holding at 320 ° C. for 180 minutes, raising the temperature to 345 ° C., and gradually returning the temperature to room temperature over 90 minutes. 0.8 μm thick
A heat resistant resin film was obtained. An area of 1 cm 2 on this film
Was formed by vapor deposition, and the capacitance between the electrode and chromium on the substrate was measured by an LCR meter.
The dielectric constant of the heat-resistant resin calculated from the film thickness, the electrode area, and the capacitance was 2.4.

【0028】「実施例2」 (1)ポリイミド前駆体の合成 実施例1のポリイミド前駆体の合成において用いた2,
2,−ビス(4−(4,4’−アミノフェノキシ)フェ
ニル)ヘキサフルオロプロパン5.18g(0.01m
ol)と3,3’−ジメチル−4,4’−ジアミノビフ
ェニル9.60g(0.03mol)を4,4’−ジア
ミノジフェニルエーテル8.01g(0.04mol)
に、ピロメリット酸二無水物6.54(0.03mo
l)とヘキサフルオロイソプロピリデン−2,2−ビス
(フタル酸無水物)4.44g(0.01mol)とを
ピロメリット酸二無水物8.72(0.04mol)に
換えた以外は実施例1と同様にしてポリイミド前駆体で
あるポリアミド酸の溶液を得た。この溶液を20倍量の
水中に滴下して沈殿を回収し、25℃で72時間真空乾
燥してポリアミド酸の固形物を得た。
Example 2 (1) Synthesis of Polyimide Precursor 2, 2 used in the synthesis of the polyimide precursor of Example 1
5.18 g of 2, -bis (4- (4,4′-aminophenoxy) phenyl) hexafluoropropane (0.01 m
ol) and 9.60 g (0.03 mol) of 3,3′-dimethyl-4,4′-diaminobiphenyl, 8.01 g (0.04 mol) of 4,4′-diaminodiphenyl ether.
In addition, pyromellitic dianhydride 6.54 (0.03 mol
Example 1 except that l) and 4.44 g (0.01 mol) of hexafluoroisopropylidene-2,2-bis (phthalic anhydride) were changed to 8.72 (0.04 mol) of pyromellitic dianhydride. In the same manner as in 1, a solution of polyamic acid as a polyimide precursor was obtained. This solution was dropped into 20 times the volume of water to collect the precipitate, and dried under vacuum at 25 ° C. for 72 hours to obtain a solid of polyamic acid.

【0029】(2)前駆体より樹脂を生成する温度と樹
脂のガラス転移温度の測定 上記により合成したポリアミド酸がポリイミドへと反応
する温度を示差熱天秤により調べたところおよそ260
℃であった。また、このポリアミド酸5.0gをNMP
20.0gに溶解し、離形処理したガラス基板上に塗布
した後オーブン中120℃で30分保持後250℃で9
0分保持して成膜し、基板から膜を剥がした後さらに4
50℃で90分加熱し、耐熱性樹脂であるポリイミドの
フィルムとした。このポリイミドのガラス転移温度を動
的粘弾性測定により測定したところ、419℃であっ
た。
(2) Measurement of the temperature at which the resin is formed from the precursor and the glass transition temperature of the resin The temperature at which the polyamic acid synthesized as described above reacts with the polyimide was measured using a differential thermobalance.
° C. 5.0 g of this polyamic acid was added to NMP.
Dissolved in 20.0 g, coated on a glass substrate subjected to mold release treatment, kept in an oven at 120 ° C. for 30 minutes, and then heated at 250 ° C. for 9 minutes.
Hold for 0 minutes to form a film, and after removing the film from the substrate,
Heating was performed at 50 ° C. for 90 minutes to obtain a polyimide film as a heat-resistant resin. The glass transition temperature of this polyimide measured by dynamic viscoelasticity measurement was 419 ° C.

【0030】(3)前駆体組成物の調整と耐熱性樹脂の
製造 上記により合成したポリアミド酸10.0gをNMP4
0.0gに溶解した後、テトラエチレングリコールジメ
チルエーテル(沸点275℃)12.0gを添加して攪
拌し、耐熱性樹脂前駆体組成物を得た。厚さ100nm
のクロムを成膜したシリコンウエハ上に、この耐熱性樹
脂前駆体組成物をスピンコートした後、窒素雰囲気のオ
ーブン中で加熱硬化した。加熱硬化の際は、120℃で
30分保持後260℃で120分間保持した後、400
℃で90分保持し、120分間かけて徐々に室温まで温
度を戻した。このようにして厚さ0.7μmの耐熱性樹
脂の被膜を得た。以下実施例1と同様にしてこの耐熱性
樹脂の誘電率を測定したところ2.4であった。
(3) Preparation of Precursor Composition and Production of Heat-Resistant Resin 10.0 g of the polyamic acid synthesized above was added to NMP4
After dissolving in 0.0 g, 12.0 g of tetraethylene glycol dimethyl ether (boiling point: 275 ° C.) was added and stirred to obtain a heat-resistant resin precursor composition. 100nm thickness
This heat-resistant resin precursor composition was spin-coated on a silicon wafer on which chromium was formed, and then cured by heating in an oven under a nitrogen atmosphere. In the case of heat curing, after holding at 120 ° C. for 30 minutes and then at 260 ° C. for 120 minutes, 400
The temperature was maintained at 90 ° C. for 90 minutes, and gradually returned to room temperature over 120 minutes. Thus, a 0.7 μm-thick heat-resistant resin film was obtained. The dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1 and found to be 2.4.

【0031】「実施例3」 (1)ポリベンゾオキサゾール前駆体の合成 4,4’−ヘキサフルオロイソプロピリデンジフェニル
−1,1’ジカルボン酸25g、塩化チオニル45ml
及び乾燥DMF0.5mlを反応容器に入れ、60℃で
2時間反応させた。反応終了後、過剰の塩化チオニルを
加熱及び減圧により留去した。析出物をヘキサンを用い
て再結晶を行い、4,4’−ヘキサフルオロイソプロピ
リデンジフェニル−1,1’ジカルボン酸クロリドを得
た。攪拌装置、窒素導入管、滴下漏斗を付けたセパラブ
ルフラスコ中、2,2−ビス(3ーアミノ−4−ヒドロ
キシフェニル)ヘキサフルオロプロパン7.32g
(0.02mol)を乾燥したジメチルアセトアミド1
00gに溶解し、ピリジン3.96g(0.05mo
l)を添加後、乾燥窒素導入下、−15℃でジメチルア
セトアミド50gに、上記により合成した4,4’−ヘ
キサフルオロイソプロピリデンジフェニル−1,1’ジ
カルボン酸クロリド8.58g(0.02mol)を溶
解したものを30分掛けて滴下した。滴下終了後、室温
まで戻し、室温で5時間攪拌した。その後、反応液を水
1000ml中に滴下し、沈殿物を集め、40℃で48
時間真空乾燥することによりポリベンゾオキサゾール前
駆体であるポリヒドロキシアミドの固形物を得た。
Example 3 (1) Synthesis of polybenzoxazole precursor 25 g of 4,4′-hexafluoroisopropylidenediphenyl-1,1 ′ dicarboxylic acid, 45 ml of thionyl chloride
And 0.5 ml of dry DMF was put in a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The precipitate was recrystallized using hexane to obtain 4,4'-hexafluoroisopropylidenediphenyl-1,1'dicarboxylic acid chloride. 7.32 g of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane in a separable flask equipped with a stirrer, nitrogen inlet tube, and dropping funnel.
(0.02 mol) dried dimethylacetamide 1
Of pyridine and 3.96 g of pyridine (0.05 mol).
After addition of 1), 8.58 g (0.02 mol) of 4,4′-hexafluoroisopropylidenediphenyl-1,1′-dicarboxylic acid chloride synthesized above was added to 50 g of dimethylacetamide at −15 ° C. under dry nitrogen introduction. Was dissolved and dropped over 30 minutes. After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was added dropwise to 1000 ml of water, and the precipitate was collected.
By vacuum drying for a period of time, a solid substance of polyhydroxyamide, which is a polybenzoxazole precursor, was obtained.

【0032】(2)前駆体より樹脂を生成する温度と樹
脂のガラス転移温度の測定 上記により合成したポリヒドロキシアミドがポリベンゾ
オキサゾールへと反応する温度を示差熱天秤により調べ
たところおよそ250℃であった。また、このポリヒド
ロキシアミド5.0gをNMP20.0gに溶解し、離
形処理したガラス基板上に塗布した後オーブン中120
℃で30分保持後240℃で90分保持して成膜し、基
板から膜を剥がした後さらに400℃で90分加熱し、
耐熱性樹脂であるポリベンゾオキサゾールのフィルムと
した。このポリベンゾオキサゾールのガラス転移温度を
動的粘弾性測定により測定したところ、362℃であっ
た。
(2) Measurement of the temperature at which the resin is formed from the precursor and the glass transition temperature of the resin The temperature at which the polyhydroxyamide synthesized as described above reacts with the polybenzoxazole was examined using a differential thermobalance. there were. Also, 5.0 g of this polyhydroxyamide was dissolved in 20.0 g of NMP, applied on a glass substrate subjected to mold release treatment, and then placed in an oven.
After holding at 240 ° C. for 30 minutes, forming a film by holding at 240 ° C. for 90 minutes, peeling the film from the substrate, and further heating at 400 ° C. for 90 minutes,
A film of polybenzoxazole, which is a heat-resistant resin, was used. The glass transition temperature of this polybenzoxazole was 362 ° C. as measured by dynamic viscoelasticity measurement.

【0033】(3)前駆体組成物の調整と耐熱性樹脂の
製造 上記により合成したポリヒドロキシアミド10.0gを
NMP50.0gに溶解した後、トリエチレングリコー
ルモノブチルエーテル(沸点271℃)6.0gを添加
して攪拌し、耐熱性樹脂前駆体組成物を得た。厚さ10
0nmのクロムを成膜したシリコンウエハ上に、この耐
熱性樹脂前駆体組成物をスピンコートした後、窒素雰囲
気のオーブン中で加熱硬化した。加熱硬化の際は、12
0℃で30分保持後260℃で120分間保持した後、
340℃で180分保持し、360℃まで温度を上げた
後100分間かけて徐々に室温まで温度を戻した。この
ようにして厚さ0.8μmの耐熱性樹脂の被膜を得た。
以下実施例1と同様にしてこの耐熱性樹脂の誘電率を測
定したところ2.2であった。
(3) Preparation of Precursor Composition and Production of Heat Resistant Resin 10.0 g of the polyhydroxyamide synthesized as described above was dissolved in 50.0 g of NMP, and then 6.0 g of triethylene glycol monobutyl ether (boiling point: 271 ° C.) Was added and stirred to obtain a heat-resistant resin precursor composition. Thickness 10
This heat-resistant resin precursor composition was spin-coated on a silicon wafer on which a 0-nm chromium film was formed, and then cured by heating in an oven in a nitrogen atmosphere. In the case of heat curing, 12
After holding at 0 ° C. for 30 minutes and holding at 260 ° C. for 120 minutes,
The temperature was maintained at 340 ° C. for 180 minutes, and after raising the temperature to 360 ° C., the temperature was gradually returned to room temperature over 100 minutes. Thus, a heat-resistant resin film having a thickness of 0.8 μm was obtained.
The dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1 and was 2.2.

【0034】「比較例1」実施例2のポリイミド前駆体
組成物の調整において用いたテトラエチレングリコール
ジメチルエーテル(沸点275℃)12.0gを添加し
ない以外は全て実施例2と同様に行った。得られた耐熱
性樹脂の誘電率は3.5であった。
Comparative Example 1 The procedure of Example 2 was repeated except that 12.0 g of tetraethylene glycol dimethyl ether (boiling point: 275 ° C.) used in preparing the polyimide precursor composition of Example 2 was not added. The dielectric constant of the obtained heat-resistant resin was 3.5.

【0035】「比較例2」実施例2のポリイミド前駆体
組成物の調整において用いたテトラエチレングリコール
ジメチルエーテル(沸点275℃)12.0gを2−フ
ェノキシエタノール(沸点245℃)12.0g換えた
以外は全て実施例2と同様に行った。得られた耐熱性樹
脂の誘電率は3.5であった。
Comparative Example 2 The procedure of Example 2 was repeated except that 12.0 g of tetraethylene glycol dimethyl ether (boiling point: 275 ° C.) used in preparing the polyimide precursor composition was changed to 12.0 g of 2-phenoxyethanol (boiling point: 245 ° C.). All were performed in the same manner as in Example 2. The dielectric constant of the obtained heat-resistant resin was 3.5.

【0036】「比較例3」実施例2の耐熱性樹脂の製造
工程において、窒素雰囲気のオーブン中での加熱硬化の
際に、120℃で30分保持後300℃で120分間保
持した後、400℃で90分保持し、120分間かけて
徐々に室温まで温度を戻した以外は全て実施例2と同様
に行った。耐熱性樹脂の誘電率は3.5であった。
[Comparative Example 3] In the heat-resistant resin production process of Example 2, after heat-curing in an oven under a nitrogen atmosphere, the film was held at 120 ° C for 30 minutes, then at 300 ° C for 120 minutes, and then heated at 400 ° C. The procedure was the same as in Example 2 except that the temperature was kept at 90 ° C. for 90 minutes and the temperature was gradually returned to room temperature over 120 minutes. The dielectric constant of the heat-resistant resin was 3.5.

【0037】「比較例4」 (1)ポリイミド前駆体の合成 実施例1のポリイミド前駆体の合成において用いた2,
2,−ビス(4−(4,4’−アミノフェノキシ)フェ
ニル)ヘキサフルオロプロパン5.18g(0.01m
ol)と3,3’−ジメチル−4,4’−ジアミノビフ
ェニル9.60g(0.03mol)とを1、3−ビス
(3−アミノフェノキシ)ベンゼン11.69g(0.
04mol)に、ピロメリット酸二無水物6.54
(0.03mol)とヘキサフルオロイソプロピリデン
−2,2−ビス(フタル酸無水物)4.44g(0.0
1mol)とを4,4’−オキシジフタル酸無水物1
2.41(0.04mol)に換えた以外は実施例1と
同様にしてポリイミド前駆体であるポリアミド酸の溶液
を得た。この溶液を20倍量の水中に滴下して沈殿を回
収し、25℃で72時間真空乾燥してポリアミド酸の固
形物を得た。
Comparative Example 4 (1) Synthesis of Polyimide Precursor 2, 2 used in the synthesis of the polyimide precursor of Example 1
5.18 g of 2, -bis (4- (4,4′-aminophenoxy) phenyl) hexafluoropropane (0.01 m
ol) and 9.60 g (0.03 mol) of 3,3'-dimethyl-4,4'-diaminobiphenyl in 11.69 g of 1,3-bis (3-aminophenoxy) benzene (0.
04mol) and pyromellitic dianhydride 6.54
(0.03 mol) and 4.44 g of hexafluoroisopropylidene-2,2-bis (phthalic anhydride) (0.04 mol).
1 mol) and 4,4'-oxydiphthalic anhydride 1
A polyamic acid solution as a polyimide precursor was obtained in the same manner as in Example 1, except that the solution was changed to 2.41 (0.04 mol). This solution was dropped into 20 times the volume of water to collect the precipitate, and dried under vacuum at 25 ° C. for 72 hours to obtain a solid of polyamic acid.

【0038】(2)前駆体より樹脂を生成する温度と樹
脂のガラス転移温度の測定 上記により合成したポリアミド酸がポリイミドへと反応
する温度を示差熱天秤により調べたところおよそ220
℃であった。また、このポリアミド酸5.0gをNMP
20.0gに溶解し、離形処理したガラス基板上に塗布
した後オーブン中120℃で30分保持後250℃で9
0分保持して成膜し、基板から膜を剥がした後さらに3
00℃で90分加熱し、耐熱性樹脂であるポリイミドの
フィルムとした。このポリイミドのガラス転移温度を動
的粘弾性測定により測定したところ、189℃であっ
た。
(2) Measurement of the temperature at which the resin is formed from the precursor and the glass transition temperature of the resin The temperature at which the polyamic acid synthesized as described above reacts with the polyimide was measured by a differential thermobalance to be about 220.
° C. 5.0 g of this polyamic acid was added to NMP.
Dissolved in 20.0 g, coated on a glass substrate subjected to mold release treatment, kept in an oven at 120 ° C. for 30 minutes, and then heated at 250 ° C. for 9 minutes.
Hold for 0 minutes to form a film, and after peeling off the film from the substrate,
Heating was performed at 00 ° C. for 90 minutes to obtain a polyimide film as a heat-resistant resin. The glass transition temperature of this polyimide was 189 ° C. as measured by dynamic viscoelasticity measurement.

【0039】(3)前駆体組成物の調整と耐熱性樹脂の
製造 上記により合成したポリアミド酸10.0gをNMP4
0.0gに溶解した後、2−フェノキシエタノール(沸
点245℃)12.0gを添加して攪拌し、耐熱性樹脂
前駆体組成物を得た。厚さ100nmのクロムを成膜し
たシリコンウエハ上に、この耐熱性樹脂前駆体組成物を
スピンコートした後、窒素雰囲気のオーブン中で加熱硬
化した。加熱硬化の際は、120℃で30分保持後25
0℃で120分間保持した後、300℃で90分保持
し、120分間かけて徐々に室温まで温度を戻した。こ
のようにして厚さ0.7μmの耐熱性樹脂の被膜を得
た。以下実施例1と同様にしてこの耐熱性樹脂の誘電率
を測定したところ3.2であった。
(3) Preparation of Precursor Composition and Production of Heat Resistant Resin 10.0 g of the polyamic acid synthesized as described above was added to NMP4
After dissolving in 0.0 g, 12.0 g of 2-phenoxyethanol (boiling point: 245 ° C.) was added and stirred to obtain a heat-resistant resin precursor composition. This heat-resistant resin precursor composition was spin-coated on a silicon wafer on which a chromium film having a thickness of 100 nm was formed, and then cured by heating in an oven in a nitrogen atmosphere. In the case of heat curing, 25 minutes after holding at 120 ° C. for 30 minutes
After maintaining at 0 ° C. for 120 minutes, the temperature was maintained at 300 ° C. for 90 minutes, and gradually returned to room temperature over 120 minutes. Thus, a 0.7 μm-thick heat-resistant resin film was obtained. Thereafter, the dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1, and it was 3.2.

【0040】実施例1〜3においては、誘電率が2.5
以下と非常に低い耐熱性樹脂を得ることが出来た。特
に、実施例1および実施例3では耐熱性樹脂がフッ素ま
たはフルオロアルキル基を有するためにより低い誘電率
を得ることができた。
In Examples 1 to 3, the dielectric constant was 2.5
The following very low heat-resistant resin could be obtained. Particularly, in Examples 1 and 3, a lower dielectric constant could be obtained because the heat-resistant resin had a fluorine or fluoroalkyl group.

【0041】比較例1では、沸点が前記耐熱性樹脂前駆
体が反応して耐熱性樹脂を生成する温度より高くかつ前
記の耐熱性樹脂のガラス転移温度より低い溶剤を含んで
いないために誘電率を低減できなかった。
In Comparative Example 1, since a solvent having a boiling point higher than the temperature at which the heat-resistant resin precursor reacts to form a heat-resistant resin and lower than the glass transition temperature of the heat-resistant resin was not contained, the dielectric constant was low. Could not be reduced.

【0042】比較例2では、用いた溶剤の沸点がすべて
前記耐熱性樹脂前駆体が反応して耐熱性樹脂を生成する
温度より低かったために誘電率を低減できなかった。
In Comparative Example 2, the dielectric constant could not be reduced because the boiling points of the solvents used were all lower than the temperature at which the heat-resistant resin precursor reacted to form a heat-resistant resin.

【0043】比較例3では、溶剤の沸点より低い温度で
反応させて耐熱性樹脂とする工程を行わなかったために
誘電率を低減できなかった。
In Comparative Example 3, the dielectric constant could not be reduced because the step of forming a heat-resistant resin by reacting at a temperature lower than the boiling point of the solvent was not performed.

【0044】比較例4では、用いた溶剤の沸点が樹脂の
ガラス転移温度より高かったために誘電率を低減できな
かった。
In Comparative Example 4, the dielectric constant could not be reduced because the solvent used had a boiling point higher than the glass transition temperature of the resin.

【0045】[0045]

【発明の効果】本発明の耐熱性樹脂前駆体組成物、耐熱
性樹脂の製造方法及び耐熱性樹脂は、電気特性および耐
熱性に優れたものであり、これらの特性が要求される様
々な分野、例えば半導体用の層間絶縁膜、多層回路の層
間絶縁膜などとして有用な合成樹脂である。
The heat-resistant resin precursor composition, the method for producing the heat-resistant resin and the heat-resistant resin of the present invention are excellent in electric properties and heat resistance, and are used in various fields where these properties are required. For example, it is a synthetic resin useful as an interlayer insulating film for semiconductors, an interlayer insulating film for multilayer circuits, and the like.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CM011 CM041 ED036 ED056 FD026 GQ05 4J043 PA02 PA19 QB23 QB31 RA34 RA52 TA47 UA122 UA131 UA132 UB022 UB052 UB121 UB401 ZB50 5F058 AA10 AC02 AC10 AF04 AG01 AH02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J002 CM011 CM041 ED036 ED056 FD026 GQ05 4J043 PA02 PA19 QB23 QB31 RA34 RA52 TA47 UA122 UA131 UA131 UB132 UB022 UB052 UB121 UB401 ZB50 5F058 AA10 AC02 AC10 AF04 AG01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 加熱による反応により耐熱性樹脂を生成
する耐熱性樹脂前駆体(A)と、沸点が前記耐熱性樹脂
前駆体が反応して耐熱性樹脂を生成する温度より高くか
つ前記の耐熱性樹脂のガラス転移温度より低い溶剤
(B)とを必須成分とする耐熱性樹脂前駆体組成物。
1. A heat-resistant resin precursor (A) that generates a heat-resistant resin by a reaction caused by heating, and a heat-resistant resin having a boiling point higher than a temperature at which the heat-resistant resin precursor reacts to form a heat-resistant resin. A heat-resistant resin precursor composition comprising, as an essential component, a solvent (B) lower than the glass transition temperature of the conductive resin.
【請求項2】 耐熱性樹脂がポリイミドである請求項1
記載の耐熱性樹脂前駆体組成物。
2. The heat-resistant resin is a polyimide.
The heat-resistant resin precursor composition according to the above.
【請求項3】 耐熱性樹脂がポリベンゾオキサゾールで
ある請求項1記載の耐熱性樹脂前駆体組成物。
3. The heat-resistant resin precursor composition according to claim 1, wherein the heat-resistant resin is polybenzoxazole.
【請求項4】 耐熱性樹脂がフッ素またはフルオロアル
キル基を有する請求項2または請求項3記載の耐熱性樹
脂前駆体組成物。
4. The heat-resistant resin precursor composition according to claim 2, wherein the heat-resistant resin has a fluorine or fluoroalkyl group.
【請求項5】 請求項1〜4のいずれかに記載の耐熱性
樹脂前駆体組成物を、請求項1中の溶剤(B)の沸点よ
り低い温度で反応させて耐熱性樹脂とした後に、請求項
1中の溶剤(B)の沸点より高くかつ前記の耐熱性樹脂
のガラス転移温度より低い温度で熱処理する工程を有す
る耐熱性樹脂の製造方法。
5. After reacting the heat-resistant resin precursor composition according to any one of claims 1 to 4 at a temperature lower than the boiling point of the solvent (B) in claim 1, to form a heat-resistant resin, A method for producing a heat-resistant resin, comprising a step of performing a heat treatment at a temperature higher than the boiling point of the solvent (B) in claim 1 and lower than the glass transition temperature of the heat-resistant resin.
【請求項6】 請求項5記載の製造方法により製造され
たものである耐熱性樹脂。
6. A heat-resistant resin produced by the production method according to claim 5.
JP11069882A 1999-03-16 1999-03-16 Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin Pending JP2000265057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11069882A JP2000265057A (en) 1999-03-16 1999-03-16 Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11069882A JP2000265057A (en) 1999-03-16 1999-03-16 Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin

Publications (1)

Publication Number Publication Date
JP2000265057A true JP2000265057A (en) 2000-09-26

Family

ID=13415582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11069882A Pending JP2000265057A (en) 1999-03-16 1999-03-16 Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin

Country Status (1)

Country Link
JP (1) JP2000265057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083791A (en) * 2014-10-23 2016-05-19 Dicグラフィックス株式会社 Printing method using aqueous ink composition and aqueous varnish composition and printed matter obtained by the method
CN111484616A (en) * 2020-06-10 2020-08-04 浙江福斯特新材料研究院有限公司 Polyimide composition, polyimide, flexible copper clad laminate and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083791A (en) * 2014-10-23 2016-05-19 Dicグラフィックス株式会社 Printing method using aqueous ink composition and aqueous varnish composition and printed matter obtained by the method
CN111484616A (en) * 2020-06-10 2020-08-04 浙江福斯特新材料研究院有限公司 Polyimide composition, polyimide, flexible copper clad laminate and manufacturing method thereof
CN111484616B (en) * 2020-06-10 2023-04-07 杭州福斯特电子材料有限公司 Polyimide composition, polyimide, flexible copper clad laminate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH10316853A (en) Resin composition for interlaminar insulating membrane for multilayer interconnection of semiconductor, and production of the insulating membrane
JP2536620B2 (en) Method for producing polyimide resin
US5133989A (en) Process for producing metal-polyimide composite article
JP2001098160A (en) Resin composition for insulating material and insulating material using the same
JP2003252992A (en) New polymer compound, polymer precursor and method for forming thin film using polymer precursor
JP2003105085A (en) Material for organic insulating film and organic insulating film
JP2000265057A (en) Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin
JP2001189109A (en) Resin composition for insulator, and insulator using the same
JP4945858B2 (en) Organic insulating film material and organic insulating film
JP3681106B2 (en) Organic insulating film material and organic insulating film
JP2001011181A (en) Resin composition for electrical insulation material and electrical insulation material using the same
JP3641901B2 (en) Polyamic acid and polyimide
JP4483008B2 (en) Resin composition for insulating material and insulating material using the same
JP3079740B2 (en) Polyimide and wiring structure using the same
JP4590690B2 (en) Resin composition for insulating material and insulating material using the same
JP2002151500A (en) Organic insulation film and material therefor
JP4045621B2 (en) Electrical insulating material containing fluorine-containing polyimide resin and electronic component using the same
JP2001035256A (en) Insulating material composition and insulating material using the same
JP2001011180A (en) Resin composition for electrical insulation material and electrical insulation material using the same
JP2001283638A (en) Resin composition for insulating material and insulating material using the same
JPH02167741A (en) Preparation of metal/polyimide composite
JPH0120531B2 (en)
JP2001256829A (en) Composition for insulating material and insulating material and its manufacturing method
JP2000248077A (en) Organic insulation film material for semiconductor and production
JP2001261829A (en) Organic insulation film, and method for producing organic insulation film material therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715