JP2001011180A - Resin composition for electrical insulation material and electrical insulation material using the same - Google Patents

Resin composition for electrical insulation material and electrical insulation material using the same

Info

Publication number
JP2001011180A
JP2001011180A JP11189107A JP18910799A JP2001011180A JP 2001011180 A JP2001011180 A JP 2001011180A JP 11189107 A JP11189107 A JP 11189107A JP 18910799 A JP18910799 A JP 18910799A JP 2001011180 A JP2001011180 A JP 2001011180A
Authority
JP
Japan
Prior art keywords
resin
insulating material
heat
component
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11189107A
Other languages
Japanese (ja)
Inventor
Toshimasa Eguchi
敏正 江口
Mitsuru Murata
満 村田
Hisafumi Enoki
尚史 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11189107A priority Critical patent/JP2001011180A/en
Publication of JP2001011180A publication Critical patent/JP2001011180A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject composition having extremely low dielectric constant, excellent electrical insulation properties and also excellent heat resistance, and useful for electrical/electronic equipments or semiconductor devices, by including, as the essential components, a component having a polymerizable functional group and a specific heat-resistant resin or a precursor thereof. SOLUTION: This composition is obtained by including, as the essential components, (A) a component having a polymerizable functional group (e.g. polyethylene glycol dimethacrylate), and (B) a heat-resistant resin having the glass transition temperature higher than the pyrolysis temperature of the polymer of the component A or a precursor thereof (pref. a polyimide resin, a polyimide precursor, or the like) in the weight ratio A/B of pref. (5:95) to (90:10), more pref. (10:90) to (70:30).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は絶縁材に関するもの
であり、更に詳しくは電気・電子機器用、半導体装置用
として優れた特性を有する絶縁材用樹脂組成物及びこれ
を用いた絶縁材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating material, and more particularly to a resin composition for an insulating material having excellent characteristics for use in electric / electronic devices and semiconductor devices, and an insulating material using the same. It is.

【0002】[0002]

【従来の技術】電気電子機器用、半導体装置用材料に求
められている特性のなかで、電気特性と耐熱性は最も重
要な特性である。特に、近年、回路の微細化と信号の高
速化に伴い、誘電率の低い絶縁材料が要求されている。
この2つの特性を両立させるための材料として耐熱性樹
脂を用いた絶縁材が期待されている。例えば従来から用
いられている二酸化シリコン等の無機の絶縁材は高耐熱
性を示すが誘電率が高く、要求特性が高度化している現
在では、前述の特性について両立が困難になりつつあ
る。ポリイミド樹脂に代表される耐熱性樹脂は、電気特
性と耐熱性に優れ2つの特性の両立が可能であり、実際
にプリント回路のカバーレイや半導体装置のパッシベー
ション膜などに用いられている。
2. Description of the Related Art Among the characteristics required for materials for electric / electronic devices and semiconductor devices, electric characteristics and heat resistance are the most important characteristics. In particular, in recent years, with miniaturization of circuits and speeding up of signals, an insulating material having a low dielectric constant has been required.
An insulating material using a heat-resistant resin is expected as a material for achieving both of these two characteristics. For example, conventionally used inorganic insulating materials such as silicon dioxide exhibit high heat resistance, but have a high dielectric constant, and at the present time the required characteristics are becoming more sophisticated. A heat-resistant resin typified by a polyimide resin is excellent in electrical properties and heat resistance and can achieve both of these properties, and is actually used for a coverlay of a printed circuit, a passivation film of a semiconductor device, and the like.

【0003】しかしながら、近年の半導体の高機能化、
高性能化にともない、電気特性、耐熱性について著しい
向上が必要とされているため、更に高性能な樹脂が必要
とされるようになっている。特に、誘電率について2.
5を下回るような低誘電率材料が期待されており、従来
の絶縁材では、必要とされる特性に達していない。これ
に対してこれまでには、例えば、ポリイミド及び溶剤か
ら成る樹脂組成物に、ポリイミド以外の熱分解性樹脂を
加え、加熱工程によりこの熱分解性樹脂を分解させて空
隙を形成することにより、絶縁材の誘電率を低減させる
ことが試みられている。しかし、ポリイミド等の耐熱性
樹脂と熱分解性樹脂が相溶するとガラス転移点が低くな
ってしまうために、熱分解性樹脂を分解させる際に空隙
が潰れていまい、誘電率を低減させる効果が少ない。一
方、ポリイミド等の耐熱性樹脂と相溶しない熱分解性樹
脂を用いた場合は、絶縁材用樹脂組成物が保存中に不均
一になってしまい使用できないという問題が有る。
[0003] However, in recent years, semiconductors have become more sophisticated,
Along with the increase in performance, remarkable improvements in electrical characteristics and heat resistance are required, so that a higher performance resin is required. In particular, regarding the permittivity,
Materials having a low dielectric constant of less than 5 are expected, and the required properties of conventional insulating materials have not been achieved. On the other hand, in the past, for example, by adding a thermally decomposable resin other than polyimide to a resin composition comprising polyimide and a solvent, and decomposing this thermally decomposable resin by a heating step to form voids, Attempts have been made to reduce the dielectric constant of the insulating material. However, when the heat-resistant resin such as polyimide and the heat-decomposable resin are compatible with each other, the glass transition point is lowered. Few. On the other hand, when a thermally decomposable resin that is incompatible with a heat-resistant resin such as polyimide is used, there is a problem that the resin composition for an insulating material becomes non-uniform during storage and cannot be used.

【0004】[0004]

【発明が解決しようとする課題】本発明は、極めて低い
誘電率と良好な絶縁性を示すとともに、耐熱性にも優れ
た絶縁材用樹脂組成物及びこれを用いた絶縁材を提供す
る事を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a resin composition for an insulating material which exhibits an extremely low dielectric constant and good insulating properties, and also has excellent heat resistance and an insulating material using the same. Aim.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記従来
の問題点を鑑み、鋭意検討を重ねた結果、以下の手段に
より本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned conventional problems, and as a result, completed the present invention by the following means.

【0006】すなわち、 1.重合性の官能基を有する成分(A)と、樹脂のガラ
ス転移温度が成分(A)の重合物の熱分解温度より高い
耐熱性樹脂またはその前駆体(B)とを必須成分とする
絶縁材用樹脂組成物、
That is, 1. Insulating material comprising a component (A) having a polymerizable functional group and a heat-resistant resin or a precursor (B) having a glass transition temperature of a resin higher than a thermal decomposition temperature of a polymer of the component (A). Resin composition for

【0007】2.耐熱性樹脂またはその前駆体(B)
が、ポリイミド樹脂またはポリイミド前駆体である前記
1項に記載の絶縁材用樹脂組成物、
[0007] 2. Heat resistant resin or its precursor (B)
Is a resin composition for an insulating material according to the above item 1, which is a polyimide resin or a polyimide precursor,

【0008】3.耐熱性樹脂またはその前駆体(B)が
ポリベンゾオキサゾール樹脂またはポリベンゾオキサゾ
ール前駆体である前記1項に記載の絶縁材用樹脂組成
物、
[0008] 3. 2. The resin composition for an insulating material according to the above 1, wherein the heat-resistant resin or its precursor (B) is a polybenzoxazole resin or a polybenzoxazole precursor.

【0009】4.前記1〜3項のいずれか1項に記載の
絶縁材用樹脂組成物を用いて、重合性の官能基を有する
成分(A)を重合させた後、成分(A)の重合物の熱分
解温度より高い温度、および耐熱性樹脂もしくはその前
駆体を閉環させた樹脂のガラス転移温度以下で、熱処理
する工程を有する方法で製造されたことを特徴とする絶
縁材、である。
4. 4. After polymerizing the component (A) having a polymerizable functional group using the resin composition for an insulating material according to any one of the above items 1 to 3, thermal decomposition of the polymer of the component (A) An insulating material manufactured by a method including a step of performing a heat treatment at a temperature higher than a temperature and at a temperature equal to or lower than a glass transition temperature of a resin in which a heat-resistant resin or a precursor thereof is closed.

【0010】[0010]

【発明の実施の形態】本発明の絶縁材用樹脂組成物は、
重合性の官能基を有する成分(A)と、樹脂のガラス転
移温度が成分(A)の重合物の熱分解温度より高い耐熱
性樹脂、または加熱による反応もしくは化学閉環反応に
より前記耐熱性樹脂を生成する耐熱性樹脂前駆体(B)
とを必須成分として成るものである。成分(A)と成分
(B)以外の成分として溶剤を用いることが可能である
が、成分(A)が成分(B)を溶解する液体で有る場合
は、成分(A)をもって溶剤を兼ねることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION The resin composition for insulating material of the present invention comprises:
A component (A) having a polymerizable functional group and a heat-resistant resin having a glass transition temperature of the resin higher than the thermal decomposition temperature of the polymer of the component (A), or the heat-resistant resin by a reaction by heating or a chemical ring closing reaction. Generated heat-resistant resin precursor (B)
And as essential components. It is possible to use a solvent as a component other than the component (A) and the component (B). However, when the component (A) is a liquid that dissolves the component (B), the component (A) also serves as a solvent. Can also.

【0011】本発明の絶縁材用樹脂組成物は、基板等の
上に塗布して加熱・製膜したり、ガラスクロス等に含浸
させて加熱することにより絶縁材とすることができる。
この加熱工程において、まず、成分(A)の重合性の官
能基同士が重合可能な温度範囲である50℃から250
℃、より好ましくは70℃から200℃で加熱すること
により、成分(A)の重合性の官能基を重合による架橋
反応を起こさせ、それに伴い成分(B)と相分離を生じ
ることにより、耐熱性樹脂またはその前駆体を閉環させ
た樹脂本来の高いガラス転移温度が発現する。さらに加
熱温度を、成分(A)の重合物が熱分解する温度より高
い温度、および成分(B)の樹脂のガラス転移温度以下
の温度に上昇させることにより、成分(B)の樹脂のガ
ラス転移温度に到達する前に成分(A)が熱分解して揮
散することにより微細な空隙を形成する。これにより低
い誘電率の絶縁材を得ることが出来るものである。
The resin composition for an insulating material of the present invention can be applied to a substrate or the like to heat and form a film, or impregnated in a glass cloth or the like and heated to form an insulating material.
In this heating step, first, a temperature range of 50 ° C. to 250 ° C., which is a temperature range in which the polymerizable functional groups of the component (A) can be polymerized.
C., more preferably from 70 to 200.degree. C., causing a cross-linking reaction by polymerization of the polymerizable functional group of the component (A), thereby causing a phase separation with the component (B), thereby achieving heat resistance. A high glass transition temperature inherent to a resin obtained by ring-closing a reactive resin or a precursor thereof is developed. Further, by increasing the heating temperature to a temperature higher than the temperature at which the polymer of the component (A) is thermally decomposed and a temperature equal to or lower than the glass transition temperature of the resin of the component (B), the glass transition of the resin of the component (B) is increased. Before reaching the temperature, the component (A) is thermally decomposed and volatilized to form fine voids. Thereby, an insulating material having a low dielectric constant can be obtained.

【0012】本発明に用いる重合性の官能基を有する成
分(A)の例を挙げると、酢酸ビニル、メチルメタクリ
レート、ジビニルベンゼン、ヒドロキシメタクリレー
ト、メタクリルアミド、N,N−ジメチルアクリルアミ
ド、ジメチルアミノエチルメタクリレート、グリセロー
ルジメタクリレート、エチレングリコールジメタクリレ
ート、ポリエチレングリコールジメタクリレート、ポリ
プロピレングリコールジメタクリレート、ビニルシンナ
メート、N−ビニルピロリドン、フェニルグリシジルエ
ーテル、ビスフェノールF型エポキシ等であるが、これ
らに限られるものではない。また、重合開始剤を添加す
ることも可能である。
Examples of the component (A) having a polymerizable functional group used in the present invention include vinyl acetate, methyl methacrylate, divinylbenzene, hydroxymethacrylate, methacrylamide, N, N-dimethylacrylamide, dimethylaminoethyl methacrylate. Glycerol dimethacrylate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, vinyl cinnamate, N-vinylpyrrolidone, phenylglycidyl ether, bisphenol F type epoxy, and the like, but are not limited thereto. It is also possible to add a polymerization initiator.

【0013】本発明に用いる樹脂のガラス転移温度が成
分(A)の重合物の熱分解温度より高い耐熱性樹脂、ま
たは加熱による反応もしくは化学閉環反応により耐熱性
樹脂を生成する耐熱性樹脂前駆体(B)の例を挙げる
と、ポリイミド、ポリアミド酸、ポリアミド酸エステ
ル、ポリイソイミド、ポリアミドイミド、ポリアミド、
ビスマレイミド、ポリベンゾオキサゾール、ポリヒドロ
キシアミド、ポリベンゾチアゾール等であるがこれらに
限られるものではない。これらの中でも、ポリイミド樹
脂とポリアミド酸、ポリアミド酸エステル、ポリイソイ
ミド等のポリイミド前駆体、ポリベンゾオキサゾール樹
脂とポリヒドロキシアミド等のポリベンゾオキサゾール
前駆体は、耐熱性が高く好ましい。
The resin used in the present invention has a glass transition temperature higher than the thermal decomposition temperature of the polymer of the component (A), or a heat-resistant resin precursor which forms a heat-resistant resin by a reaction by heating or a chemical ring closing reaction. Examples of (B) include polyimide, polyamic acid, polyamic ester, polyisoimide, polyamideimide, polyamide,
Examples include, but are not limited to, bismaleimide, polybenzoxazole, polyhydroxyamide, and polybenzothiazole. Among these, a polyimide resin and a polyimide precursor such as polyamic acid, polyamic acid ester, and polyisoimide, and a polybenzoxazole resin and a polybenzoxazole precursor such as polyhydroxyamide are preferable because of high heat resistance.

【0014】本発明の絶縁材用樹脂組成物の成分として
溶剤を用いる場合に、好ましい溶剤の例を挙げると、
N,N−ジメチルアセトアミド、N−メチル−2−ピロ
リドン、テトラヒドロフラン、プロピレングリコールモ
ノメチルエーテル、プロピレングリコールモノメチルエ
ーテルアセテート、ジエチレングリコールモノメチルエ
ーテル、γ−ブチロラクトン等であるが、これらに限定
されるものではない。また、これらを2種以上、同時に
用いてもかまわない。さらに、塗布性や含浸性を向上さ
せるために、少量の界面活性剤を添加してもかまわな
い。
When a solvent is used as a component of the resin composition for an insulating material of the present invention, examples of preferred solvents include:
Examples thereof include, but are not limited to, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, and γ-butyrolactone. Two or more of these may be used simultaneously. Further, a small amount of a surfactant may be added in order to improve coatability and impregnation.

【0015】本発明の絶縁材の誘電率を低減するために
形成される微少な空隙は、その直径が50nm以下のも
のであり、好ましくは平均孔径10nm以下のものであ
る。また、微少な空隙の割合としては、絶縁材の形成物
全体に対し、5〜90vol%が好ましく、より好まし
くは10〜70vol%である。下限値より小さいと誘
電率の低減効果がなく、上限値より大きいと絶縁材の機
械的強度が低下する。
The minute voids formed to reduce the dielectric constant of the insulating material of the present invention have a diameter of 50 nm or less, preferably an average pore diameter of 10 nm or less. Further, the ratio of the minute voids is preferably 5 to 90 vol%, more preferably 10 to 70 vol%, based on the whole formed material of the insulating material. If it is smaller than the lower limit, there is no effect of reducing the dielectric constant, and if it is larger than the upper limit, the mechanical strength of the insulating material is reduced.

【0016】本発明の絶縁材用樹脂組成物は、各成分を
前記空隙を形成する範囲で配合される。成分(A)と成
分(B)との重量比A/Bが、好ましくは5/95から
90/10、より好ましくは10/90から70/30
である。これらを均一に混合して得られる。
In the resin composition for an insulating material of the present invention, each component is blended within a range that forms the above-mentioned void. The weight ratio A / B of component (A) to component (B) is preferably from 5/95 to 90/10, more preferably from 10/90 to 70/30.
It is. These are obtained by mixing them uniformly.

【0017】本発明の絶縁材の製造方法の例としては、
本発明の絶縁材用樹脂組成物を用い、上記溶剤に溶解し
ワニスとした後、適当な支持体、例えば、ガラス、金
属、シリコーンウエハーやセラミック基盤などに塗布す
る。具体的な塗布の方法としては、スピンナーを用いた
回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、
印刷、ロールコーティングなどが挙げられる。このよう
にして、塗膜形成し、加熱乾燥後、前記の方法により、
加熱し微少な空隙を形成させ、硬化させることにより、
誘電率の低い絶縁材を形成することができる。加熱硬化
は、揮散した成分を排気できる加熱装置で行うことが好
ましい。
Examples of the method for producing an insulating material of the present invention include:
The resin composition for an insulating material of the present invention is dissolved in the above-mentioned solvent to form a varnish, and then applied to an appropriate support, for example, a glass, metal, silicone wafer, or ceramic substrate. Specific coating methods include spin coating using a spinner, spray coating using a spray coater, dipping,
Printing, roll coating and the like. In this way, a coating film is formed, and after heating and drying, by the method described above,
By heating and forming minute voids and curing,
An insulating material having a low dielectric constant can be formed. The heat curing is preferably performed by a heating device capable of exhausting the volatilized components.

【0018】[0018]

【実施例】以下に実施例により本発明を具体的に説明す
るが、実施例の内容になんら限定されるものではない。
EXAMPLES The present invention will be described in detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0019】「実施例1」 (1)ポリイミド樹脂の合成 攪拌装置、窒素導入管、原料投入口を備えたセパラブル
フラスコ中、2,2’−ビス(4−(4,4’−アミノ
フェノキシ)フェニル)ヘキサフルオロプロパン5.1
8g(0.01mol)と2,2’−ビス(トリフルオ
ロメチル)−4,4’−ジアミノビフェニル9.60g
(0.03mol)を乾燥したN−メチル−2−ピロリ
ドン(以下NMPと略す)200gに溶解する。乾燥窒
素下、10℃に溶液を冷却してビフェニルテトラカルボ
ン酸二無水物2.94(0.01mol)とヘキサフル
オロイソプロピリデン−2,2−ビス(フタル酸無水
物)13.32g(0.03mol)を投入した。投入
から5時間後に室温まで戻し、室温で2時間攪拌し、ポ
リイミド前駆体であるポリアミド酸の溶液を得た。この
ポリアミド酸溶液にピリジン50gを加えた後、無水酢
酸0.05molを滴下し、系の温度を70℃に保っ
て、7時間イミド化反応を行った。この溶液を20倍量
の水中に滴下して沈殿を回収し、60℃で72時間真空
乾燥して、耐熱性樹脂であるポリイミド樹脂の固形物を
得た。ポリイミド樹脂の分子量は、数平均分子量26,
000、重量平均分子量54,000であった。
Example 1 (1) Synthesis of Polyimide Resin In a separable flask equipped with a stirrer, a nitrogen inlet tube, and a material inlet, 2,2′-bis (4- (4,4′-aminophenoxy) was used. ) Phenyl) hexafluoropropane 5.1
8 g (0.01 mol) and 9.60 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl
(0.03 mol) is dissolved in 200 g of dried N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). The solution was cooled to 10 ° C under dry nitrogen, and biphenyltetracarboxylic dianhydride 2.94 (0.01 mol) and hexafluoroisopropylidene-2,2-bis (phthalic anhydride) 13.32 g (0. 03 mol). Five hours after the introduction, the temperature was returned to room temperature, and the mixture was stirred at room temperature for 2 hours to obtain a solution of polyamic acid as a polyimide precursor. After 50 g of pyridine was added to this polyamic acid solution, 0.05 mol of acetic anhydride was added dropwise, and an imidization reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. This solution was dropped into 20 times the volume of water to collect a precipitate, which was then vacuum-dried at 60 ° C. for 72 hours to obtain a solid polyimide resin as a heat-resistant resin. The molecular weight of the polyimide resin is number average molecular weight 26,
000, weight average molecular weight 54,000.

【0020】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリイミド樹脂5.0gをNMP1
5.0gに溶解し、離形処理したガラス基板上に塗布し
た後、オーブン中120℃で30分保持後、230℃で
90分保持して成膜し、基板から膜を剥がした後、さら
に400℃で90分加熱し、ポリイミド樹脂のフィルム
とした。このポリイミド樹脂のガラス転移温度を示差走
査熱量計により測定したところ、335℃であった。
(2) Measurement of Glass Transition Temperature of Heat Resistant Resin 5.0 g of the polyimide resin synthesized above was added to NMP1
After dissolving in 5.0 g and applying on a release-treated glass substrate, the film was held in an oven at 120 ° C. for 30 minutes, and then held at 230 ° C. for 90 minutes to form a film. It was heated at 400 ° C. for 90 minutes to obtain a polyimide resin film. The glass transition temperature of the polyimide resin measured by a differential scanning calorimeter was 335 ° C.

【0021】(3)重合性の官能基を有する成分を重合
した物の熱分解温度の測定 平均分子量600のポリエチレングリコールジメタクリ
レート10gに、0.02gのアゾビスイソブチロニト
リルを加え、窒素雰囲気下80℃で重合を行った。得ら
れた重合物の窒素雰囲気下での熱分解温度を熱重量分析
により測定したところ、310℃であった。
(3) Measurement of thermal decomposition temperature of a product obtained by polymerizing a component having a polymerizable functional group To 10 g of polyethylene glycol dimethacrylate having an average molecular weight of 600, 0.02 g of azobisisobutyronitrile was added, and a nitrogen atmosphere was added. Polymerization was carried out at 80 ° C. The pyrolysis temperature of the obtained polymer in a nitrogen atmosphere was measured by thermogravimetric analysis and found to be 310 ° C.

【0022】(4)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリイミド樹脂10.0gをNMP
50.0gに溶解した後、平均分子量600のポリエチ
レングリコールジメタクリレート5.0gを加えて攪拌
し、絶縁材用樹脂組成物を得た。厚さ200nmのタン
タルを成膜したシリコンウエハ上に、この絶縁材用樹脂
組成物をスピンコートした後、窒素雰囲気のオーブン中
で加熱硬化した。加熱硬化の際は、120℃で30分保
持後230℃で120分間保持した後、315℃で18
0分保持し、335℃まで温度を上げた後15分間で2
00℃まで温度を下げた後、さらに60分で室温まで温
度を戻した。このようにして厚さ0.8μmの絶縁材の
被膜を得た。この絶縁材の皮膜上に面積0.1cm2
アルミの電極を蒸着により形成し、基板のタンタルとの
間のキャパシタンスをLCRメーターにより測定した。
膜厚、電極面積、キャパシタンスから絶縁材の誘電率を
算出したところ、2.4であった。絶縁材皮膜の断面を
TEMにより観察したところ、得られた空隙は平均孔径
9nmで非連続であった。
(4) Preparation of Resin Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyimide resin synthesized as described above was NMP
After dissolving in 50.0 g, 5.0 g of polyethylene glycol dimethacrylate having an average molecular weight of 600 was added and stirred to obtain a resin composition for an insulating material. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. In the case of heat curing, the temperature is kept at 120 ° C. for 30 minutes, then at 230 ° C. for 120 minutes,
Hold for 0 minutes, raise the temperature to 335 ° C,
After the temperature was lowered to 00 ° C., the temperature was returned to room temperature in 60 minutes. Thus, a 0.8 μm-thick insulating film was obtained. An aluminum electrode having an area of 0.1 cm 2 was formed on the insulating film by vapor deposition, and the capacitance between the electrode and tantalum on the substrate was measured by an LCR meter.
The dielectric constant of the insulating material calculated from the film thickness, the electrode area, and the capacitance was 2.4. Observation of the cross section of the insulating material film with a TEM revealed that the obtained voids were discontinuous with an average pore diameter of 9 nm.

【0023】「実施例2」 (1)ポリイミド前駆体の合成 実施例1のポリイミド樹脂の合成においてポリイミド前
駆体の合成に用いた2,2’−ビス(4−(4,4’−
アミノフェノキシ)フェニル)ヘキサフルオロプロパン
5.18g(0.01mol)と2,2’−ビス(トリ
フルオロメチル)−4,4’−ジアミノビフェニル9.
60g(0.03mol)を4,4’−ジアミノジフェ
ニルエーテル8.01g(0.04mol)に、ビフェ
ニルテトラカルボン酸二無水物2.94(0.01mo
l)とヘキサフルオロイソプロピリデン−2,2−ビス
(フタル酸無水物)13.32g(0.03mol)を
ピロメリット酸二無水物8.72(0.04mol)に
換えた以外は、実施例1と同様にしてポリイミド前駆体
であるポリアミド酸の溶液を得た。この溶液を20倍量
の水中に滴下して沈殿を回収し、25℃で72時間真空
乾燥して耐熱性樹脂であるポリイミドの前駆体であるポ
リアミド酸の固形物を得た。得られたポリアミド酸の数
平均分子量は27,000,重量平均分子量は55,0
00であった。
Example 2 (1) Synthesis of Polyimide Precursor In the synthesis of the polyimide resin of Example 1, the 2,2′-bis (4- (4,4′-
5.18 g (0.01 mol) of aminophenoxy) phenyl) hexafluoropropane and 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl
60 g (0.03 mol) of 4,4′-diaminodiphenyl ether was added to 8.01 g (0.04 mol) of biphenyltetracarboxylic dianhydride 2.94 (0.01 mol).
l) and 13.32 g (0.03 mol) of hexafluoroisopropylidene-2,2-bis (phthalic anhydride) were replaced with 8.72 (0.04 mol) of pyromellitic dianhydride. In the same manner as in 1, a solution of polyamic acid as a polyimide precursor was obtained. This solution was dropped into 20 times the volume of water to collect a precipitate, which was then vacuum-dried at 25 ° C. for 72 hours to obtain a solid of polyamic acid, which is a precursor of polyimide as a heat-resistant resin. The number average molecular weight of the obtained polyamic acid is 27,000, and the weight average molecular weight is 55,0.
00.

【0024】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリアミド酸5.0gをNMP2
0.0gに溶解し、離形処理したガラス基板上に塗布し
た後、オーブン中120℃で30分保持後、250℃で
90分保持して成膜し、基板から膜を剥がした後、さら
に450℃で90分加熱し、耐熱性樹脂であるポリイミ
ド樹脂のフィルムとした。このポリイミド樹脂のガラス
転移温度を示差走査熱量計により測定したところ、41
9℃であった。
(2) Measurement of Glass Transition Temperature of Heat-Resistant Resin 5.0 g of the polyamic acid synthesized as described above was NMP2
After dissolving in 0.0 g and applying on a release-treated glass substrate, the film was held in an oven at 120 ° C. for 30 minutes, then held at 250 ° C. for 90 minutes to form a film, and the film was peeled off from the substrate. Heating was performed at 450 ° C. for 90 minutes to obtain a polyimide resin film as a heat-resistant resin. When the glass transition temperature of this polyimide resin was measured by a differential scanning calorimeter, it was 41
9 ° C.

【0025】(3)重合性の官能基を有する成分を重合
した物の熱分解温度の測定 平均分子量1100のポリプロピレングリコールジメタ
クリレート10gに、0.02gのアゾビスイソブチロ
ニトリルを加え、窒素雰囲気下80℃で重合を行った。
得られた重合物の窒素雰囲気下での熱分解温度を熱重量
分析により測定したところ、360℃であった。
(3) Measurement of the thermal decomposition temperature of a product obtained by polymerizing a component having a polymerizable functional group To 10 g of polypropylene glycol dimethacrylate having an average molecular weight of 1100, 0.02 g of azobisisobutyronitrile was added, and a nitrogen atmosphere was added. Polymerization was carried out at 80 ° C.
The pyrolysis temperature of the obtained polymer in a nitrogen atmosphere was measured by thermogravimetric analysis and found to be 360 ° C.

【0026】(4)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリアミド酸10.0gをNMP5
0.0gに溶解した後、平均分子量1100のポリプロ
ピレングリコールジメタクリレート8.0gを加えて攪
拌し、絶縁材用樹脂組成物を得た。厚さ200nmのタ
ンタルを成膜したシリコンウエハ上に、この絶縁材用樹
脂組成物をスピンコートした後、窒素雰囲気のオーブン
中で加熱硬化した。加熱硬化の際は、120℃で30分
保持後260℃で120分間保持した後、400℃で9
0分保持し、20分間で200℃まで温度を下げた後、
さらに40分で室温まで温度を戻した。このようにして
厚さ0.7μmの絶縁材の被膜を得た。以下実施例1と
同様にして、この耐熱性樹脂の誘電率を測定したところ
2.4であった。得られた空隙は平均孔径8nmで非連
続相であった。
(4) Preparation of Resin Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyamic acid synthesized as described above was added to NMP5
After dissolving in 0.0 g, 8.0 g of polypropylene glycol dimethacrylate having an average molecular weight of 1100 was added and stirred to obtain a resin composition for an insulating material. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. At the time of heat curing, after holding at 120 ° C. for 30 minutes, holding at 260 ° C. for 120 minutes,
Hold for 0 minutes, lower the temperature to 200 ° C in 20 minutes,
The temperature was returned to room temperature in another 40 minutes. Thus, a 0.7 μm thick insulating film was obtained. The dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1 and found to be 2.4. The resulting void was a discontinuous phase with an average pore size of 8 nm.

【0027】「実施例3」 (1)ポリベンゾオキサゾール樹脂の合成 4,4’−ヘキサフルオロイソプロピリデンジフェニル
−1,1’−ジカルボン酸25g、塩化チオニル45m
l及び乾燥ジメチルホルムアミド0.5mlを反応容器
に入れ、60℃で2時間反応させた。反応終了後、過剰
の塩化チオニルを加熱及び減圧により留去した。析出物
をヘキサンを用いて再結晶を行い、4,4’−ヘキサフ
ルオロイソプロピリデンジフェニル−1,1’ジカルボ
ン酸クロリドを得た。攪拌装置、窒素導入管、滴下漏斗
を付けたセパラブルフラスコ中、2,2’−ビス(3ー
アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロ
パン7.32g(0.02mol)を乾燥したジメチル
アセトアミド100gに溶解し、ピリジン3.96g
(0.05mol)を添加後、乾燥窒素導入下、−15
℃でジメチルアセトアミド50gに、上記により合成し
た4,4’−ヘキサフルオロイソプロピリデンジフェニ
ル−1,1’−ジカルボン酸クロリド8.58g(0.
02mol)を溶解したものを30分掛けて滴下した。
滴下終了後、室温まで戻し、室温で5時間攪拌した。そ
の後、反応液を水1000ml中に滴下し、沈殿物を集
め、40℃で48時間真空乾燥することによりポリベン
ゾオキサゾール前駆体であるポリヒドロキシアミドの固
形物を得た。このポリヒドロキシアミドをNMP200
gに溶解した溶液にピリジン50gを加えた後、無水酢
酸0.03molを滴下し、系の温度を70℃に保っ
て、7時間オキサゾール化反応を行った。この溶液を2
0倍量の水中に滴下して沈殿を回収し、60℃で72時
間真空乾燥して耐熱性樹脂であるポリベンゾオキサゾー
ル樹脂の固形物を得た。得られたポリベンゾオキサゾー
ル樹脂の数平均分子量は20,000、重量平均分子量
は40,000であった。
Example 3 (1) Synthesis of polybenzoxazole resin 25 g of 4,4'-hexafluoroisopropylidenediphenyl-1,1'-dicarboxylic acid, 45 m of thionyl chloride
l and 0.5 ml of dry dimethylformamide were placed in a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The precipitate was recrystallized using hexane to obtain 4,4'-hexafluoroisopropylidenediphenyl-1,1'dicarboxylic acid chloride. In a separable flask equipped with a stirrer, a nitrogen introducing tube, and a dropping funnel, 7.32 g (0.02 mol) of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added to 100 g of dried dimethylacetamide. Dissolved and 3.96 g of pyridine
(0.05 mol), and then -15 under dry nitrogen introduction.
8.55 g of 4,4'-hexafluoroisopropylidenediphenyl-1,1'-dicarboxylic acid chloride synthesized above was added to 50 g of dimethylacetamide at 50 ° C (0.5 g).
02mol) was added dropwise over 30 minutes.
After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was dropped into 1000 ml of water, and the precipitate was collected and vacuum-dried at 40 ° C. for 48 hours to obtain a solid substance of polyhydroxyamide, a polybenzoxazole precursor. This polyhydroxyamide is converted to NMP200
After adding 50 g of pyridine to the solution dissolved in g, 0.03 mol of acetic anhydride was added dropwise, and the oxazolation reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. This solution is
The precipitate was collected by dropping it in 0 times the volume of water, and vacuum-dried at 60 ° C. for 72 hours to obtain a solid substance of a polybenzoxazole resin as a heat-resistant resin. The number average molecular weight of the obtained polybenzoxazole resin was 20,000, and the weight average molecular weight was 40,000.

【0028】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリベンゾオキサゾール樹脂5.0
gをNMP8.0gとテトラヒドロフラン12.0gの
混合溶媒に溶解し、離形処理したガラス基板上に塗布し
た後、オーブン中120℃で30分保持後240℃で9
0分保持して成膜し、基板から膜を剥がした後さらに4
00℃で90分加熱し、耐熱性樹脂であるポリベンゾオ
キサゾール樹脂のフィルムとした。このポリベンゾオキ
サゾール樹脂のガラス転移温度を示差走査熱量計により
測定したところ、362℃であった。
(2) Measurement of glass transition temperature of heat-resistant resin Polybenzoxazole resin 5.0 synthesized as described above
g was dissolved in a mixed solvent of 8.0 g of NMP and 12.0 g of tetrahydrofuran, applied on a glass substrate subjected to mold release treatment, kept in an oven at 120 ° C. for 30 minutes, and then heated at 240 ° C. for 9 minutes.
Hold for 0 minutes to form a film, and after removing the film from the substrate,
Heating was performed at 00 ° C. for 90 minutes to obtain a film of a polybenzoxazole resin as a heat-resistant resin. The glass transition temperature of this polybenzoxazole resin measured by a differential scanning calorimeter was 362 ° C.

【0029】(3)重合性の官能基を有する成分を重合
した物の熱分解温度の測定 エチレングリコールジメタクリレート10gに、0.0
5gのアゾビスイソブチロニトリルを加え、窒素雰囲気
下80℃で重合を行った。得られた重合物の窒素雰囲気
下での熱分解温度を熱重量分析により測定したところ、
344℃であった。
(3) Measurement of thermal decomposition temperature of a product obtained by polymerizing a component having a polymerizable functional group: 0.010 g of ethylene glycol dimethacrylate was added to 10 g of ethylene glycol dimethacrylate.
5 g of azobisisobutyronitrile was added, and polymerization was carried out at 80 ° C. under a nitrogen atmosphere. When the pyrolysis temperature of the obtained polymer under a nitrogen atmosphere was measured by thermogravimetric analysis,
344 ° C.

【0030】(4)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリベンゾオキサゾール樹脂5.0
gをNMP8.0gとテトラヒドロフラン12.0gの
混合溶媒に溶解した後、エチレングリコールジメタクリ
レート4.0を添加して攪拌し、絶縁材用樹脂組成物を
得た。厚さ200nmのタンタルを成膜したシリコンウ
エハ上に、この絶縁材用樹脂組成物をスピンコートした
後、窒素雰囲気のオーブン中で加熱硬化した。加熱硬化
の際は、120℃で30分保持後260℃で120分間
保持した後、350℃で90分保持し、15分間で20
0℃まで温度を下げた後、さらに40分で室温まで温度
を戻した。このようにして厚さ0.7μmの絶縁材の被
膜を得た。以下実施例1と同様にして、この耐熱性樹脂
の誘電率を測定したところ2.1であった。得られた空
隙は平均孔径6nmで非連続相であった。
(4) Preparation of Resin Composition for Insulating Material and Production of Insulating Material Polybenzoxazole resin 5.0 synthesized as described above.
g was dissolved in a mixed solvent of 8.0 g of NMP and 12.0 g of tetrahydrofuran, and then 4.0 g of ethylene glycol dimethacrylate was added and stirred to obtain a resin composition for an insulating material. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. At the time of heat curing, after holding at 120 ° C. for 30 minutes, holding at 260 ° C. for 120 minutes, holding at 350 ° C. for 90 minutes, and holding at 20 minutes for 15 minutes
After lowering the temperature to 0 ° C., the temperature was returned to room temperature in 40 minutes. Thus, a 0.7 μm thick insulating film was obtained. Thereafter, the dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1, and it was 2.1. The obtained void was a discontinuous phase with an average pore diameter of 6 nm.

【0031】「実施例4」 (1)ポリヒドロキシアミドの合成 2,2’−ビス(トリフルオロメチル)ビフェニル−
4,4’−ジカルボン酸22g、塩化チオニル45ml
及び乾燥ジメチルホルムアミド0.5mlを反応容器に
入れ、60℃で2時間反応させた。反応終了後、過剰の
塩化チオニルを加熱及び減圧により留去した。析出物を
ヘキサンを用いて再結晶を行い、2,2’−ビス(トリ
フルオロメチル)ビフェニル−4,4’−ジカルボン酸
クロリドを得た。攪拌装置、窒素導入管、滴下漏斗を付
けたセパラブルフラスコ中、2,2’−ビス(3ーアミ
ノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン
7.32g(0.02mol)を乾燥したジメチルアセ
トアミド100gに溶解し、ピリジン3.96g(0.
05mol)を添加後、乾燥窒素導入下、−15℃でジ
メチルアセトアミド50gに、上記により合成した2,
2’−ビス(トリフルオロメチル)ビフェニル−4,
4’−ジカルボン酸クロリド8.30(0.02mo
l)を溶解したものを30分掛けて滴下した。滴下終了
後、室温まで戻し、室温で5時間攪拌した。その後、反
応液を水1000ml中に滴下し、沈殿物を集め、40
℃で48時間真空乾燥することにより耐熱性樹脂である
ポリベンゾオキサゾールの前駆体であるポリヒドロキシ
アミドの固形物を得た。得られたポリヒドロキシアミド
の数平均分子量は20,000、重量平均分子量は4
0,000であった。
Example 4 (1) Synthesis of polyhydroxyamide 2,2'-bis (trifluoromethyl) biphenyl-
4,4'-dicarboxylic acid 22g, thionyl chloride 45ml
And 0.5 ml of dry dimethylformamide was put into a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The precipitate was recrystallized using hexane to obtain 2,2′-bis (trifluoromethyl) biphenyl-4,4′-dicarboxylic acid chloride. In a separable flask equipped with a stirrer, a nitrogen introducing tube, and a dropping funnel, 7.32 g (0.02 mol) of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added to 100 g of dried dimethylacetamide. After dissolving, 3.96 g of pyridine (0.
After the addition of 2,2 synthesized above to 50 g of dimethylacetamide at -15 ° C under dry nitrogen introduction.
2'-bis (trifluoromethyl) biphenyl-4,
4'-dicarboxylic acid chloride 8.30 (0.02mo
A solution of l) was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was dropped into 1000 ml of water, and the precipitate was collected.
By vacuum drying at 48 ° C. for 48 hours, a solid substance of polyhydroxyamide, which is a precursor of polybenzoxazole, which is a heat-resistant resin, was obtained. The obtained polyhydroxyamide has a number average molecular weight of 20,000 and a weight average molecular weight of 4
It was 0000.

【0032】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリヒドロキシアミド5.0gをN
MP20.0gに溶解し、離形処理したガラス基板上に
塗布した後、オーブン中120℃で30分保持後、24
0℃で90分保持して成膜し、基板から膜を剥がした後
さらに400℃で90分加熱し、耐熱性樹脂であるポリ
ベンゾオキサゾールのフィルムとした。このポリベンゾ
オキサゾールのガラス転移温度を示差走査熱量計により
測定したところ、410℃であった。
(2) Measurement of Glass Transition Temperature of Heat Resistant Resin 5.0 g of polyhydroxyamide synthesized as described above was
After dissolving in 20.0 g of MP and applying it on a glass substrate subjected to mold release treatment, it was kept in an oven at 120 ° C. for 30 minutes, and then 24
The film was formed by holding the film at 0 ° C. for 90 minutes, and after peeling the film from the substrate, the film was further heated at 400 ° C. for 90 minutes to obtain a polybenzoxazole film as a heat-resistant resin. The glass transition temperature of this polybenzoxazole was measured by a differential scanning calorimeter, and was 410 ° C.

【0033】(3)重合性の官能基を有する成分を重合
した物の熱分解温度の測定 グリセロールジメタクリレート10gに、0.01gの
アゾビスイソブチロニトリルを加え、窒素雰囲気下80
℃で重合を行った。得られた重合物の窒素雰囲気下での
熱分解温度を熱重量分析により測定したところ、382
℃であった。
(3) Measurement of thermal decomposition temperature of a product obtained by polymerizing a component having a polymerizable functional group To 10 g of glycerol dimethacrylate, 0.01 g of azobisisobutyronitrile was added.
Polymerization was carried out at ° C. The pyrolysis temperature of the obtained polymer under a nitrogen atmosphere was measured by thermogravimetric analysis.
° C.

【0034】(4)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリヒドロキシアミド10.0gを
NMP50.0gに溶解した後、グリセロールジメタク
リレート8.0gを加えて攪拌し、絶縁材用樹脂組成物
を得た。厚さ200nmのタンタルを成膜したシリコン
ウエハ上に、この絶縁材用樹脂組成物をスピンコートし
た後、窒素雰囲気のオーブン中で加熱硬化した。加熱硬
化の際は、120℃で30分保持後260℃で120分
間保持した後、400℃で90分保持し、20分間で2
00℃まで温度を下げた後、さらに40分で室温まで温
度を戻した。このようにして厚さ0.7μmの絶縁材の
被膜を得た。以下実施例1と同様にして、この耐熱性樹
脂の誘電率を測定したところ2.1であった。得られた
空隙は平均孔径7nmで非連続相であった。。
(4) Preparation of Resin Composition for Insulating Material and Production of Insulating Material After dissolving 10.0 g of the polyhydroxyamide synthesized as described above in 50.0 g of NMP, 8.0 g of glycerol dimethacrylate was added, followed by stirring. A resin composition for an insulating material was obtained. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. In the case of heat curing, after holding at 120 ° C. for 30 minutes, holding at 260 ° C. for 120 minutes, holding at 400 ° C. for 90 minutes,
After the temperature was lowered to 00 ° C., the temperature was returned to room temperature in 40 minutes. Thus, a 0.7 μm thick insulating film was obtained. Thereafter, the dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1, and it was 2.1. The obtained void was a discontinuous phase with an average pore diameter of 7 nm. .

【0035】「比較例1」実施例4の絶縁材用樹脂組成
物の調整において用いたグリセロールジメタクリレート
8.0gを添加しない以外は、全て実施例4と同様に絶
縁材用樹脂組成物の調整と絶縁材の製造を行った。以下
実施例1と同様にして、得られた耐熱性樹脂の誘電率を
測定したところ2.6であった。また空隙は観察されな
かった。
Comparative Example 1 The preparation of the resin composition for insulating material was carried out in the same manner as in Example 4 except that 8.0 g of glycerol dimethacrylate used in preparing the resin composition for insulating material of Example 4 was not added. And the production of insulating materials. Thereafter, in the same manner as in Example 1, the dielectric constant of the obtained heat-resistant resin was 2.6. No void was observed.

【0036】「比較例2」実施例4の絶縁材用樹脂組成
物の調整において用いたグリセロールジメタクリレート
8.0gのかわりに分子量1000のポリプロピレング
リコール8gを添加した以外は、全て実施例4と同様に
絶縁材用樹脂組成物の調整と絶縁材の製造を行った。以
下実施例1と同様にして、得られた耐熱性樹脂の誘電率
を測定したところ2.6であった。また空隙は観察され
なかった。
Comparative Example 2 The same procedure as in Example 4 was carried out except that 8 g of polypropylene glycol having a molecular weight of 1000 was added instead of 8.0 g of glycerol dimethacrylate used in the preparation of the resin composition for insulating material of Example 4. In addition, preparation of a resin composition for an insulating material and production of an insulating material were performed. Thereafter, in the same manner as in Example 1, the dielectric constant of the obtained heat-resistant resin was 2.6. No void was observed.

【0037】「比較例3」実施例4の絶縁材用樹脂組成
物の調整において用いた耐熱性樹脂であるポリベンゾオ
キサゾールの前駆体であるポリヒドロキシアミドのかわ
りに、実施例3のポリベンゾオキサゾールの合成で得た
ガラス転移温度362℃のポリベンゾオキサゾールを用
いた以外は、全て実施例4と絶縁材用樹脂組成物の調整
と絶縁材の製造を同様に行った。以下実施例1と同様に
して、得られた耐熱性樹脂の誘電率を測定したところ
2.6であった。また空隙は観察されなかった。
Comparative Example 3 The polybenzoxazole of Example 3 was used instead of polyhydroxyamide, which is a precursor of polybenzoxazole, which is a heat-resistant resin used in the preparation of the resin composition for an insulating material of Example 4. Except for using polybenzoxazole having a glass transition temperature of 362 ° C. obtained by the synthesis of Example 4, adjustment of the resin composition for insulating material and production of insulating material were performed in the same manner as in Example 4. Thereafter, in the same manner as in Example 1, the dielectric constant of the obtained heat-resistant resin was 2.6. No void was observed.

【0038】実施例1〜3においては、誘電率が2.1
〜2.4と非常に低い耐熱性樹脂を得ることが出来た。
In Examples 1 to 3, the dielectric constant was 2.1.
A very low heat-resistant resin of ~ 2.4 was obtained.

【0039】比較例1では、重合性の官能基を有する成
分(A)を成分中に有していないために、空隙が得られ
ず、誘電率を低減できなかった。
In Comparative Example 1, no void was obtained because the component (A) having a polymerizable functional group was not contained in the component, and the dielectric constant could not be reduced.

【0040】比較例2では、添加したポリプロピレング
リコールが重合性の官能基を有していないために、空隙
が得られず、誘電率を低減できなかった。
In Comparative Example 2, no void was obtained and the dielectric constant could not be reduced because the added polypropylene glycol did not have a polymerizable functional group.

【0041】比較例3では、耐熱性樹脂のガラス転移温
度が成分(A)の重合物の熱分解温度より低いために、
空隙が得られず、誘電率を低減できなかった。
In Comparative Example 3, since the glass transition temperature of the heat-resistant resin was lower than the thermal decomposition temperature of the polymer of the component (A),
No void was obtained, and the dielectric constant could not be reduced.

【0042】[0042]

【発明の効果】本発明の絶縁材用樹脂組成物及びこれを
用いた絶縁材は、電気特性および耐熱性に優れたもので
あり、これらの特性が要求される様々な分野、例えば半
導体用の層間絶縁膜、多層回路の層間絶縁膜などとして
有用な合成樹脂である。
The resin composition for insulating material of the present invention and the insulating material using the same are excellent in electrical properties and heat resistance, and are used in various fields where these properties are required, for example, for semiconductors. It is a synthetic resin useful as an interlayer insulating film, an interlayer insulating film of a multilayer circuit, and the like.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J043 PA02 PA19 PC015 PC016 PC145 PC146 QB31 RA06 RA35 RA52 SA06 SA43 SA54 SB03 TA22 TA47 TA67 TB03 UA131 UA132 UA561 UA562 UA641 UA642 UB012 UB022 UB061 UB121 VA021 VA022 XA13 XB20 ZA43 ZA46 ZB47 ZB48 4M109 AA02 CA05 CA07 CA10 CA11 CA12 EA03 EA08 EA11 EB18 EC05 EC07 ED03 EE04 EE06 ──────────────────────────────────────────────────続 き Continued on front page F-term (reference) 4J043 PA02 PA19 PC015 PC016 PC145 PC146 QB31 RA06 RA35 RA52 SA06 SA43 SA54 SB03 TA22 TA47 TA67 TB03 UA131 UA132 UA561 UA562 UA641 UA642 UB012 UB022 UB061 UB121 VA021 VA022 XA13 ZAB XB13B46 XA13 XB13B48 XA13 XB13B46 AA02 CA05 CA07 CA10 CA11 CA12 EA03 EA08 EA11 EB18 EC05 EC07 ED03 EE04 EE06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重合性の官能基を有する成分(A)と、
樹脂のガラス転移温度が成分(A)の重合物の熱分解温
度より高い耐熱性樹脂またはその前駆体(B)とを必須
成分とする絶縁材用樹脂組成物。
1. A component (A) having a polymerizable functional group,
A resin composition for an insulating material comprising, as an essential component, a heat-resistant resin having a glass transition temperature of a resin higher than a thermal decomposition temperature of a polymer of the component (A) or a precursor thereof (B).
【請求項2】 耐熱性樹脂またはその前駆体(B)がポ
リイミド樹脂またはポリイミド前駆体である請求項1記
載の絶縁材用樹脂組成物。
2. The resin composition for an insulating material according to claim 1, wherein the heat-resistant resin or its precursor (B) is a polyimide resin or a polyimide precursor.
【請求項3】 耐熱性樹脂またはその前駆体(B)がポ
リベンゾオキサゾール樹脂またはポリベンゾオキサゾー
ル前駆体である請求項1記載の絶縁材用樹脂組成物。
3. The resin composition for an insulating material according to claim 1, wherein the heat-resistant resin or its precursor (B) is a polybenzoxazole resin or a polybenzoxazole precursor.
【請求項4】 請求項1〜3のいずれか1項に記載の絶
縁材用樹脂組成物を用いて、重合性の官能基を有する成
分(A)を重合させた後、成分(A)の重合物の熱分解
温度より高い温度、および耐熱性樹脂もしくはその前駆
体を閉環させた樹脂のガラス転移温度以下で、熱処理す
る工程を有する方法で製造されたことを特徴とする絶縁
材。
4. After the component (A) having a polymerizable functional group is polymerized using the resin composition for an insulating material according to claim 1, the component (A) is polymerized. An insulating material manufactured by a method having a step of performing a heat treatment at a temperature higher than a thermal decomposition temperature of a polymer and at a temperature equal to or lower than a glass transition temperature of a heat-resistant resin or a resin obtained by ring-closing a precursor thereof.
JP11189107A 1999-07-02 1999-07-02 Resin composition for electrical insulation material and electrical insulation material using the same Pending JP2001011180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11189107A JP2001011180A (en) 1999-07-02 1999-07-02 Resin composition for electrical insulation material and electrical insulation material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11189107A JP2001011180A (en) 1999-07-02 1999-07-02 Resin composition for electrical insulation material and electrical insulation material using the same

Publications (1)

Publication Number Publication Date
JP2001011180A true JP2001011180A (en) 2001-01-16

Family

ID=16235495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11189107A Pending JP2001011180A (en) 1999-07-02 1999-07-02 Resin composition for electrical insulation material and electrical insulation material using the same

Country Status (1)

Country Link
JP (1) JP2001011180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140007584A (en) * 2012-07-09 2014-01-20 엘지디스플레이 주식회사 Organic insulating layer composition and display device comprising thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140007584A (en) * 2012-07-09 2014-01-20 엘지디스플레이 주식회사 Organic insulating layer composition and display device comprising thereof
KR101957490B1 (en) * 2012-07-09 2019-03-12 엘지디스플레이 주식회사 Organic insulating layer composition and display device comprising thereof

Similar Documents

Publication Publication Date Title
CN107108926B (en) Method for producing polyimide film using porous particles and low dielectric constant polyimide film
TW572947B (en) Method for producing porous polyimide resin and the porous polyimide resin
JP2008101186A (en) Amino acid ester oligomer, precursor composition for polyimide resin containing it, and use
JP2536620B2 (en) Method for producing polyimide resin
CN110818951B (en) Modified graphene oxide, slurry, composite film, and preparation method and application thereof
JP2001098160A (en) Resin composition for insulating material and insulating material using the same
JP2624724B2 (en) Polyimide siloxane composition
JP2002003724A (en) Insulating material and method of producing the same
US6410677B1 (en) Resin composition for insulating material, and insulating material produced from said resin composition
JP3681106B2 (en) Organic insulating film material and organic insulating film
JP2001011181A (en) Resin composition for electrical insulation material and electrical insulation material using the same
JP2001189109A (en) Resin composition for insulator, and insulator using the same
JP2001011180A (en) Resin composition for electrical insulation material and electrical insulation material using the same
JPH09227697A (en) Preparation of heat-resistant polyimide film through gel
JP4483008B2 (en) Resin composition for insulating material and insulating material using the same
JPWO2004031270A1 (en) Polyimide film and method for producing the same
JP2001164125A (en) Resin composition for insulation material and insulation material using the same
JP2001283638A (en) Resin composition for insulating material and insulating material using the same
CN110358134A (en) A kind of low dielectric coefficient polyimide film and preparation method thereof
JP2002008446A (en) Resin composite for insulating material and insulating material using it
JP2001226599A (en) Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same
JP2001217234A (en) Insulation material and its manufacturing method
JP4731648B2 (en) Insulating paint and manufacturing method thereof
JP2000265057A (en) Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin
JPH03146524A (en) Preparation of polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310