JP2001226599A - Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same - Google Patents

Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same

Info

Publication number
JP2001226599A
JP2001226599A JP2000041772A JP2000041772A JP2001226599A JP 2001226599 A JP2001226599 A JP 2001226599A JP 2000041772 A JP2000041772 A JP 2000041772A JP 2000041772 A JP2000041772 A JP 2000041772A JP 2001226599 A JP2001226599 A JP 2001226599A
Authority
JP
Japan
Prior art keywords
heat
resin
multilayer wiring
resin composition
resistant resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000041772A
Other languages
Japanese (ja)
Inventor
Akifumi Katsumura
明文 勝村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000041772A priority Critical patent/JP2001226599A/en
Publication of JP2001226599A publication Critical patent/JP2001226599A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composition capable of utilizing a conventional multi-layered wiring process and a unit used therefor in forming a multi-layered wiring having the least static capacity between the wires. SOLUTION: This resin composition for multi-layered wiring with void contains, as essential components, a heat vaporizable component (A) and a heat resistant resin or its precursor having a glass transition temperature higher than the heat vaporization temperature of a polymer of the component (A), and a multi-layered wiring with void is provided by using the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空洞多層配線形成
用樹脂組成物に関するものであり、更に詳しくは、電気
・電子機器用、半導体装置における空洞多層配線を、高
精細および高い空洞率で形成するのに好適な樹脂組成
物、及びこれを用いた空洞多層配線に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composition for forming a hollow multilayer wiring, and more particularly, to a method for forming a hollow multilayer wiring in a semiconductor device for electric / electronic equipment with high definition and a high void ratio. And a hollow multilayer wiring using the same.

【0002】[0002]

【従来の技術】電気電子機器用、半導体装置用材料に求
められている特性のなかで、絶縁材料の電気特性は最も
重要な特性である。特に近年、回路の微細化と信号の高
速化に伴い、誘電率の低い絶縁材料が要求されている。
例えば、従来から用いられている二酸化硅素は、比誘電
率が3.9と高く、ポリイミド樹脂に代表される耐熱性
樹脂によって、比誘電率3.0以下の材料が開発されつ
つある。
2. Description of the Related Art Among the characteristics required for materials for electric and electronic devices and semiconductor devices, the electric characteristics of insulating materials are the most important characteristics. In particular, in recent years, with miniaturization of circuits and speeding up of signals, an insulating material having a low dielectric constant has been required.
For example, conventionally used silicon dioxide has a high relative dielectric constant of 3.9, and a material having a relative dielectric constant of 3.0 or less is being developed by using a heat-resistant resin represented by a polyimide resin.

【0003】また、絶縁材料を多孔質化することによっ
て、比誘電率を2.0以下にする試みもなされている。
誘電率を最も低くするには、絶縁材料を真空に置き換え
ることであり、この場合、比誘電率が1.0になる。現
実には、絶縁材料部分を空洞化することによって、空気
等の気体が存在するが、ほぼ同等の比誘電率を得る空洞
化多層配線が提案されている。
Attempts have also been made to reduce the relative dielectric constant to 2.0 or less by making the insulating material porous.
The lowest dielectric constant is achieved by replacing the insulating material with a vacuum. In this case, the relative dielectric constant becomes 1.0. In reality, a gas such as air is present by hollowing out an insulating material portion, but a hollowed-out multilayer wiring that obtains substantially the same relative dielectric constant has been proposed.

【0004】空洞化多層配線の形成方法としては、配線
に導体の柱を立てて、その上に上層の配線を渡す方法も
考えられているが、従来からの多層配線プロセスおよび
装置を利用しつつ、絶縁材料を途中まで用いて、その後
の工程で、配線だけを残して除去する方法が技術開発的
には容易である。
As a method of forming the hollow multilayer wiring, a method of setting up a conductor pillar on the wiring and passing an upper wiring thereon has been considered, but using a conventional multilayer wiring process and apparatus. In addition, it is easy in terms of technical development to use an insulating material halfway and remove it in a subsequent step while leaving only the wiring.

【0005】しかしながら、従来の多層配線形成プロセ
スに使われる絶縁材料は、プロセス中に受ける熱や、化
学薬品、プラズマ等に安定であることを要求されている
ため、多層配線形成後に除去することは難しかった。
However, since the insulating material used in the conventional multilayer wiring forming process is required to be stable to heat, chemicals, plasma, and the like received during the process, it is difficult to remove the insulating material after forming the multilayer wiring. was difficult.

【0006】[0006]

【発明が解決しようとする課題】本発明は、配線間の絶
縁体として最も低い誘電率が得られる空洞多層配線を、
従来からの多層配線プロセスおよび装置を利用しつつ、
樹脂材料を途中まで用いて、その後の工程で配線だけを
残して樹脂材料を除去する方法で得るために好適な樹脂
組成物、及びその方法によって得られる空洞多層配線を
提供する事を目的とする。
SUMMARY OF THE INVENTION The present invention provides a hollow multi-layer wiring capable of obtaining the lowest dielectric constant as an insulator between wirings.
While using conventional multilayer wiring processes and equipment,
It is an object of the present invention to provide a resin composition suitable for using a resin material halfway, and removing the resin material while leaving only the wiring in a subsequent step, and a hollow multilayer wiring obtained by the method. .

【0007】[0007]

【課題を解決するための手段】本発明者は、前記従来の
問題点を鑑み、鋭意検討を重ねた結果、以下の手段によ
り本発明を完成するに至った。
Means for Solving the Problems The present inventor has made intensive studies in view of the above-mentioned conventional problems, and as a result, has completed the present invention by the following means.

【0008】すなわち、 1.熱気化性の成分(A)と、樹脂のガラス転移温度が
成分(A)の熱気化温度より高く、かつ化学的手段によ
り除去することが可能な耐熱性樹脂またはその前駆体
(B)とを必須成分とする空洞多層配線形成用樹脂組成
物、
That is, 1. A heat-vaporizable component (A) and a heat-resistant resin or a precursor (B) having a glass transition temperature of the resin higher than the heat vaporization temperature of the component (A) and removable by chemical means. A resin composition for forming a hollow multilayer wiring as an essential component,

【0009】2.熱気化性の成分(A)が、プロピレン
オキサイド、エチレンオキサイド、メチルメタクリレー
ト、スチレン及びカーボナートからなる群から選ばれる
繰り返し単位を有するオリゴマーもしくはポリマーであ
る前記1記載の樹脂組成物、
[0009] 2. The resin composition according to the above 1, wherein the thermally vaporizable component (A) is an oligomer or a polymer having a repeating unit selected from the group consisting of propylene oxide, ethylene oxide, methyl methacrylate, styrene and carbonate.

【0010】3.熱気化性の成分(A)が、分子量が1
00〜10000であるオリゴマーもしくはポリマーで
ある前記1記載の樹脂組成物、
[0010] 3. Component (A) having a molecular weight of 1
The resin composition according to the above 1, which is an oligomer or a polymer having a molecular weight of from 00 to 10,000.

【0011】4.熱気化性の成分(A)が、樹脂組成物
の常温で占める体積に於いて、25〜85%を占める前
記1記載の有機絶縁膜材料、
4. 2. The organic insulating film material according to the above 1, wherein the thermally vaporizable component (A) accounts for 25 to 85% of the volume of the resin composition at room temperature,

【0012】5.耐熱性樹脂またはその前駆体(B)
が、ポリイミド樹脂またはポリイミド前駆体である前記
1記載の樹脂組成物、
5. Heat resistant resin or its precursor (B)
Is a resin composition according to the above 1, which is a polyimide resin or a polyimide precursor,

【0013】6.耐熱性樹脂またはその前駆体(B)
が、ポリベンゾオキサゾール樹脂またはポリベンゾオキ
サゾール前駆体である前記1記載の樹脂組成物、
6. Heat resistant resin or its precursor (B)
Is a polybenzoxazole resin or a polybenzoxazole precursor,

【0014】7.耐熱性樹脂またはその前駆体(B)
が、炭素、水素、酸素、窒素、硫黄から選ばれる元素の
みで構成される前記1記載の樹脂組成物、
7. Heat resistant resin or its precursor (B)
Wherein the resin composition according to the above 1, which is composed of only elements selected from carbon, hydrogen, oxygen, nitrogen, and sulfur;

【0015】8.前記1〜7記載のいずれかに記載の空
洞多層配線形成用樹脂組成物を用いて、成分(A)の熱
気化温度より高い温度および耐熱性樹脂もしくはその前
駆体を閉環させた樹脂のガラス転移温度以下で熱処理す
ることにより多孔質の耐熱性樹脂構造を作成し、かかる
構造に金属からなる配線を埋め込み、あるいは積層した
後に、化学的手段によってかかる多孔質の耐熱性樹脂構
造を除去することにより得られたことを特徴とする空洞
多層配線、
[8] 8. The glass transition of a resin obtained by using the resin composition for forming a hollow multilayer wiring according to any one of the above items 1 to 7 at a temperature higher than the thermal vaporization temperature of the component (A) and closing the heat-resistant resin or its precursor. By creating a porous heat-resistant resin structure by heat treatment at a temperature below the temperature, embedding or laminating a wiring made of metal in such a structure, by removing such porous heat-resistant resin structure by chemical means. Cavity multilayer wiring characterized by being obtained,

【0016】9.化学的手段が、溶剤による溶解である
ことを特徴とする前記8記載の空洞多層配、
9. 9. The hollow multilayer arrangement according to the above 8, wherein the chemical means is dissolution by a solvent.

【0017】10.化学的手段が、減圧下でプラズマに
より活性化された気体による分解であることを特長とす
る前記8記載の空洞多層配線、である。
10. 9. The hollow multilayer wiring according to the above item 8, wherein the chemical means is decomposition by a gas activated by plasma under reduced pressure.

【0018】[0018]

【発明の実施の形態】本発明の空洞多層配線形成用樹脂
組成物は、熱気化性の成分(A)と、樹脂のガラス転移
温度が成分(A)の熱気化温度より高く、かつ化学的手
段により除去することが可能な耐熱性樹脂またはその前
駆体(B)とを必須成分として成るものである。成分
(A)と耐熱性樹脂またはその前駆体(B)以外の成分
として溶剤を用いることが可能であるが、成分(A)が
耐熱性樹脂またはその前駆体(B)を溶解する液体で有
る場合は、成分(A)をもって溶剤を兼ねることもでき
る。また、多層配線形成用の他の部材との密着性を良く
するため、あるいは加工プロセス性を良好にするため
に、界面活性剤や表面処理剤等を少量添加することも可
能である。
BEST MODE FOR CARRYING OUT THE INVENTION The resin composition for forming a hollow multilayer wiring according to the present invention comprises a thermally vaporizable component (A), a resin whose glass transition temperature is higher than the thermal vaporization temperature of the component (A), and It comprises a heat-resistant resin or its precursor (B) which can be removed by means as an essential component. Although it is possible to use a solvent as a component other than the component (A) and the heat-resistant resin or its precursor (B), the component (A) is a liquid that dissolves the heat-resistant resin or its precursor (B). In this case, the component (A) can also serve as a solvent. Further, a small amount of a surfactant, a surface treatment agent, or the like can be added to improve the adhesion to other members for forming a multilayer wiring or to improve the processability.

【0019】本発明の空洞多層配線形成用樹脂組成物
は、基板等の上に塗布して加熱・製膜したり、ガラスク
ロス等に含浸させて加熱することにより、後の工程で除
去可能な多層配線構成部材とすることができる。この加
熱工程において、成分(A)が熱気化し、耐熱性樹脂
が、成分(A)の占めていた体積に相当する空隙を保持
したまま、多孔質の構造体を形成する。成分(B)が前
駆体である場合は、この加熱工程において、もしくは成
分(A)の熱気化に先だって行われる硬化工程におい
て、耐熱性樹脂に変換され、高いガラス転移温度が発現
する。耐熱性樹脂が空隙を保持したまま構造体を形成す
るには、加熱温度を成分(A)の熱気化温度より高い温
度および耐熱性樹脂のガラス転移温度以下の温度に上昇
させることが重要である。
The resin composition for forming a hollow multilayer wiring of the present invention can be removed in a later step by applying it on a substrate or the like and heating and forming a film, or impregnating a glass cloth or the like and heating it. It can be a multilayer wiring component. In this heating step, the component (A) is thermally vaporized, and the heat-resistant resin forms a porous structure while maintaining a void corresponding to the volume occupied by the component (A). When component (B) is a precursor, it is converted into a heat-resistant resin in this heating step or in a curing step performed prior to thermal vaporization of component (A), and a high glass transition temperature is developed. In order to form the structure while the heat-resistant resin retains the voids, it is important to increase the heating temperature to a temperature higher than the thermal vaporization temperature of the component (A) and a temperature equal to or lower than the glass transition temperature of the heat-resistant resin. .

【0020】本発明に用いる熱気化性の成分(A)の例
としては、プロピレンオキサイド、エチレンオキサイ
ド、メチルメタクリレート、スチレン、カーボナート、
酢酸ビニル、メチルメタクリレート、ジビニルベンゼ
ン、ヒドロキシメタクリレート、メタクリルアミド、N,
N-ジメチルアクリルアミド、ジメチルアミノエチルメタ
クリレート、グリセロールジメタクリレート、エチレン
グリコールジメタクリレート、ポリエチレングリコール
ジメタクリレート、ポリプロピレングリコールジメタク
リレート、ビニルシンナメート、N-ビニルピロリドン、
フェニルグリシジルエーテル、ビスフェノールF型エポ
キシ等から選ばれる繰り返し単位を有するオリゴマーも
しくはポリマーであるが、これらに限られるものではな
い。また、重合開始剤を添加することも可能である。熱
により完全に気化する性質が望ましく、プロピレンオキ
サイド、エチレンオキサイド、メチルメタクリレート、
スチレン及びカーボナートからなる群から選ばれる繰り
返し単位を有するオリゴマーもしくはポリマーが、特に
好ましい。
Examples of the thermally vaporizable component (A) used in the present invention include propylene oxide, ethylene oxide, methyl methacrylate, styrene, carbonate,
Vinyl acetate, methyl methacrylate, divinyl benzene, hydroxy methacrylate, methacrylamide, N,
N-dimethylacrylamide, dimethylaminoethyl methacrylate, glycerol dimethacrylate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, vinyl cinnamate, N-vinyl pyrrolidone,
An oligomer or polymer having a repeating unit selected from phenylglycidyl ether, bisphenol F type epoxy, etc., but is not limited thereto. It is also possible to add a polymerization initiator. Desirable to completely vaporize by heat, propylene oxide, ethylene oxide, methyl methacrylate,
Oligomers or polymers having a repeating unit selected from the group consisting of styrene and carbonate are particularly preferred.

【0021】また、加熱工程後に形成される多孔質の構
造体の空隙の大きさが、引き続いて行われる多孔質の構
造体に埋め込みまたは積層される配線の精細さに比較し
て大きいと、配線の精細さが損なわれる問題がある。
半導体の多層配線における層間絶縁には、米国半導体工
業会(SIA)のロードマップによれば、デザインルー
ルが0.1μm以下になる世代から、比誘電率が1.5
以下になることを求めている。デザインルールが0.1
μmの世代での多層配線の幅および間隔は、0.1〜5
μmであり、その世代に対応するための本発明における
多孔質の構造体の空隙の大きさは、直径0.1μmより
十分に小さいものでなければならない。そのような空隙
の大きさを与える熱気化性の成分(A)の分子量は、1
00〜10000であるオリゴマーもしくはポリマーで
あることが必要となる。
If the size of the voids in the porous structure formed after the heating step is larger than the fineness of the wiring embedded or laminated in the porous structure to be subsequently performed, There is a problem that the definition of the image is lost.
According to the road map of the Semiconductor Industry Association of America (SIA), the relative dielectric constant of a multilayer wiring of a semiconductor is 1.5 from the generation where the design rule is 0.1 μm or less.
They want to be: Design rule is 0.1
The width and interval of the multilayer wiring in the generation of μm are 0.1 to 5
μm, and the size of the voids of the porous structure according to the present invention for corresponding to that generation must be sufficiently smaller than 0.1 μm in diameter. The molecular weight of the thermally vaporizable component (A) that gives such a void size is 1
It needs to be an oligomer or polymer having a molecular weight of from 00 to 10,000.

【0022】また、加熱工程後に形成される多孔質の構
造体の空隙の比率が大きすぎると、引き続いて行われる
多孔質の構造体に埋め込みまたは積層される配線の加工
プロセスにおいて、構造体の形状を維持する強度が不足
し、多層構造の破壊、剥離等が生じるため、熱気化性の
成分(A)が、樹脂組成物の常温で占める体積に於い
て、85%以下であることが望ましい。なお、加熱工程
後に形成される多孔質の構造体の空隙は、連続している
ことが、多層配線形成後に行われる多孔質の構造体の除
去において好ましく、そのような連続気泡の多孔質構造
を得るための条件としては、熱気化性の成分(A)が、
樹脂組成物の常温で占める体積に於いて、25%以上で
あることが望ましい。
If the ratio of the voids in the porous structure formed after the heating step is too large, the shape of the structure in the subsequent process of wiring embedded or laminated in the porous structure is performed. Insufficient strength to maintain the resin composition and destruction and peeling of the multilayer structure occur. Therefore, it is desirable that the content of the thermally vaporizable component (A) is 85% or less in the volume occupied at room temperature of the resin composition. It is preferable that the voids of the porous structure formed after the heating step are continuous in the removal of the porous structure performed after the formation of the multilayer wiring. As conditions for obtaining, the thermally vaporizable component (A)
The volume of the resin composition at room temperature is desirably 25% or more.

【0023】本発明に用いる樹脂のガラス転移温度が成
分(A)の熱気化温度より高く、かつ化学的手段により
除去することが可能な耐熱性樹脂またはその前駆体
(B)の例を挙げると、ポリイミド、ポリアミド酸、ポ
リアミド酸エステル、ポリイソイミド、ポリアミドイミ
ド、ポリアミド、ビスマレイミド、ポリベンゾオキサゾ
ール、ポリヒドロキシアミド、ポリベンゾチアゾール、
ポリアリレンエーテル、ノルボルネン樹脂、シクロペン
タジエン樹脂等であるがこれらに限られるものではな
い。また、これらのポリマーの末端や側鎖にアセチレン
基等の架橋性官能基を導入し、加熱によって架橋構造を
形成することも可能である。これらの中でもポリイミド
樹脂とポリアミド酸、ポリアミド酸エステル、ポリイソ
イミド等のポリイミド前駆体、ポリベンゾオキサゾール
樹脂とポリヒドロキシアミド等のポリベンゾオキサゾー
ル前駆体は耐熱性が高く好ましい。
Examples of the heat-resistant resin or its precursor (B) which have a glass transition temperature higher than the thermal vaporization temperature of the component (A) and which can be removed by chemical means are given below. , Polyimide, polyamic acid, polyamic acid ester, polyisoimide, polyamideimide, polyamide, bismaleimide, polybenzoxazole, polyhydroxyamide, polybenzothiazole,
Examples include, but are not limited to, polyarylene ether, norbornene resin, and cyclopentadiene resin. It is also possible to introduce a crosslinkable functional group such as an acetylene group into the terminal or side chain of these polymers, and form a crosslinked structure by heating. Among them, polyimide resins and polyimide precursors such as polyamic acid, polyamic acid ester and polyisoimide, and polybenzoxazole resins and polybenzoxazole precursors such as polyhydroxyamide are preferable because of high heat resistance.

【0024】本発明に用いる樹脂のガラス転移温度が成
分(A)の熱気化温度より高く、かつ化学的手段により
除去することが可能な耐熱性樹脂またはその前駆体
(B)は、多層配線を形成する工程に使用される部材を
侵さない材料であることは言うまでもないが、特に多層
配線を形成する工程でのレジスト灰化等でのプラズマ雰
囲気および、多層配線形成後に行われる多孔質の構造体
の除去において、減圧下でプラズマにより、活性化され
た気体による分解を用いる場合等で発生する気体成分
が、多層配線を形成する工程に仕様される部材を侵さな
いことも求められる。その為には、耐熱性樹脂またはそ
の前駆体(B)は、炭素、水素、酸素、窒素、硫黄から
選ばれる元素のみで構成されることが望ましい。これら
の元素からなる気体成分は、アルミ、銅等の配線材料
や、ガラス、セラミックス、シリコンウエハ、熱酸化
膜、窒化膜等に影響を実質的に与えない。好ましくない
元素としては、ハロゲン族元素、特にフッ素があげられ
る。フッ素からなる気体成分には、硅素系の材料を浸食
する性質がある。また、アルミ、銅等の金属や、硅素等
の半導体の元素を含むと、多層配線形成後に行われる多
孔質の構造体の除去において、多層配線形成部材との選
択性を損なうので好ましくない。
The resin used in the present invention has a glass transition temperature higher than the thermal vaporization temperature of the component (A) and can be removed by chemical means. Needless to say, it is a material that does not corrode the members used in the forming process, but in particular, a plasma atmosphere caused by resist ashing in the process of forming the multilayer wiring and a porous structure performed after the formation of the multilayer wiring. It is also required that a gas component generated in the case of using decomposition activated by plasma under reduced pressure in plasma removal or the like does not affect members specified in a process of forming a multilayer wiring. For that purpose, the heat-resistant resin or its precursor (B) is desirably composed of only an element selected from carbon, hydrogen, oxygen, nitrogen, and sulfur. The gas components composed of these elements do not substantially affect wiring materials such as aluminum and copper, glass, ceramics, silicon wafers, thermal oxide films, nitride films, and the like. Undesirable elements include halogen group elements, especially fluorine. A gas component composed of fluorine has a property of eroding a silicon-based material. In addition, it is not preferable to include a metal such as aluminum or copper, or a semiconductor element such as silicon, since the selectivity to the multilayer wiring forming member is lost in removing the porous structure after the formation of the multilayer wiring.

【0025】本発明の空洞多層配線形成用樹脂組成物の
成分として溶剤を用いる場合に、好ましいものの例を挙
げると、N,N-ジメチルアセトアミド、N-メチル-2-ピロ
リドン、テトラヒドロフラン、プロピレングリコールモ
ノメチルエーテル、プロピレングリコールモノメチルエ
ーテルアセテート、ジエチレングリコールモノメチルエ
ーテル、γ-ブチロラクトン等であるがこれらに限定さ
れるものではない。また、これらを2種以上同時に用い
てもかまわない。
When a solvent is used as a component of the resin composition for forming a hollow multilayer wiring of the present invention, preferable examples include N, N-dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, propylene glycol monomethyl. Examples thereof include, but are not limited to, ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, and γ-butyrolactone. Further, two or more of these may be used at the same time.

【0026】本発明の空洞多層配線の製造方法の例とし
ては、本発明の空洞多層配線形成用樹脂組成物を用い、
上記溶剤に溶解しワニスとした後、多層配線を形成しよ
うとするシリコンウエハなどに塗布する。具体的な塗布
の方法としては、スピンナーを用いた回転塗布、スプレ
ーコーターを用いた噴霧塗布、浸漬、印刷、ロールコー
ティングなどが挙げられる。このようにして、塗膜を形
成し、成分(A)の熱気化温度より高い温度および耐熱
性樹脂またはその前駆体を閉環させた樹脂のガラス転移
温度以下で熱処理することにより、多孔質の耐熱性樹脂
構造を作成し、適当なフォトプロセスでマスク形成後R
IE法等で、耐熱性樹脂構造に接続孔や配線溝を形成
し、メッキ等で銅を埋め込み配線を形成し、再びその上
に多孔質の耐熱性樹脂構造を作成して、この操作を繰り
返すことにより多層配線を形成し、その後に化学的手段
によって、かかる多孔質の耐熱性樹脂構造を除去するこ
とにより、空洞多層配線を得ることができる。
As an example of the method for producing a hollow multilayer wiring according to the present invention, the resin composition for forming a hollow multilayer wiring according to the present invention is used.
After dissolving in the above solvent to form a varnish, it is applied to a silicon wafer or the like on which a multilayer wiring is to be formed. Specific coating methods include spin coating using a spinner, spray coating using a spray coater, dipping, printing, roll coating, and the like. By forming a coating film in this manner and performing heat treatment at a temperature higher than the thermal vaporization temperature of the component (A) and at a temperature equal to or lower than the glass transition temperature of the resin in which the heat-resistant resin or its precursor is closed, a porous heat-resistant resin is obtained. After forming a conductive resin structure and forming a mask with an appropriate photo process,
A connection hole or a wiring groove is formed in the heat-resistant resin structure by the IE method or the like, copper is buried by plating or the like to form a wiring, and a porous heat-resistant resin structure is formed thereon again, and this operation is repeated. In this manner, a multilayer wiring is formed, and then the porous heat-resistant resin structure is removed by chemical means, whereby a hollow multilayer wiring can be obtained.

【0027】本発明の特徴は、多層配線構造を作成後に
除去される耐熱性樹脂構造が、実質的に連続気泡体の構
造を持ち、かつ高い空隙率によって、除去すべき耐熱性
樹脂構造の量が少なくなっており、短時間で除去可能と
なっている点にある。また、除去するまでは、多層配線
構造を、従来のプロセス、装置で形成するための、支持
体の役割を果たすところにある。
A feature of the present invention is that the heat-resistant resin structure to be removed after the formation of the multilayer wiring structure has a substantially open-cell structure, and the amount of the heat-resistant resin structure to be removed due to the high porosity. In that it can be removed in a short time. Until it is removed, it serves as a support for forming a multilayer wiring structure by a conventional process and apparatus.

【0028】本発明の空洞多層配線形成用樹脂組成物を
用いて、成分(A)の熱気化温度より高い温度および耐
熱性樹脂またはその前駆体を閉環させた樹脂のガラス転
移温度以下で熱処理することにより、多孔質の耐熱性樹
脂構造を作成し、かかる構造に金属からなる配線を埋め
込み、あるいは積層した後に、かかる多孔質の耐熱性樹
脂構造を除去する化学的手段としては、溶剤による溶解
や、減圧下でプラズマにより活性化された気体による分
解が好適である。他には、耐熱性樹脂が気化するような
高温まで加熱することも考えられるが、耐熱性樹脂を熱
で分解するのはエネルギー的に合理的でない。また、低
温で熱分解するように耐熱性樹脂を劣化させてから熱分
解することも考えられるが、工程が増えて効率的でな
い。
The resin composition for forming a hollow multilayer wiring according to the present invention is heat-treated at a temperature higher than the thermal vaporization temperature of the component (A) and at a temperature not higher than the glass transition temperature of the resin in which the heat-resistant resin or its precursor is closed. By creating a porous heat-resistant resin structure and embedding or laminating a wiring made of metal in such a structure, as a chemical means for removing the porous heat-resistant resin structure, dissolution by a solvent or Decomposition by a gas activated by plasma under reduced pressure is preferred. Alternatively, heating to a high temperature at which the heat-resistant resin is vaporized may be considered, but it is not energetically reasonable to decompose the heat-resistant resin by heat. It is also conceivable to decompose the heat-resistant resin after decomposing it so that it decomposes at a low temperature, but this is not efficient because of additional steps.

【0029】溶剤による溶解としては、耐熱性樹脂を溶
解する有機溶剤が利用できる。ガラスやシリコン等が耐
熱樹脂との界面である場合には、硫酸等も使用可能であ
る。
As the solvent dissolution, an organic solvent that dissolves a heat-resistant resin can be used. If glass or silicon is the interface with the heat-resistant resin, sulfuric acid or the like can be used.

【0030】減圧下でプラズマにより活性化された気体
により分解する場合には、酸素プラズマが耐熱性樹脂を
分解する速度が早く、また金属や無機材料を分解する速
度との差が大きく好適である。酸素プラズマが金属や無
機材料を劣化させる場合には、窒素プラズマや、酸素と
窒素の混合プラズマが利用できる。
When decomposed by a gas activated by plasma under reduced pressure, the rate at which oxygen plasma decomposes the heat-resistant resin is high, and the difference from the rate at which metal and inorganic materials are decomposed is large. . When oxygen plasma degrades a metal or inorganic material, nitrogen plasma or mixed plasma of oxygen and nitrogen can be used.

【0031】[0031]

【実施例】以下に、実施例により本発明を具体的に説明
するが、本発明は実施例の内容になんら限定されるもの
ではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the contents of the examples.

【0032】「実施例1」 (1)ポリイミド樹脂の合成 攪拌装置、窒素導入管、原料投入口を備えたセパラブル
フラスコ中、2,2−ビス(4−(4,4’−アミノフ
ェノキシ)フェニル)プロパン4.10g(0.01m
ol)と4,4’−ジアミノビフェニル5.52g
(0.03mol)とを、乾燥したN−メチル−2−ピ
ロリドン(以下NMPと略す)200gに溶解する。乾
燥窒素下、10℃に溶液を冷却してビフェニルテトラカ
ルボン酸二無水物2.94(0.01mol)とイソプ
ロピリデン−3,3’−ビス(フタル酸無水物)10.
08g(0.03mol)を投入した。投入から5時間
後に室温まで戻し、室温で2時間攪拌し、ポリイミド前
駆体であるポリアミド酸の溶液を得た。このポリアミド
酸溶液にピリジン50gを加えた後、無水酢酸0.05
molを滴下し、系の温度を70℃に保って7時間イミド
化反応を行った。この溶液を20倍量の水中に滴下して
沈殿を回収し、60℃で72時間真空乾燥して耐熱性樹
脂であるポリイミド樹脂の固形物19.15gを得た。
Example 1 (1) Synthesis of Polyimide Resin In a separable flask equipped with a stirrer, a nitrogen inlet tube and a raw material inlet, 2,2-bis (4- (4,4'-aminophenoxy)) was prepared. 4.10 g of phenyl) propane (0.01 m
ol) and 5.52 g of 4,4'-diaminobiphenyl
(0.03 mol) is dissolved in 200 g of dried N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). The solution was cooled to 10 ° C. under dry nitrogen, and biphenyltetracarboxylic dianhydride 2.94 (0.01 mol) and isopropylidene-3,3′-bis (phthalic anhydride) 10.
08 g (0.03 mol) was charged. Five hours after the introduction, the temperature was returned to room temperature, and the mixture was stirred at room temperature for 2 hours to obtain a solution of polyamic acid as a polyimide precursor. After adding 50 g of pyridine to this polyamic acid solution, 0.05% of acetic anhydride was added.
mol was added dropwise, and an imidization reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. This solution was dropped into 20 times the volume of water to collect the precipitate, and vacuum-dried at 60 ° C. for 72 hours to obtain 19.15 g of a polyimide resin solid as a heat-resistant resin.

【0033】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリイミド樹脂5.0gをNMP1
5.0gに溶解し、離型処理したガラス基板上に塗布し
た後、オーブン中、120℃で30分保持後、230℃
で90分保持して成膜し、基板から膜を剥がした後、さ
らに400℃で90分加熱し、ポリイミド樹脂のフィル
ムとした。このポリイミド樹脂のガラス転移温度を動的
粘弾性測定装置により測定したところ、350℃であっ
た。
(2) Measurement of Glass Transition Temperature of Heat-Resistant Resin 5.0 g of the polyimide resin synthesized as described above was added to NMP1
After dissolving in 5.0 g and applying it on a glass substrate that has been subjected to a mold release treatment, it is kept in an oven at 120 ° C. for 30 minutes and then 230 ° C.
After holding the film for 90 minutes, the film was peeled off from the substrate, and further heated at 400 ° C. for 90 minutes to obtain a polyimide resin film. The glass transition temperature of the polyimide resin measured by a dynamic viscoelasticity measuring apparatus was 350 ° C.

【0034】(3)熱気化性の成分の熱気化温度の測定 市販の平均分子量8000のプロピレンオキシド−エチ
レンオキシドブロック共重合体(第一工業製薬(株)
製、エパン485)を、空気中で、熱重量分析により測
定したところ、250℃で2時間加熱後の重量残率は1
%以下であった。
(3) Measurement of Thermal Vaporization Temperature of Thermally Vaporizable Component A commercially available propylene oxide-ethylene oxide block copolymer having an average molecular weight of 8,000 (Daiichi Kogyo Seiyaku Co., Ltd.)
And Epan 485) were measured in air by thermogravimetric analysis. The weight residue after heating at 250 ° C. for 2 hours was 1
% Or less.

【0035】(4)空洞多層配線形成用樹脂組成物の調
製と空洞多層配線の製造 上記により合成したポリイミド樹脂10.0gをNMP
50.0gに溶解した後、平均分子量8000のプロピ
レンオキシド−エチレンオキシドブロック共重合体5.
0g(NMPを除く成分の体積比率で約40%)を加え
て攪拌し、空洞多層配線形成用樹脂組成物を得た。厚さ
100nmの熱酸化膜を形成したシリコンウエハ上に、
この空洞多層配線形成用樹脂組成物をスピンコートした
後、空気雰囲気のオーブン中で300℃2時間加熱し
た。その結果、厚さ0.5μmの多孔質耐熱樹脂からな
る皮膜を得た。この多孔質耐熱樹脂の皮膜上に厚さ40
nmのシリコン酸化膜をCVD法により形成し、フォト
リソ法で、幅1μm、間隔1μmで長さ5mmのパター
ンを形成し、CF4ガスによるRIE法でエッチングす
ることにより、同パターンのハードマスクとした。この
ハードマスクを用いて、窒素ガスによるRIE法でエッ
チングすることにより、多孔質耐熱樹脂の皮膜に、同パ
ターンの配線溝を形成した。スパッタリングにより厚さ
1μmの銅膜を形成し、CMP法によって、多孔質耐熱
樹脂表面まで研磨した。この研磨面に同様の操作を繰り
返し、上記の銅配線とは直交するように、第二の銅配線
を重ねた。このように作成した2層構造の銅配線を表面
に形成したシリコンウエハを、酸素プラズマ灰化装置に
入れ、200W5分間処理したところ、多孔質耐熱樹脂
は完全に除去され、格子状に組み合わされた銅配線が現
れた。断面をSEMにより観察し、上部の銅配線の下部
も残滓なくきれいに空洞化していた。
(4) Preparation of Resin Composition for Forming Hollow Multilayer Wiring and Production of Hollow Multilayer Wiring 10.0 g of the polyimide resin synthesized as described above was subjected to NMP.
After dissolving in 50.0 g, a propylene oxide-ethylene oxide block copolymer having an average molecular weight of 8,000.
0 g (about 40% by volume of components other than NMP) was added and stirred to obtain a resin composition for forming a hollow multilayer wiring. On a silicon wafer on which a thermal oxide film with a thickness of 100 nm is formed,
After spin-coating this resin composition for forming a hollow multilayer wiring, it was heated at 300 ° C. for 2 hours in an oven in an air atmosphere. As a result, a film made of a porous heat-resistant resin having a thickness of 0.5 μm was obtained. A thickness of 40 on this porous heat-resistant resin film
A silicon oxide film having a thickness of 5 nm was formed by a CVD method, a pattern having a width of 1 μm, an interval of 1 μm, and a length of 5 mm was formed by a photolithography method, and etched by an RIE method using CF 4 gas to obtain a hard mask having the same pattern. . By using this hard mask and etching by a RIE method using nitrogen gas, wiring grooves of the same pattern were formed in the film of the porous heat-resistant resin. A copper film having a thickness of 1 μm was formed by sputtering, and the surface of the porous heat-resistant resin was polished by CMP. The same operation was repeated on the polished surface, and a second copper wiring was overlapped so as to be orthogonal to the copper wiring. The silicon wafer thus formed on the surface of which the copper wiring of the two-layer structure was formed was placed in an oxygen plasma incinerator and treated at 200 W for 5 minutes. As a result, the porous heat-resistant resin was completely removed and combined in a lattice. Copper wiring appeared. The cross section was observed by SEM, and the lower portion of the upper copper wiring was also hollowed out without any residue.

【0036】「実施例2」 (1)ポリイミド前駆体の合成 実施例1のポリイミド樹脂の合成においてポリイミド前
駆体の合成に用いた2,2−ビス(4−(4,4’−ア
ミノフェノキシ)フェニル)プロパン4.10g(0.
01mol)と4,4’−ジアミノビフェニル5.52
g(0.03mol)を4,4’−ジアミノジフェニル
エーテル8.00g(0.04mol)に、ビフェニル
テトラカルボン酸二無水物2.94g(0.01mo
l)とイソプロピリデン−3,3’−ビス(フタル酸無
水物)10.08g(0.03mol)とをピロメリッ
ト酸二無水物8.72g(0.04mol)に換えた以
外は、実施例1と同様にして、ポリイミド前駆体である
ポリアミド酸の溶液を得た。この溶液を20倍量の水中
に滴下して、沈殿を回収し、25℃で72時間真空乾燥
して、耐熱性樹脂であるポリイミドの前駆体であるポリ
アミド酸の固形物14.45gを得た。
Example 2 (1) Synthesis of Polyimide Precursor The 2,2-bis (4- (4,4'-aminophenoxy)) used in the synthesis of the polyimide precursor in the synthesis of the polyimide resin of Example 1 was used. 4.10 g of phenyl) propane (0.
01 mol) and 4,4'-diaminobiphenyl 5.52
g (0.03 mol) to 8.04 g (0.04 mol) of 4,4′-diaminodiphenyl ether and 2.94 g (0.01 mol) of biphenyltetracarboxylic dianhydride
l) and 10.08 g (0.03 mol) of isopropylidene-3,3'-bis (phthalic anhydride) were replaced by 8.72 g (0.04 mol) of pyromellitic dianhydride. In the same manner as in 1, a solution of a polyamic acid as a polyimide precursor was obtained. This solution was dropped into 20 times the volume of water, and the precipitate was collected and vacuum-dried at 25 ° C. for 72 hours to obtain 14.45 g of a solid of polyamic acid, which is a precursor of polyimide as a heat-resistant resin. .

【0037】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリアミド酸5.0gをNMP2
0.0gに溶解し、離型処理したガラス基板上に塗布し
た後、オーブン中、120℃で30分保持後、250℃
で90分保持して成膜し、基板から膜を剥がした後、さ
らに450℃で90分加熱し、耐熱性樹脂であるポリイ
ミド樹脂のフィルムとした。このポリイミド樹脂のガラ
ス転移温度を、動的粘弾性測定装置により測定したとこ
ろ、419℃であった。
(2) Measurement of Glass Transition Temperature of Heat-Resistant Resin 5.0 g of the polyamic acid synthesized as described above was added to NMP2
After dissolving it in 0.0 g and applying it on a release-treated glass substrate, it was kept in an oven at 120 ° C. for 30 minutes, then at 250 ° C.
After holding the film for 90 minutes, the film was peeled off from the substrate, and further heated at 450 ° C. for 90 minutes to obtain a polyimide resin film as a heat-resistant resin. The glass transition temperature of this polyimide resin was 419 ° C. as measured by a dynamic viscoelasticity measuring device.

【0038】(3)熱気化性成分の熱分解温度の測定 市販の平均分子量4000のポリプロピレンオキサイド
(日本油脂(株)製、ユニオールD−4000)10g
の窒素雰囲気下での熱分解温度を、熱重量分析により測
定したところ、350℃、3時間後の重量残率は1%以
下であった。
(3) Measurement of Thermal Decomposition Temperature of Thermally Vaporizable Component 10 g of commercially available polypropylene oxide having an average molecular weight of 4000 (Uniol D-4000, manufactured by NOF Corporation)
Was measured by thermogravimetric analysis under a nitrogen atmosphere. As a result, the residual weight after 3 hours at 350 ° C. was 1% or less.

【0039】(4)空洞多層配線形成用樹脂組成物の調
製と空洞多層配線の製造 上記により合成したポリアミド酸10.0gをNMP5
0.0gに溶解した後、平均分子量4000のポリプロ
ピレンオキサイド20.0g(NMPを除く成分におけ
る体積比率で約75%)を加えて攪拌し、空洞多層配線
形成用樹脂組成物を得た。厚さ100nmの熱酸化膜を
形成したシリコンウエハ上に、この空洞多層配線形成用
樹脂組成物をスピンコートした後、窒素雰囲気のオーブ
ン中で350℃3時間加熱した。その結果、厚さ0.5
μmの多孔質耐熱樹脂からなる皮膜を得た。以下実施例
1と同様にして、空洞多層配線を形成したところ、同様
に格子状の銅配線を得た。断面をSEMにより観察し、
上部の銅配線の下部も残滓なくきれいに空洞化してい
た。
(4) Preparation of Resin Composition for Forming Cavity Multilayer Wiring and Production of Cavity Multilayer Wiring 10.0 g of the polyamic acid synthesized as described above was added to NMP5.
After dissolving in 0.0 g, 20.0 g of polypropylene oxide having an average molecular weight of 4000 (about 75% by volume in the components other than NMP) was added and stirred to obtain a resin composition for forming a hollow multilayer wiring. The resin composition for forming a hollow multilayer wiring was spin-coated on a silicon wafer on which a thermal oxide film having a thickness of 100 nm was formed, and then heated at 350 ° C. for 3 hours in an oven in a nitrogen atmosphere. As a result, the thickness 0.5
A coating made of a porous heat-resistant resin having a thickness of μm was obtained. Thereafter, when a hollow multilayer wiring was formed in the same manner as in Example 1, a grid-like copper wiring was obtained in the same manner. Observe the cross section by SEM,
The lower part of the upper copper wiring was also hollow without any residue.

【0040】「実施例3」 (1)ポリベンゾオキサゾール樹脂の合成 4,4’−イソプロピリデンジフェニル−1,1’−ジ
カルボン酸28.4g(0.1mol)、塩化チオニル
45ml及び乾燥ジメチルホルムアミド0.5mlを反
応容器に入れ、60℃で2時間反応させた。反応終了
後、過剰の塩化チオニルを加熱及び減圧により留去し
た。析出物をヘキサンを用いて再結晶を行い、4,4’
−イソプロピリデンジフェニル−1,1’−ジカルボン
酸クロリド28.9gを得た。攪拌装置、窒素導入管、
滴下漏斗を付けたセパラブルフラスコ中、2,2−ビス
(3−アミノ−4−ヒドロキシフェニル)プロパン5.
16g(0.02mol)を、乾燥したジメチルアセト
アミド100gに溶解し、ピリジン3.96g(0.0
5mol)を添加後、乾燥窒素導入下、−15℃でジメ
チルアセトアミド50gに、上記により合成した4,
4’−イソプロピリデンジフェニル−1,1’−ジカル
ボン酸クロリド6.42g(0.02mol)を溶解し
たものを、30分掛けて滴下した。滴下終了後、室温ま
で戻し、室温で5時間攪拌した。その後、反応液を水1
000ml中に滴下し、沈殿物を集め、40℃で48時
間真空乾燥することにより、ポリベンゾオキサゾール前
駆体であるポリヒドロキシアミドの固形物9.41gを
得た。このポリヒドロキシアミドをNMP200gに溶
解した溶液に、ピリジン50gを加えた後、無水酢酸
0.03molを滴下し、系の温度を70℃に保って7時
間オキサゾール化反応を行った。この溶液を20倍量の
水中に滴下して沈殿を回収し、60℃で72時間真空乾
燥して耐熱性樹脂であるポリベンゾオキサゾール樹脂の
固形物8.30gを得た。
Example 3 (1) Synthesis of polybenzoxazole resin 28.4 g (0.1 mol) of 4,4'-isopropylidenediphenyl-1,1'-dicarboxylic acid, 45 ml of thionyl chloride and 0 ml of dry dimethylformamide 0.5 ml was placed in a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The precipitate was recrystallized using hexane to obtain 4,4 ′
28.9 g of -isopropylidenediphenyl-1,1'-dicarboxylic acid chloride were obtained. Stirrer, nitrogen inlet tube,
4. In a separable flask equipped with a dropping funnel, 2,2-bis (3-amino-4-hydroxyphenyl) propane.
16 g (0.02 mol) was dissolved in 100 g of dried dimethylacetamide, and 3.96 g (0.0%) of pyridine was dissolved.
5 mol) was added thereto, and under dry nitrogen introduction, at -15 ° C, 50 g of dimethylacetamide was added to 4,5
A solution of 6.42 g (0.02 mol) of 4'-isopropylidenediphenyl-1,1'-dicarboxylic acid chloride was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Then, the reaction solution was added to water 1
The resulting precipitate was collected and dried under vacuum at 40 ° C. for 48 hours to obtain 9.41 g of a polyhydroxyamide as a polybenzoxazole precursor. After adding 50 g of pyridine to a solution of this polyhydroxyamide dissolved in 200 g of NMP, 0.03 mol of acetic anhydride was added dropwise, and the oxazolation reaction was carried out for 7 hours while maintaining the system temperature at 70 ° C. This solution was dropped into a 20-fold amount of water to collect a precipitate, followed by vacuum drying at 60 ° C. for 72 hours to obtain 8.30 g of a polybenzoxazole resin as a heat-resistant resin.

【0041】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリベンゾオキサゾール樹脂5.0
gを、NMP8.0gとテトラヒドロフラン12.0g
の混合溶媒に溶解し、離形処理したガラス基板上に塗布
した後、オーブン中120℃で30分保持後240℃で
90分保持して成膜し、基板から膜を剥がした後、さら
に400℃で90分加熱し、耐熱性樹脂であるポリベン
ゾオキサゾール樹脂のフィルムとした。このポリベンゾ
オキサゾール樹脂のガラス転移温度を動的粘弾性測定装
置により測定したところ、390℃であった。
(2) Measurement of glass transition temperature of heat-resistant resin Polybenzoxazole resin 5.0 synthesized as described above
g, NMP 8.0 g and tetrahydrofuran 12.0 g
And then applied on a release-treated glass substrate, kept in an oven at 120 ° C. for 30 minutes, and then kept at 240 ° C. for 90 minutes to form a film. It heated at 90 degreeC for 90 minutes, and set it as the film of the polybenzoxazole resin which is a heat resistant resin. The glass transition temperature of this polybenzoxazole resin was 390 ° C. when measured with a dynamic viscoelasticity measuring device.

【0042】(3)熱気化性成分の熱気化温度の測定 エチレングリコールジメタクリレート(日本油脂(株)
製、ブレンマーPDE−50)10gに、0.05gの
アゾビスイソブチロニトリルを加え、窒素雰囲気下80
℃で重合を行った。得られた重合物の分子量は、GPC
でのポリスチレン換算で500であり、窒素雰囲気下で
の熱分解温度を熱重量分析により、測定したところ、3
50℃3時間での重量残率は1%以下であった。
(3) Measurement of heat vaporization temperature of heat vaporizable component Ethylene glycol dimethacrylate (Nippon Oil & Fats Co., Ltd.)
Of azobisisobutyronitrile was added to 10 g of Blenmer PDE-50 (manufactured by Co., Ltd.).
Polymerization was carried out at ° C. The molecular weight of the obtained polymer is determined by GPC
Was 500 in terms of polystyrene, and the pyrolysis temperature under a nitrogen atmosphere was measured by thermogravimetric analysis.
The residual weight at 50 ° C. for 3 hours was 1% or less.

【0043】(4)空洞多層配線形成用樹脂組成物の調
製と空洞多層配線の製造 上記により合成したポリベンゾオキサゾール樹脂5.0
gを、NMP8.0gとテトラヒドロフラン12.0g
の混合溶媒に溶解した後、分子量500のエチレングリ
コールジメタクリレート重合物4.0g(溶媒を除く成
分における体積比率で約40%)を添加して攪拌し、空
洞多層配線形成用樹脂組成物を得た。厚さ100nmの
熱酸化膜を形成したシリコンウエハ上に、この空洞多層
配線形成用樹脂組成物をスピンコートした後、窒素雰囲
気のオーブン中で350℃3時間加熱した。その結果、
厚さ0.5μmの多孔質耐熱樹脂からなる皮膜を得た。
以下実施例1と同様にして、2層構造の銅配線形成し、
そのシリコンウエハを、NMPとテトラヒドロフランの
重量比2:3からなる混合溶剤を入れた、80℃の超音
波洗浄槽に10分間浸漬し、純水にて洗浄し乾燥したと
ころ、多孔質耐熱樹脂は完全に除去され、格子状に組み
合わされた銅配線が現れた。断面をSEMにより観察
し、上部の銅配線の下部も残滓なくきれいに空洞化して
いた。
(4) Preparation of Resin Composition for Forming Hollow Multilayer Wiring and Production of Hollow Multilayer Wiring Polybenzoxazole resin 5.0 synthesized as described above.
g, NMP 8.0 g and tetrahydrofuran 12.0 g
, And 4.0 g of ethylene glycol dimethacrylate polymer having a molecular weight of 500 (approximately 40% by volume in the components excluding the solvent) is added and stirred to obtain a resin composition for forming a hollow multilayer wiring. Was. The resin composition for forming a hollow multilayer wiring was spin-coated on a silicon wafer on which a thermal oxide film having a thickness of 100 nm was formed, and then heated at 350 ° C. for 3 hours in an oven in a nitrogen atmosphere. as a result,
A film made of a porous heat-resistant resin having a thickness of 0.5 μm was obtained.
Thereafter, a copper wiring having a two-layer structure is formed in the same manner as in Example 1.
The silicon wafer was immersed in an ultrasonic cleaning tank at 80 ° C. for 10 minutes containing a mixed solvent consisting of NMP and tetrahydrofuran in a weight ratio of 2: 3, washed with pure water and dried. Completely removed, a grid of copper interconnects appeared. The cross section was observed by SEM, and the lower portion of the upper copper wiring was also hollowed out without any residue.

【0044】「実施例4」 (1)ポリヒドロキシアミドの合成 ビフェニル−4,4’−ジカルボン酸24.2g(0.
1mol)、塩化チオニル45ml及び乾燥ジメチルホ
ルムアミド0.5mlを反応容器に入れ、60℃で2時
間反応させた。反応終了後、過剰の塩化チオニルを加熱
及び減圧により留去した。析出物をヘキサンを用いて再
結晶を行い、ビフェニル−4,4’−ジカルボン酸クロ
リド25.1gを得た。攪拌装置、窒素導入管、滴下漏
斗を付けたセパラブルフラスコ中、2,2−ビス(3ー
アミノ−4−ヒドロキシフェニル)プロパン5.16g
(0.02mol)を、乾燥したジメチルアセトアミド
100gに溶解し、ピリジン3.96g(0.05mo
l)を添加後、乾燥窒素導入下、−15℃でジメチルア
セトアミド50gに、上記により合成したビフェニル−
4,4’−ジカルボン酸クロリド5.58g(0.02
mol)を溶解したものを、30分掛けて滴下した。滴
下終了後、室温まで戻し、室温で5時間攪拌した。その
後、反応液を水1000ml中に滴下し、沈殿物を集
め、40℃で48時間真空乾燥することにより、耐熱性
樹脂であるポリベンゾオキサゾールの前駆体であるポリ
ヒドロキシアミドの固形物8.63gを得た。
Example 4 (1) Synthesis of polyhydroxyamide 24.2 g of biphenyl-4,4'-dicarboxylic acid (0.
1 mol), 45 ml of thionyl chloride and 0.5 ml of dry dimethylformamide were placed in a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The precipitate was recrystallized using hexane to obtain 25.1 g of biphenyl-4,4'-dicarboxylic acid chloride. 5.16 g of 2,2-bis (3-amino-4-hydroxyphenyl) propane in a separable flask equipped with a stirrer, a nitrogen inlet tube, and a dropping funnel.
(0.02 mol) was dissolved in 100 g of dried dimethylacetamide, and 3.96 g (0.05 mol) of pyridine was dissolved.
After addition of l), the biphenyl-synthesized as above was added to 50 g of dimethylacetamide at -15 ° C under dry nitrogen introduction.
5.58 g of 4,4'-dicarboxylic acid chloride (0.02 g)
mol) was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was dropped into 1000 ml of water, and the precipitate was collected and vacuum-dried at 40 ° C. for 48 hours to obtain 8.63 g of a solid material of polyhydroxyamide, which is a precursor of polybenzoxazole, which is a heat-resistant resin. I got

【0045】(2)耐熱性樹脂のガラス転移温度の測定 上記により合成したポリヒドロキシアミド5.0gをN
MP20.0gに溶解し、離型処理したガラス基板上に
塗布した後、オーブン中120℃で30分保持後、24
0℃で90分保持して成膜し、基板から膜を剥がした
後、さらに400℃で90分加熱し、耐熱性樹脂である
ポリベンゾオキサゾールのフィルムとした。このポリベ
ンゾオキサゾールのガラス転移温度を、動的粘弾性測定
装置により測定したところ、440℃であった。
(2) Measurement of Glass Transition Temperature of Heat-Resistant Resin
After dissolving in 20.0 g of MP and applying it on a glass substrate subjected to a mold release treatment, it was kept in an oven at 120 ° C. for 30 minutes, and then 24
A film was formed by holding the film at 0 ° C. for 90 minutes, and after peeling the film from the substrate, the film was further heated at 400 ° C. for 90 minutes to obtain a polybenzoxazole film as a heat-resistant resin. The glass transition temperature of this polybenzoxazole was measured using a dynamic viscoelasticity measurement device, and was 440 ° C.

【0046】(3)熱気化性成分の熱気化温度の測定 グリセロールジメタクリレート(日本油脂(株)製、ブ
レンマーGMR)10gに、0.01gのアゾビスイソ
ブチロニトリルを加え、窒素雰囲気下80℃で重合を行
った。得られた重合物の分子量は、GPCでのポリスチ
レン換算で1500であり、窒素雰囲気下での熱分解温
度を、熱重量分析により測定したところ、400℃2時
間での重量残率は1%以下であった。
(3) Measurement of Thermal Vaporization Temperature of Thermally Vaporizable Component To 10 g of glycerol dimethacrylate (manufactured by NOF CORPORATION, Blenmer GMR), 0.01 g of azobisisobutyronitrile was added, and the mixture was added under a nitrogen atmosphere. Polymerization was carried out at ° C. The molecular weight of the obtained polymer was 1500 in terms of polystyrene by GPC, and the pyrolysis temperature under a nitrogen atmosphere was measured by thermogravimetric analysis. The weight residue at 400 ° C. for 2 hours was 1% or less. Met.

【0047】(4)空洞多層配線形成用樹脂組成物の調
製と空洞多層配線の製造 上記により合成したポリヒドロキシアミド10.0gを
NMP50.0gに溶解した後、分子量1500のグリ
セロールジメタクリレート重合物8.0g(NMPを除
く成分での体積比率で約45%)を加えて攪拌し、空洞
多層配線形成用樹脂組成物を得た。厚さ100nmの熱
酸化膜を形成したシリコンウエハ上に、この空洞多層配
線形成用樹脂組成物をスピンコートした後、窒素雰囲気
のオーブン中で400℃2時間加熱した。その結果、厚
さ0.5μmの多孔質耐熱樹脂からなる皮膜を得た。以
下実施例1と同様にして、空洞多層配線を形成したとこ
ろ、同様に格子状の銅配線を得た。断面をSEMにより
観察し、上部の銅配線の下部も残滓なくきれいに空洞化
していた。
(4) Preparation of Resin Composition for Forming Cavity Multilayer Wiring and Production of Cavity Multilayer Wiring 10.0 g of polyhydroxyamide synthesized as above was dissolved in 50.0 g of NMP, and then a glycerol dimethacrylate polymer 8 having a molecular weight of 1500 was prepared. 0.0 g (about 45% by volume of components other than NMP) was added and stirred to obtain a resin composition for forming a hollow multilayer wiring. The resin composition for forming a hollow multilayer wiring was spin-coated on a silicon wafer on which a thermal oxide film having a thickness of 100 nm was formed, and then heated at 400 ° C. for 2 hours in an oven in a nitrogen atmosphere. As a result, a film made of a porous heat-resistant resin having a thickness of 0.5 μm was obtained. Thereafter, when a hollow multilayer wiring was formed in the same manner as in Example 1, a grid-like copper wiring was obtained in the same manner. The cross section was observed by SEM, and the lower portion of the upper copper wiring was also hollowed out without any residue.

【0048】「比較例1」実施例4の空洞多層配線形成
用樹脂組成物の調製において用いたグリセロールジメタ
クリレート重合物8.0gを添加しない以外は全て実施
例4と同様にして、空洞多層配線形成用樹脂組成物の調
製と空洞多層配線の製造を行った。耐熱樹脂の除去に
は、酸素プラズマ灰化装置で30分を要し、得られた空
洞多層配線の上部銅配線の下部には耐熱樹脂の残滓が付
着していた。
Comparative Example 1 A hollow multilayer wiring was produced in the same manner as in Example 4 except that 8.0 g of the glycerol dimethacrylate polymer used in the preparation of the resin composition for forming a hollow multilayer wiring of Example 4 was not added. Preparation of a resin composition for formation and production of a hollow multilayer wiring were performed. It took 30 minutes to remove the heat-resistant resin using an oxygen plasma incinerator, and the residue of the heat-resistant resin adhered to the lower part of the upper copper wiring of the obtained hollow multilayer wiring.

【0049】「比較例2」実施例4の空洞多層配線形成
用樹脂組成物の調製において用いたグリセロールジメタ
クリレート8.0gのかわりに分子量13000のポリ
プロピレングリコールポリエチレングリコール共重合体
(第一工業製薬(株)製、エパン785)を8.0g添
加した以外は全て実施例4と同様にして、空洞多層配線
形成用樹脂組成物の調整と空洞多層配線の製造を行っ
た。熱気化後に得られた多孔質耐熱樹脂の皮膜は、直径
0.1μm以上の空隙部を有し、銅配線のパターンが著
しく損なわれた。
Comparative Example 2 A polypropylene glycol polyethylene glycol copolymer having a molecular weight of 13,000 (Daiichi Kogyo Seiyaku Co., Ltd.) was used instead of 8.0 g of glycerol dimethacrylate used in the preparation of the resin composition for forming a hollow multilayer wiring of Example 4. Except for the addition of 8.0 g of Epan 785) manufactured by K.K., adjustment of the resin composition for forming the hollow multilayer wiring and production of the hollow multilayer wiring were performed in the same manner as in Example 4. The porous heat-resistant resin film obtained after the thermal vaporization had voids having a diameter of 0.1 μm or more, and the pattern of the copper wiring was significantly damaged.

【0050】「比較例3」実施例4の空洞多層配線形成
用樹脂組成物の調製において、耐熱性樹脂であるポリベ
ンゾオキサゾールの前駆体であるポリヒドロキシアミド
のかわりに実施例3のポリベンゾオキサゾールの合成で
得たガラス転移温度390℃のポリベンゾオキサゾール
を用いた以外は全て実施例4と同様にして、空洞多層配
線形成用樹脂の調整と空洞多層配線の製造を行った。熱
気化後に、多孔質の耐熱樹脂皮膜が得られず、耐熱樹脂
からのみなる厚さ0.3μmの皮膜となった。
Comparative Example 3 In the preparation of the resin composition for forming a hollow multilayer wiring of Example 4, the polybenzoxazole of Example 3 was used instead of polyhydroxyamide, which is a precursor of polybenzoxazole, which is a heat-resistant resin. Preparation of a hollow multilayer wiring and production of a hollow multilayer wiring were performed in the same manner as in Example 4 except that polybenzoxazole having a glass transition temperature of 390 ° C. obtained by the synthesis of was used. After heat vaporization, a porous heat-resistant resin film was not obtained, and a film made of only the heat-resistant resin and having a thickness of 0.3 μm was obtained.

【0051】実施例1〜4においては、空洞多層配線形
成用樹脂組成物を得て、それを用いた空洞多層配線が作
成できた。
In Examples 1 to 4, a hollow multilayer wiring was formed by using a resin composition for forming a hollow multilayer wiring.

【0052】比較例1では、熱気化性の成分を有してい
ないために多孔質の耐熱樹脂皮膜が形成されず、その結
果、多層配線構造作成後の除去が良好にできなかった。
In Comparative Example 1, a porous heat-resistant resin film was not formed because it did not have a heat-vaporizable component, and as a result, removal after forming the multilayer wiring structure could not be performed well.

【0053】比較例2では、添加した熱気化成分の分子
量が大きく、熱気化後の多孔質耐熱樹脂皮膜の有する空
隙の大きさが大きくなり、1μm幅の銅配線を形成する
ことができなかった。
In Comparative Example 2, the molecular weight of the heat-vaporized component added was large, the size of the voids in the porous heat-resistant resin film after heat vaporization was large, and a 1 μm-wide copper wiring could not be formed. .

【0054】比較例3では、耐熱性樹脂のガラス転移温
度が成分(A)の熱気化温度より低いために、多孔質の
耐熱樹脂皮膜を形成できず、その結果、多層配線構造を
形成後の耐熱樹脂の除去が困難であった。
In Comparative Example 3, a porous heat-resistant resin film could not be formed because the glass transition temperature of the heat-resistant resin was lower than the thermal vaporization temperature of the component (A). It was difficult to remove the heat-resistant resin.

【0055】[0055]

【発明の効果】本発明の空洞多層配線は、配線間の誘電
率を理論的限界である1にほぼ近いレベルまで低減させ
たものであり、この特性が要求される様々な分野、例え
ば半導体用の多層配線、混成集積回路や多層配線回路と
して有用であり、また本発明の空洞多層配線形成用樹脂
組成物は、従来の多層配線形成プロセスや装置を利用し
て空洞多層配線を形成することができる有用な樹脂組成
物である。
According to the hollow multilayer wiring of the present invention, the dielectric constant between wirings is reduced to a level close to a theoretical limit of 1, and various characteristics where this characteristic is required, for example, for semiconductors Is useful as a multilayer wiring, a hybrid integrated circuit or a multilayer wiring circuit, and the resin composition for forming a hollow multilayer wiring of the present invention can form a hollow multilayer wiring using a conventional multilayer wiring forming process or apparatus. It is a useful resin composition that can be used.

フロントページの続き Fターム(参考) 4J002 BC01W BC03W BF02W BG06W BG07W BG13W BH02X BJ00W CD05W CD19W CE00X CG00W CH02W CL00X CM04X CN06X EA046 EH006 EH076 EJ036 EL026 EP016 EU026 FD20W FD206 GQ05 4J043 PA02 PA19 QA08 QB26 RA34 RA35 RA52 SA06 SA08 SB01 SB02 TA22 TB02 UA111 UA121 UA122 UA131 UA132 UA561 UB011 UB121 VA011 XA13 XA19 ZB47 ZB48 5F033 HH11 QQ09 QQ12 QQ48 RR30 SS21 XX24 Continued on the front page F-term (reference) 4J002 BC01W BC03W BF02W BG06W BG07W BG13W BH02X BJ00W CD05W CD19W CE00X CG00W CH02W CL00X CM04X CN06X EA046 EH006 EH076 EJ036 EL026 EP016 EU026 FD20W19A08 QAQ2A UA111 UA121 UA122 UA131 UA132 UA561 UB011 UB121 VA011 XA13 XA19 ZB47 ZB48 5F033 HH11 QQ09 QQ12 QQ48 RR30 SS21 XX24

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 熱気化性の成分(A)と、樹脂のガラス
転移温度が成分(A)の熱気化温度より高く、かつ化学
的手段により除去することが可能な耐熱性樹脂またはそ
の前駆体(B)とを必須成分とする空洞多層配線形成用
樹脂組成物。
1. A heat-vaporizable component (A) and a heat-resistant resin or a precursor thereof which have a glass transition temperature higher than that of the component (A) and which can be removed by chemical means. And (B) as essential components.
【請求項2】 熱気化性の成分(A)が、プロピレンオ
キサイド、エチレンオキサイド、メチルメタクリレー
ト、スチレン及びカーボナートからなる群から選ばれる
繰り返し単位を有するオリゴマーもしくはポリマーであ
る請求項1記載の空洞多層配線形成用樹脂組成物。
2. The hollow multilayer wiring according to claim 1, wherein the heat-vaporizable component (A) is an oligomer or a polymer having a repeating unit selected from the group consisting of propylene oxide, ethylene oxide, methyl methacrylate, styrene and carbonate. Forming resin composition.
【請求項3】 熱気化性の成分(A)が、分子量が10
0〜10000であるオリゴマーもしくはポリマーであ
る請求項1記載の空洞多層配線形成用樹脂組成物。
3. The heat-vaporizable component (A) having a molecular weight of 10
The resin composition according to claim 1, which is an oligomer or a polymer having a molecular weight of 0 to 10,000.
【請求項4】 熱気化性の成分(A)が、樹脂組成物の
常温で占める体積に於いて、25〜85%を占める請求
項1記載の空洞多層配線形成用樹脂組成物。
4. The resin composition according to claim 1, wherein the thermally vaporizable component (A) accounts for 25 to 85% of the volume of the resin composition at room temperature.
【請求項5】 耐熱性樹脂またはその前駆体(B)が、
ポリイミド樹脂またはポリイミド前駆体である請求項1
記載の空洞多層配線形成用樹脂組成物。
5. The heat-resistant resin or a precursor (B) thereof,
2. A polyimide resin or a polyimide precursor.
The resin composition for forming a hollow multilayer wiring according to the above.
【請求項6】 耐熱性樹脂またはその前駆体(B)が、
ポリベンゾオキサゾール樹脂またはポリベンゾオキサゾ
ール前駆体である請求項1記載の空洞多層配線形成用樹
脂組成物。
6. The heat-resistant resin or a precursor (B) thereof,
The resin composition according to claim 1, which is a polybenzoxazole resin or a polybenzoxazole precursor.
【請求項7】 耐熱性樹脂またはその前駆体(B)が、
炭素、水素、酸素、窒素、硫黄から選ばれる元素のみで
構成される請求項1記載の空洞多層配線形成用樹脂組成
物。
7. The heat-resistant resin or a precursor (B) thereof,
The resin composition for forming a hollow multilayer wiring according to claim 1, wherein the resin composition is composed of only an element selected from carbon, hydrogen, oxygen, nitrogen, and sulfur.
【請求項8】 請求項1〜7記載のいずれかに記載の空
洞多層配線形成用樹脂組成物を用いて、成分(A)の熱
気化温度より高い温度および耐熱性樹脂もしくはその前
駆体を閉環させた樹脂のガラス転移温度以下で熱処理す
ることにより多孔質の耐熱性樹脂構造を作成し、かかる
構造に金属からなる配線を埋め込み、あるいは積層した
後に、化学的手段によってかかる多孔質の耐熱性樹脂構
造を除去することにより得られたことを特徴とする空洞
多層配線。
8. A resin composition for forming a hollow multilayer wiring according to any one of claims 1 to 7, wherein a temperature higher than the thermal vaporization temperature of the component (A) and a heat-resistant resin or a precursor thereof are closed. A porous heat-resistant resin structure is created by heat-treating the resin at a temperature lower than the glass transition temperature of the resin, and after embedding or laminating wiring made of metal in the structure, the porous heat-resistant resin is formed by chemical means. A hollow multilayer wiring obtained by removing a structure.
【請求項9】 化学的手段が、溶剤による溶解であるこ
とを特徴とする請求項8記載の空洞多層配線。
9. The hollow multilayer wiring according to claim 8, wherein the chemical means is dissolution by a solvent.
【請求項10】 化学的手段が、減圧下でプラズマによ
り活性化された気体による分解であることを特長とする
請求項8記載の空洞多層配線。
10. The hollow multilayer wiring according to claim 8, wherein the chemical means is decomposition by a gas activated by plasma under reduced pressure.
JP2000041772A 2000-02-18 2000-02-18 Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same Pending JP2001226599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000041772A JP2001226599A (en) 2000-02-18 2000-02-18 Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041772A JP2001226599A (en) 2000-02-18 2000-02-18 Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same

Publications (1)

Publication Number Publication Date
JP2001226599A true JP2001226599A (en) 2001-08-21

Family

ID=18564944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041772A Pending JP2001226599A (en) 2000-02-18 2000-02-18 Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same

Country Status (1)

Country Link
JP (1) JP2001226599A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024785A1 (en) * 2000-09-21 2002-03-28 Sumitomo Bakelite Company, Ltd. Heat-resistant resin precursor, heat-resistant resin and insulating film and semiconductor device
US6518390B2 (en) 2000-03-29 2003-02-11 Sumitomo Bakelite Company, Ltd. Precursor of a heat resistant resin, heat resistant resin, insulating film and semiconductor device
JP2010202679A (en) * 2009-02-27 2010-09-16 Lintec Corp Block copolymer for forming porous polyimide, porous polyimide, and insulating material
JP2011100032A (en) * 2009-11-06 2011-05-19 Hitachi Displays Ltd Liquid crystal display device
WO2023182195A1 (en) * 2022-03-24 2023-09-28 日産化学株式会社 Composition for forming cavity

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250155A (en) * 1987-04-07 1988-10-18 Nec Corp Manufacture of semiconductor device
JPS63278943A (en) * 1987-05-11 1988-11-16 Nok Corp Production of porous body
JPH05182518A (en) * 1991-05-03 1993-07-23 Internatl Business Mach Corp <Ibm> Low dielectric-constant composite laminate filled with molecular porous aerogel
JPH05205526A (en) * 1991-09-13 1993-08-13 Internatl Business Mach Corp <Ibm> Foamed polymer for usage as dielectric material
JPH06293834A (en) * 1993-02-10 1994-10-21 Unitika Ltd Film-forming solution, porous film produced therefrom and porous coating film
JPH0927545A (en) * 1995-07-11 1997-01-28 Sony Corp Manufacture of semiconductor device
JPH09129726A (en) * 1995-10-26 1997-05-16 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH10316853A (en) * 1997-05-15 1998-12-02 Sumitomo Bakelite Co Ltd Resin composition for interlaminar insulating membrane for multilayer interconnection of semiconductor, and production of the insulating membrane
JPH11186381A (en) * 1997-12-18 1999-07-09 Oki Electric Ind Co Ltd Wiring structure and method of forming the same
JP2000044719A (en) * 1998-07-22 2000-02-15 Minnesota Mining & Mfg Co <3M> Porous polyimide, its precusor and manufacture of porous polyimide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250155A (en) * 1987-04-07 1988-10-18 Nec Corp Manufacture of semiconductor device
JPS63278943A (en) * 1987-05-11 1988-11-16 Nok Corp Production of porous body
JPH05182518A (en) * 1991-05-03 1993-07-23 Internatl Business Mach Corp <Ibm> Low dielectric-constant composite laminate filled with molecular porous aerogel
JPH05205526A (en) * 1991-09-13 1993-08-13 Internatl Business Mach Corp <Ibm> Foamed polymer for usage as dielectric material
JPH06293834A (en) * 1993-02-10 1994-10-21 Unitika Ltd Film-forming solution, porous film produced therefrom and porous coating film
JPH0927545A (en) * 1995-07-11 1997-01-28 Sony Corp Manufacture of semiconductor device
JPH09129726A (en) * 1995-10-26 1997-05-16 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH10316853A (en) * 1997-05-15 1998-12-02 Sumitomo Bakelite Co Ltd Resin composition for interlaminar insulating membrane for multilayer interconnection of semiconductor, and production of the insulating membrane
JPH11186381A (en) * 1997-12-18 1999-07-09 Oki Electric Ind Co Ltd Wiring structure and method of forming the same
JP2000044719A (en) * 1998-07-22 2000-02-15 Minnesota Mining & Mfg Co <3M> Porous polyimide, its precusor and manufacture of porous polyimide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518390B2 (en) 2000-03-29 2003-02-11 Sumitomo Bakelite Company, Ltd. Precursor of a heat resistant resin, heat resistant resin, insulating film and semiconductor device
WO2002024785A1 (en) * 2000-09-21 2002-03-28 Sumitomo Bakelite Company, Ltd. Heat-resistant resin precursor, heat-resistant resin and insulating film and semiconductor device
JP2010202679A (en) * 2009-02-27 2010-09-16 Lintec Corp Block copolymer for forming porous polyimide, porous polyimide, and insulating material
JP2011100032A (en) * 2009-11-06 2011-05-19 Hitachi Displays Ltd Liquid crystal display device
WO2023182195A1 (en) * 2022-03-24 2023-09-28 日産化学株式会社 Composition for forming cavity

Similar Documents

Publication Publication Date Title
KR100859275B1 (en) Process for producing porous polyimide resin and porous polyimide resin
US20010040294A1 (en) Porous dielectric material and electronic devices fabricated therewith
JPH07105386B2 (en) Method for forming patterned polyimide film
KR20010051941A (en) Photosensitive resin composition, porous resin, circuit board, and wireless suspension board
JP2011132390A (en) Resin composition for forming porous polyimide
JP2001226599A (en) Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same
JP2001098160A (en) Resin composition for insulating material and insulating material using the same
JP3632684B2 (en) Semiconductor device and semiconductor package
JP3681106B2 (en) Organic insulating film material and organic insulating film
JP2002003724A (en) Insulating material and method of producing the same
Mochizuki et al. Development of photosensitive porous polyimide with low dielectric constant
JP2014214167A (en) Method for producing unfired composite film, polyimide-fine particle composite film, and porous polyimide film
JP2002220564A (en) Coating varnish for insulation film and insulation film by using the same
TW200539241A (en) Surface modification of a porous organic material through the use of a supercritical fluid
JP2001011181A (en) Resin composition for electrical insulation material and electrical insulation material using the same
JP2004087336A (en) Insulating film material, coating varnish for insulating film and insulating film using this
JP2003292615A (en) Material for insulating film, coating varnish for insulating film and insulating film using the sames and semiconductor device
KR100559056B1 (en) Insulating layer having low dielectric constant used for semiconductor, method for producing the same and precursor composition for producing the same
JP2002356577A (en) Resin for porous insulating film, porous insulating film and production method thereof
JP2001332544A (en) Method of manufacturing insulating material
JP2001215701A (en) Photosensitive resin composition, porous resin, circuit board and suspension substrate with circuit
JPH0782482A (en) Polymer complex and its production
JPH02167741A (en) Preparation of metal/polyimide composite
JPH06310490A (en) Manufacture of wiring structure
JP2001217234A (en) Insulation material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406