JP4590690B2 - Resin composition for insulating material and insulating material using the same - Google Patents

Resin composition for insulating material and insulating material using the same Download PDF

Info

Publication number
JP4590690B2
JP4590690B2 JP2000188372A JP2000188372A JP4590690B2 JP 4590690 B2 JP4590690 B2 JP 4590690B2 JP 2000188372 A JP2000188372 A JP 2000188372A JP 2000188372 A JP2000188372 A JP 2000188372A JP 4590690 B2 JP4590690 B2 JP 4590690B2
Authority
JP
Japan
Prior art keywords
insulating material
resin
temperature
acid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000188372A
Other languages
Japanese (ja)
Other versions
JP2002008446A (en
Inventor
忠啓 石川
尚史 榎
進弘 東田
雅則 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000188372A priority Critical patent/JP4590690B2/en
Publication of JP2002008446A publication Critical patent/JP2002008446A/en
Application granted granted Critical
Publication of JP4590690B2 publication Critical patent/JP4590690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は絶縁材に関するものであり、更に詳しくは電気・電子機器用、回路基板材料用、半導体装置用として優れた特性を有する絶縁材用樹脂組成物、及びこれを用いた絶縁材に関するものである。
【0002】
【従来の技術】
電気・電子機器用、回路基板材料用、半導体装置用材料に求められている特性のなかで、電気特性と耐熱性は最も重要な特性である。特に、回路の微細化と信号の高速化に伴い、誘電率の低い絶縁材料が要求されている。この2つの特性を両立させるための材料として耐熱性樹脂を用いた絶縁材が期待されている。例えば従来から用いられている二酸化ケイ素等の無機材料の絶縁材は高耐熱性を示すが、誘電率が高く、要求特性がより厳しさを増している現状では、前述の特性について両立が困難になりつつある。
【0003】
ポリイミド樹脂に代表される耐熱性樹脂は、電気特性と耐熱性に優れており、上記2つの特性を両立させることが可能であり、実際にプリント回路のカバーレイや半導体装置のパッシベーション膜などに用いられている。
【0004】
しかしながら近年の半導体の高機能化、高性能化に伴い、電気特性や耐熱性について更なる大幅な向上が必要とされるようになってきている。特に誘電率については、2.5以下の低誘電率材料が望まれており、従来の絶縁材では要求特性に到達していない。
【0005】
その解決手段の1つとして、微細な空隙を有する絶縁材が挙げられ、盛んに研究が行われており、空隙内部を誘電率1の空気で満たすことにより絶縁材の誘電率をさらに低減させることを可能とするもので、具体的には、高耐熱性樹脂をマトリックスとし、そこに熱分解性樹脂を添加し、加熱工程により、この熱分解性樹脂を分解・揮散させて、空隙を形成させるものである。これまでは、例えば、ポリイミド及び溶剤から成る樹脂組成物にポリイミド以外の熱分解性樹脂を加え、加熱工程によりこの熱分解性樹脂を分解させて空隙を形成することにより絶縁材の誘電率を低減させることが試みられている。しかし、ポリイミド等の耐熱性樹脂と熱分解性樹脂が相溶すると組成物全体のガラス転移温度が低下してしまうために、熱分解性樹脂を分解・揮散させる際に空隙が潰れてしまい、誘電率を低減させる効果が発現しない場合がある。一方、ポリイミド等の耐熱性樹脂と相溶しない熱分解性樹脂を用いた場合は、たとえ相分離構造を形成し得たとしても、絶縁材用樹脂組成物が保存中に不均一になって使用できないという問題が有ったり、熱分解性樹脂を分解させる際の加熱工程等に多大な労力を要するものであった。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような低誘電率絶縁材の現状を鑑み、極めて低い誘電率と良好な絶縁性を示すとともに耐熱性および吸水性にも優れた新規な絶縁材用樹脂組成物及びこれを用いた絶縁材を提供する事を目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、前記従来の問題点を鑑み、鋭意検討を重ねた結果、以下の手段により本発明を完成するに至った。
【0008】
すなわち、本発明は、1〜4項に記載の絶縁材用樹脂組成物及び5項に記載の絶縁材を提供する。
1.有機化合物(A)と、耐熱性樹脂又はその前駆体(B)とを必須成分とする絶縁材用樹脂組成物において、耐熱性樹脂又はその前駆体(B)が、有機化合物(A)の熱分解温度または昇華温度より高いガラス転移温度を有することを特徴とする絶縁材用樹脂組成物。
【0009】
2.有機化合物(A)が、好ましくは、前駆体(B)の閉環温度開始温度よりも高い融点を有することを特徴とする前記1項記載の絶縁材用樹脂組成物。
【0010】
3.耐熱性樹脂又はその前駆体(B)が、好ましくは、ポリイミド樹脂又はポリイミド前駆体である前記1又は2項記載の絶縁材用樹脂組成物。
【0011】
4.耐熱性樹脂又はその前駆体(B)が、好ましくは、ポリベンゾオキサゾール樹脂又はポリベンゾオキサゾール前駆体である前記1又は2項記載の絶縁材用樹脂組成物。
【0012】
5.請求項1〜4のいずれかに記載の絶縁材用樹脂組成物を用いて、有機化合物(A)の熱分解温度より高い温度で、且つ、耐熱性樹脂またはその前駆体(B)より得られる樹脂のガラス転移温度以下で熱処理する工程を有する方法で製造されたことを特徴とする絶縁材。
【0013】
【発明の実施の形態】
本発明の絶縁材用樹脂組成物は、有機化合物(A)と、樹脂のガラス転移温度が、有機化合物(A)の熱分解温度もしくは昇華温度より高い耐熱性樹脂または前記耐熱性樹脂を生成する前駆体(B)とを必須成分として成るものである。前記前駆体より耐熱性樹脂を生成する方法としては、加熱による反応もしくは化学的閉環反応のいずれであっても良い。有機化合物(A)と耐熱性樹脂またはその前駆体(B)以外の成分として溶剤を用いることが可能である。
【0014】
本発明の絶縁材用樹脂組成物は、通常、溶媒に溶解しワニスとして、基板等の上に塗布して加熱・製膜したり、ガラスクロス等に含浸させて加熱することにより、絶縁材とすることができる。この加熱工程において、まず加熱乾燥することにより、有機化合物(A)は溶媒を含む組成物の均一状態から析出し、それに伴い耐熱性樹脂またはその前駆体(B)と相分離を生じることにより、耐熱性樹脂またはその前駆体(B)が有する本来の高いガラス転移温度が発現する。次いで、有機化合物(A)の融点より低い温度で樹脂を硬化させて、相分離構造を形成させる。また、耐熱性樹脂前駆体を用い、加熱により樹脂を生成する場合は、有機化合物(A)より低い温度で、前駆体(B)より樹脂を生成させることにより、樹脂が硬化させて相分離構造を形成させることが好ましい。さらに、加熱温度を、有機化合物(A)が熱分解する温度より高い温度で、且つ、耐熱性樹脂またはその前駆体(B)より得られる樹脂のガラス転移温度以下の温度まで上昇させるが、耐熱性樹脂またはその前駆体(B)より得られる樹脂のガラス転移温度に到達する前に、有機化合物(A)が熱分解または昇華して揮散することにより微細な空隙を形成させて、低い誘電率の絶縁材を得ることが出来るものである。
【0015】
本発明に用いる有機化合物(A)の例を挙げると、1−(4−ニトロフェニルアゾ)−2−ナフトール、2−(4−イミダゾリル)エチルアミン、ネプシロン−アセチル−L−リシン、αーシアノ−4−ヒドロキシけい皮酸、2,2−ジヒドロキシ−1,3−インダンジオン、テトラクロロフタロニトリル、トリクロロイソシアヌール酸、2,4,6−トリヒドロキシピリミジン、N−(p−メトキシフェニル)−p−フェニレンジアミン、DL−3−フルオロフェニルアラニン、3−ヒドロキシ−4−メトキシ安息香酸、3−ヒドロキシ−2−ナフトエ酸アニリド、エチレンジアミン四酢酸、2−カルボキシ−3−カルボキシメチル−4−イソプロペニルピロリジン、(+)−3’,5’−o−(1,1,3,3−テトライソプロピル−1,3−ジシロキサンジイル)シチジン、2,5−ビス(4−アミノフェニル)−1,3,4−オキサジアゾール、1,9−ジメチル−メチレンブルー、ネプシロン−(tert−ブトキシカルボニル)−L−リシン、1−(4−(trans−4−ブチルシクロヘキシル)フェニル)−2−(trans−4−(4−イソチオシアネートフェニル)シクロヘキシル)エタン、クマリン337、2,2’−ビス(3−ヒドロキシ−1,4−ナフトキノン)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、7−ニトロ−4−フルオレンカルボン酸、4−アミノ−5−(4−ピリジル)−4H−1,2,4−トリアゾール−3−チオール、5−(4−(2−ピリジルスルファモイル)フェニルアゾ)サリチル酸、(インダン−1,3−ジイリデン)ジマロノニトリル、2,4−ジフルオロフェニルボロン酸、6−ヒドロキシ−2−ナフトエ酸、オクタキス(ジメチルシリルオキシ)シルセスキオキサン、5−ブロモイサチン、4−(フェニルアゾ)安息香酸、エチル−2−チオウラシル−5−カルボキシレート、12β−ヒドロキシジギトキシン、L−アスパルチル−L−フェニルアラニンメチルエステル、1−メチル−DL−トリプトファン、3,4−デヒドロ−L−プロリン、アセナフトキノン、4−クロロけい皮酸、5−ホルミルサリチル酸、9−(β−d−リボフラノシル)グアニン、4−ヒドロキシ−9−フルオレノン、3−ヒドロキシ−1H−インダゾール、6−ニトロ−3,4−ベンゾクマリン、1,4−フェニレン二酢酸、2,6−ピリジンジカルボン酸、2,4,6−トリアミノピリミジン、4’,5,7−トリヒドロキシフラバノン、6−フルオロ−DL−トリプトファン、1,2−ジヒドロキシアントラキノン、3−フルオロ−DL−チロシン、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン、ジチオウラシル、3,4,7,8−テトラメチル−1,10−フェナントロリン、4,4’−ビフェノール、3−キノリンカルボン酸、L−エチオニン、5,6−ジヒドロウラシル、ヘキサメチレンテトラミン、4,5−イミダゾールジカルボン酸、2−アミノプリン、7−ヒドロキシ−3,4,8−トリメチルクマリン、1,3−ジヒドロキシ−9−アクリジンカルボン酸、7−アミノ−4−メチル−2(1H)−キノリノン、2,3−ナフタレンジカルボキシアミド、ペリレン、4,4’−ビス((4−クロロフェニル)スルホニル)−1,1’−ビフェニル、D−アスパラギン、1−ヒドリド−3,5,7,9,11,13,15−ヘプタシクロペンチルペンタシクロ(9.5.1.13,9.15,15.17,13)オクタシロキサン、(R)−(−)−2−(2,5−ジヒドロフェニル)グリシン、5−フルオロウラシル、5−アミノサリチル酸、ランチオニン、DL−メチオニン、L−トリプトファン、3−(3−ヒドロキシフェニル)−DL−アラニン、3−(3,4−ジヒドロキシフェニル)−DL−アラニン、DL−アラニン、L−ヒスチジン、L−イソロイシン、3−(3,4−ジヒドロキシフェニル)−L−アラニン、D−アラニン、DL−2−アミノブチル酸、DL−バリン、DL−ロイシン、ヒドロキシエチルセルロース、1,2,4,5−ベンゼンテトラカルボン酸、2,4−ジアミノ−6−ヒドロキシピリミジン、18β−グリシルレチン酸、2−ピペリジンカルボン酸、2−フェニルグリシン、L−バリン、2−アミノニコチン酸、6−アミノ−1,3−ジメチルウラシル、フマルアミド、3,6−ジメチル−2,5−ピペラジンジオン、DL−バリン、DL−ロイシン、1,2−ジヒドロ−6−メチル−2−オキソ−3−ピリジンカルボニトリル、アントラキノン、2,4−ジヒドロキシピリミジン−5−カルボン酸、DL−アスパルチン酸、テレフタル酸、1,1,4,5−ベンゼンテトラカルボン酸二無水物、2,4−ジヒドロキシ−5,6−ジメチルピリミジン、2,5−ジアミノベンゼンスルホン酸、フマル酸、2−(4−チアゾリル)ベンズイミダゾール、3,5,7,9,11,13,15−ヘプタシクロペンチルペンタシクロ(9.5.1.13,9.15,15.17,13)オクタシロキサンー1−ブチロニトリル、3,5,7,9,11,13,15−ヘプタシクロペンチルペンタシクロ(9.5.1.13,9.15,15.17,13)オクタシロキサンー1−オール、6−クロロ−1,2−ジヒドロ−4H−3,1−ベンゾオキサジン−2,4−ジオン、DL−5−ヒドロキシトリプトファン、1,8−ナフタルイミド、L−バリン、2,4−ジヒドロキシ−5−メチルピリミジン、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、4−ニトロイミダゾール、2,6−ピリジンジカルボキシアミド、3−(4−ヒドロキシフェニル)−DL−アラニン、2−(3−スルホベンゾイル)ピリジン−2−ピリジルヒドラゾン、(2−ヒドロキシエチル)トリメチルアンモニウムクロリド、4−ヒドロキシアニリン、シラトラングリコール、4−tert−ブチルカリックス(4)アレン、L−アラニン、トリエチルメチルアンモニウムブロミド、1−アミノ−1−シクロペンタンカルボン酸、4−tert−ブチルカリックス(6)アレン、2,5−ジクロロ−3,6−ジヒドロキシ−1,4−ベンゾキノン、2,6−ジヒドロキシ−4−メチル−3−ピリジンカルボニトリル、4−クロロベンゾヒドラジンヒドロクロライド、2−アミノテレフタル酸、2,4−ジヒドロキシ−6−メチルピリミジン、4,4’−スルホニルビス(2,6−ジメチルフェノール)、3,6−ジヒドロキシピリダジン、イソニコチン酸、4−アザトリシクロ(4.3.1.13,8)ウンデカン−5−オン、イソフタル酸、6,11−ジヒドロキシ−5,12−ナフタセンジオン、2−メルカプトベンゾイミダゾール、3−シアノ−7−ヒドロキシ−4−メチルクマリン、(R)−(−)−2−フェニルグリシン、5−(4−ピリジル)−1H−1,2,4−トリアゾール−3−チオール、オクタフェニルシクロテトラシラン、DL−チロシン等であるがこれらに限られるものではない。これらのうち、DL−バリン、DL−ロイシン、18β−グリシルレチン酸、2−ピペリジンカルボン酸、2−フェニルグリシン、L−バリン、DL−バリン、DL−ロイシン、アントラキノン、DL−アスパルチン酸、テレフタル酸、1,1,4,5−ベンゼンテトラカルボン酸二無水物、フマル酸、L−バリン、2,6−ピリジンジカルボキシアミド、2−(3−スルホベンゾイル)ピリジン−2−ピリジルヒドラゾン、シラトラングリコール、L−アラニン、1−アミノ−1−シクロペンタンカルボン酸、2,6−ジヒドロキシ−4−メチル−3−ピリジンカルボニトリル、2−アミノテレフタル酸、2,4−ジヒドロキシ−6−メチルピリミジン、イソニコチン酸、イソフタル酸、(R)−(−)−2−フェニルグリシン、オクタフェニルシクロテトラシラン、DL−チロシンは熱分解挙動の点で好適である。また、これらのうち一種のみを用いてもよく、2種以上を混合して用いてもよい。
【0016】
本発明に用いる耐熱性樹脂または耐熱性樹脂前駆体(B)の例を挙げると、ポリイミド、ポリアミド酸、ポリアミド酸エステル、ポリイソイミド、ポリアミドイミド、ポリアミド、ビスマレイミド、ポリベンゾオキサゾール、ポリヒドロキシアミド、ポリベンゾチアゾール等であるがこれらに限られるものではない。これらの中でもポリイミド樹脂とポリアミド酸、ポリアミド酸エステル、ポリイソイミド等のポリイミド前駆体、ポリベンゾオキサゾール樹脂とポリヒドロキシアミド等のポリベンゾオキサゾール前駆体は耐熱性が高く好ましい。
【0017】
本発明の絶縁材用樹脂組成物をワニスとする場合に用いる有機溶剤としては、上記有機化合物(A)と耐熱性樹脂またはその前駆体(B)を完全に溶解する溶媒が好ましく、例えばN−メチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルアセトアミド、ジメチルスルホキシド、セロソルブ、ブチルセロソルブ、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、セロソルブアセテート、ブチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、1,3−ブチレングリコールアセテート、乳酸エチル、乳酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、テトラヒドロキシフラン等が挙げられるがこれらに何ら限定されるものではない。またこれらのうち1種のみを用いてもよく、2種以上組み合わせて同時に用いることもできる。さらに、塗布性や含浸性を向上させるために、少量の界面活性剤を添加してもよい。
【0018】
本発明の絶縁材の誘電率を低減するために形成される微小な空隙は、非連続性の独立気泡であり、その直径が50nm以下のものであり、好ましくは10nm以下のものである。また、微小な空隙の割合として好ましくは、絶縁材の形成物全体に対し、5〜60vol%、より好ましくは10〜50vol%である。添加量が5vol%未満では、前記有機化合物(A)の添加による誘電率の低減効果が十分に発現され得ない。一方、添加量が60vol%を越えると、樹脂の機械特性や密着性が著しく低下してしまい好ましくない。
【0019】
本発明の絶縁材用樹脂組成物は、各成分が前記空隙を形成する範囲で配合され、これらを均一に混合溶解して得られる。配合割合は、成分(A)と成分(B)との重量比(A/B)が5/95から60/40、より好ましくは10/90から50/50である。この時、前記成分(A)と成分(B)の組合せは、成分(A)の熱分解温度又は昇華温度に対し、樹脂のガラス転移温度が高い成分(B)が選ばれ、特に、成分(B)が前駆体の場合は、さらに、成分(A)が該前駆体の閉環開始温度より高い融点を有することが好ましい。この時、例えば、閉環開始温度が、250℃程度のポリベンゾオキサゾール前駆体を耐熱性樹脂(A)成分として、用いる場合は、250℃より高い融点を有する有機化合物(B)を用いることで、耐熱性樹脂(A)と有機化合物(B)との相分離構造が得られる。
【0020】
本発明の絶縁材の製造方法の例としては、当該樹脂組成物を前記の有機溶媒に10から30wt%溶解させ、適当な支持体、例えば、ガラス、繊維、金属、シリコンウエハー、セラミック基板等に塗布する。その塗布方法は、浸漬、スクリーン印刷、スプレー塗布、回転塗布、ロールコーティング等が挙げられ、塗布後に加熱乾燥して溶媒を除去し、タックフリーな塗膜とすることができる。その後、耐熱性樹脂又はその前駆体(B)成分を、加熱硬化の場合は、好ましくは有機化合物(A)の融点以下の温度で硬化させるか、または化学的閉環反応による硬化をさせることにより、耐熱性樹脂成分と有機化合物成分とが相分離した、所期の絶縁材の膜を形成することができる。使用用途によっては、溶剤の揮発除去のみにとどめ、所定の工程を行った後、加熱硬化または化学的閉環反応による硬化をさせることも可能である。また、ガラス繊維布やその他の布、紙等の基材に含浸して乾燥し、プリプレグとすることができる。含浸方法は、刷毛塗り、吹き付け、浸漬などを利用することができ、加熱乾燥して溶剤を除去しただけのもの、部分的に硬化させたものを得ることができる。さらに、膜を、有機化合物(A)の熱分解温度より高い温度で、且つ、耐熱性樹脂またはその前駆体(B)より得られる樹脂のガラス転移温度以下で熱処理することにより、膜中の有機化合物(A)を気化、揮散させて本発明の絶縁材を得ることができる。なお、加熱硬化は揮散した成分を排気できる加熱装置で行うことが好ましい。このようにして得られた本発明の絶縁材は、例えば、半導体用の層間絶縁膜、多層回路の層間絶縁膜等として用いることができる。
【0021】
【実施例】
以下に実施例により本発明を具体的に説明するが、本発明は、これらによって何ら限定されるものではない。
【0022】
「実施例1」
(1)ポリイミド樹脂の合成
攪拌装置、窒素導入管、原料投入口を備えたセパラブルフラスコ中、2,2−ビス(4−(4,4’−アミノフェノキシ)フェニル)ヘキサフルオロプロパン5.18g(0.01mol)と2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル9.60g(0.03mol)を、乾燥したN−メチル−2−ピロリドン(以下NMPと略す)200gに溶解する。乾燥窒素下、10℃に溶液を冷却して、ビフェニルテトラカルボン酸二無水物2.94g(0.01mol)とヘキサフルオロイソプロピリデン−2,2’−ビス(フタル酸無水物)13.32g(0.03mol)を添加した。添加してから5時間後に室温まで戻し、室温で2時間攪拌し、ポリイミド前駆体であるポリアミド酸の溶液を得た。
このポリアミド酸溶液に、ピリジン50gを加えた後、無水酢酸5.1g(0.05mol)を滴下し、系の温度を70℃に保って、7時間イミド化反応を行った。
この溶液を20倍量の水中に滴下して沈殿を回収し、60℃で72時間真空乾燥して耐熱性樹脂であるポリイミド樹脂の固形物を得た。ポリイミド樹脂の分子量は数平均分子量26000,重量平均分子量54000であった。
【0023】
(2)耐熱性樹脂のガラス転移温度の測定
上記により合成したポリイミド樹脂5.0gをNMP15.0gに溶解し、離型処理したガラス基板上に塗布した後、オーブン中120℃で30分保持後、230℃で90分保持して成膜し、基板から膜を剥がした後、さらに400℃で90分加熱し、ポリイミド樹脂のフィルムとした。このポリイミド樹脂のガラス転移温度を示差走査熱量計により測定したところ、335℃であった。
【0024】
(3)有機化合物(A)の融点および熱分解温度の測定
2−アミノテレフタル酸の融点および熱分解温度を窒素雰囲気下で熱重量分析により測定したところ、融点324℃(分解)であった。
【0025】
(4)絶縁材用樹脂組成物の調製と絶縁材の製造
上記により合成したポリイミド樹脂10.0gを、NMP50.0gに溶解した後、上記の2−アミノテレフタル酸2.0gを加えて攪拌し、絶縁材用樹脂組成物を得た。
厚さ200nmのタンタルを成膜したシリコンウエハ上に、この絶縁材用樹脂組成物をスピンコートした後、窒素雰囲気のオーブン中で加熱硬化した。加熱処理は、120℃で30分間、230℃で120分間、315℃で180分間の順で保持した後、更に335℃まで温度を上げた後、15分間で200℃まで温度を下げ、さらに60分間で室温まで温度を戻して行った。このようにして、厚さ800nmの絶縁材の被膜を得た。この絶縁材の皮膜上に、面積0.1cm2のアルミの電極を蒸着により形成し、基板のタンタルとの間のキャパシタンスをLCRメーターにより測定した。膜厚、電極面積、キャパシタンスから絶縁材の誘電率を算出したところ、2.4であった。また、絶縁材の密度を密度勾配管により求めたところ、1.10であった。2−アミノテレフタル酸を添加せず、空隙が全くない場合の密度は1.41であったので、これから空隙率は22.0%と算出された。さらにTEMで絶縁材皮膜の断面を観察したところ、平均孔径が9nmの空隙が均一に且つ非連続で分散していることが分かった。
【0026】
「実施例2」
(1)ポリイミド前駆体の合成
実施例1のポリイミド樹脂の合成においてポリイミド前駆体の合成に用いた2,2−ビス(4−(4,4’−アミノフェノキシ)フェニル)ヘキサフルオロプロパン5.18g(0.01mol)と2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル9.60g(0.03mol)とを4,4’−ジアミノジフェニルエーテル8.01g(0.04mol)に、ビフェニルテトラカルボン酸二無水物2.94g(0.01mol)とヘキサフルオロイソプロピリデン−2,2’−ビス(フタル酸無水物)13.32g(0.03mol)とをピロメリット酸二無水物8.72g(0.04mol)に代えた以外は、実施例1と同様にしてポリイミド前駆体であるポリアミド酸の溶液を得た。この溶液を20倍量の水中に滴下して沈殿を回収し、25℃で72時間真空乾燥して耐熱性樹脂であるポリイミドの前駆体であるポリアミド酸の固形物を得た。得られたポリアミド酸の数平均分子量は27000,重量平均分子量は55000であった。
【0027】
(2)ポリイミド前駆体の閉環開始温度の測定
上記により合成したポリアミド酸の閉環開始温度を示差走査熱量計により測定したところ、120℃であった。
【0028】
(3)耐熱性樹脂のガラス転移温度の測定
上記により合成したポリアミド酸5.0gをNMP20.0gに溶解し、離型処理したガラス基板上に塗布した後、オーブン中100℃で30分保持後、250℃で90分保持して成膜し、基板から膜を剥がした後、さらに450℃で90分加熱し、耐熱性樹脂であるポリイミド樹脂のフィルムとした。このポリイミド樹脂のガラス転移温度を示差走査熱量計により測定したところ、419℃であった。
【0029】
(4)有機化合物(A)の融点および熱分解温度の測定
2,6−ピリジンジカルボキシアミドの融点および熱分解温度を窒素雰囲気下で熱重量分析により測定したところ、融点317℃、熱分解温度373℃であった。
【0030】
(5)絶縁材用樹脂組成物の調製と絶縁材の製造
上記により合成したポリアミド酸10.0gをNMP50.0gに溶解した後、高純度の2,6−ピリジンジカルボキシアミド2.0g加えて攪拌し、絶縁材用樹脂組成物を得た。
厚さ200nmのタンタルを成膜したシリコンウエハ上に、この絶縁材用樹脂組成物をスピンコートした後、窒素雰囲気のオーブン中で加熱硬化した。加熱処理は、120℃で30分間、260℃で120分間の順で保持した後、さらに400℃で90分間保持した後、20分間で200℃まで温度を下げ、さらに40分間で室温まで温度を戻して行った。このようにして、厚さ700nmの絶縁材の被膜を得た。以下実施例1と同様にして、この耐熱性樹脂の誘電率を測定したところ2.4であった。また、絶縁材の密度を密度勾配管により求めたところ、1.13であった。2,6−ピリジンジカルボキシアミドを添加せず、空隙が全くない場合の密度は1.43であったので、これから空隙率は21.0%と算出された。さらにTEMで絶縁材皮膜の断面を観察したところ、平均孔径が8nmの空隙が均一に且つ非連続で分散していることが分かった。
【0031】
「実施例3」
(1)ポリベンゾオキサゾール樹脂の合成
4,4’−ヘキサフルオロイソプロピリデンジフェニル−1,1’−ジカルボン酸25g、塩化チオニル45ml及び乾燥ジメチルホルムアミド0.5mlを反応容器に入れ、60℃で2時間反応させた。反応終了後、過剰の塩化チオニルを加熱及び減圧により留去した。残査を、ヘキサンを用いて再結晶を行い、4,4’−ヘキサフルオロイソプロピリデンジフェニル−1,1’ジカルボン酸クロリド15gを得た。
攪拌装置、窒素導入管、滴下漏斗を付けたセパラブルフラスコ中、2,2−ビス(3ーアミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン7.32g(0.02mol)を、乾燥したジメチルアセトアミド100gに溶解し、ピリジン3.96g(0.05mol)を添加後、乾燥窒素導入下、−15℃でジメチルアセトアミド50gに、上記により合成した4,4’−ヘキサフルオロイソプロピリデンジフェニル−1,1’−ジカルボン酸クロリド8.58g(0.02mol)を溶解したものを30分間掛けて滴下した。滴下終了後、室温まで戻し、室温で5時間攪拌した。その後、反応液を水1000ml中に滴下し、沈殿物を集め、40℃で48時間真空乾燥することによりポリベンゾオキサゾール前駆体であるポリヒドロキシアミドの固形物を得た。
このポリヒドロキシアミドをNMP200gに溶解した溶液にピリジン50gを加えた後、無水酢酸3.1g(0.03mol)を滴下し、系の温度を70℃に保って、7時間オキサゾール化反応を行った。
この溶液を20倍量の水中に滴下して沈殿を回収し、60℃で72時間真空乾燥して耐熱性樹脂であるポリベンゾオキサゾール樹脂の固形物を得た。得られたポリベンゾオキサゾール樹脂の数平均分子量は20000、重量平均分子量は40000であった。
【0032】
(2)耐熱性樹脂のガラス転移温度の測定
上記により合成したポリベンゾオキサゾール樹脂5.0gをNMP8.0gとテトラヒドロフラン12.0gの混合溶媒に溶解し、離形処理したガラス基板上に塗布した後オーブン中120℃で30分保持後、240℃で90分保持して成膜し、基板から膜を剥がした後さらに400℃で90分加熱し、耐熱性樹脂であるポリベンゾオキサゾール樹脂のフィルムとした。このポリベンゾオキサゾール樹脂のガラス転移温度を示差走査熱量計により測定したところ、362℃であった。
【0033】
(3)有機化合物(A)の融点および熱分解温度の測定
2−フェニルグリシンの融点および熱分解温度を窒素雰囲気下で熱重量分析により測定したところ、融点290℃、熱分解温度321℃であった。
【0034】
(4)絶縁材用樹脂組成物の調製と絶縁材の製造
上記により合成したポリベンゾオキサゾール樹脂10.0gをNMP16.0gとテトラヒドロフラン24.0gの混合溶媒に溶解した後、2−フェニルグリシン2.0gを添加して攪拌し、絶縁材用樹脂組成物を得た。
厚さ200nmのタンタルを成膜したシリコンウエハ上に、この絶縁材用樹脂組成物をスピンコートした後、窒素雰囲気のオーブン中で加熱硬化した。加熱処理は、120℃で30分間、260℃で120分間の順で保持した後、更に350℃で90分間保持した後、15分間で200℃まで温度を下げ、さらに40分間で室温まで温度を戻して行った。このようにして厚さ700nmの絶縁材の被膜を得た。以下実施例1と同様にして、この耐熱性樹脂の誘電率を測定したところ2.1であった。
また、絶縁材の密度を密度勾配管により求めたところ、1.11であった。2−フェニルグリシンを添加せず、空隙が全くない場合の密度は1.45であったので、これから空隙率は23.4%と算出された。さらにTEMで絶縁材皮膜の断面を観察したところ、平均孔径が6nmの空隙が、均一にかつ非連続で分散していることが分かった。
【0035】
「実施例4」
(1)ポリヒドロキシアミドの合成
2,2’−ビス(トリフルオロメチル)ビフェニル−4,4’−ジカルボン酸22g、塩化チオニル45ml及び乾燥ジメチルホルムアミド0.5mlを反応容器に入れ、60℃で2時間反応させた。反応終了後、過剰の塩化チオニルを加熱及び減圧により留去した。残査をヘキサンを用いて再結晶を行い、2,2’−ビス(トリフルオロメチル)ビフェニル−4,4’−ジカルボン酸クロリドを得た。
攪拌装置、窒素導入管、滴下漏斗を付けたセパラブルフラスコ中、2,2−ビス(3ーアミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン7.32g(0.02mol)を、乾燥したジメチルアセトアミド100gに溶解し、ピリジン3.96g(0.05mol)を添加後、乾燥窒素導入下、−15℃でジメチルアセトアミド50gに、上記により合成した2,2’−ビス(トリフルオロメチル)ビフェニル−4,4’−ジカルボン酸クロリド8.30g(0.02mol)を溶解したものを、30分間掛けて滴下した。滴下終了後、室温まで戻し、室温で5時間攪拌した。その後、反応液を水1000ml中に滴下し、沈殿物を集め、40℃で48時間真空乾燥することにより、耐熱性樹脂であるポリベンゾオキサゾール前駆体であるポリヒドロキシアミドの固形物を得た。得られたポリヒドロキシアミドの数平均分子量は、20000、重量平均分子量は、40000であった。
【0036】
(2)ポリヒドロキシアミドの閉環開始温度の測定
上記により合成したポリヒドロキシアミドの閉環開始温度を示差走査熱量計により測定したところ、220℃であった。
【0037】
(3)耐熱性樹脂のガラス転移温度の測定
上記により合成したポリヒドロキシアミド5.0gをNMP20.0gに溶解し、離型処理したガラス基板上に塗布した後、オーブン中120℃で30分保持後、240℃で90分保持して成膜し、基板から膜を剥がした後さらに400℃で90分加熱し、耐熱性樹脂であるポリベンゾオキサゾールのフィルムとした。このポリベンゾオキサゾールのガラス転移温度を示差走査熱量計により測定したところ、410℃であった。
【0038】
(4)有機化合物(A)の融点および熱分解温度の測定
イソニコチン酸の融点および熱分解温度を窒素雰囲気下で熱重量分析により測定したところ、融点315℃(昇華)であった。
【0039】
(5)絶縁材用樹脂組成物の調製と絶縁材の製造
上記により合成したポリヒドロキシアミド10.0gをNMP50.0gに溶解した後、イソニコチン酸2.0gを加えて攪拌し、絶縁材用樹脂組成物を得た。
厚さ200nmのタンタルを成膜したシリコンウエハ上に、この絶縁材用樹脂組成物をスピンコートした後、窒素雰囲気のオーブン中で加熱硬化した。加熱処理は、120℃で30分間、260℃で120分間の順に保持した後、更に400℃で90分間保持した後、20分間で200℃まで温度を下げ、さらに40分間で室温まで温度を戻して行った。このようにして、厚さ700nmの絶縁材の被膜を得た。以下実施例1と同様にして、この耐熱性樹脂絶縁材の誘電率を測定したところ2.1であった。また、耐熱性樹脂絶縁材の密度を密度勾配管により求めたところ、1.15であった。イソニコチン酸を添加せず、空隙が全くない場合の密度は1.42であったので、これから空隙率は19.0%と算出された。さらにTEMで絶縁材皮膜の断面を観察したところ、平均孔径が5nmの空隙が、均一にかつ非連続で分散していることが分かった。
【0040】
「比較例1」
実施例1の絶縁材用樹脂組成物の調整において用いた2−アミノテレフタル酸2.0gを添加しない以外は、全て実施例1と同様に、絶縁材用樹脂組成物の調整と絶縁材の製造を行った。得られた耐熱性樹脂絶縁材の誘電率は2.9であり、密度は1.41であった。TEMによる絶縁材皮膜の断面観察で、空隙は観察されなかった。
【0041】
「比較例2」
実施例2の絶縁材用樹脂組成物の調整において用いた2,6−ピリジンジカルボキシアミド2.0gを添加しない以外は、全て実施例2と同様に、絶縁材用樹脂組成物の調整と絶縁材の製造を行った。得られた耐熱性樹脂の誘電率は3.0であり、密度は1.43であった。TEMによる絶縁材皮膜の断面観察で空隙は観察されなかった。
【0042】
「比較例3」
実施例3の絶縁材用樹脂組成物の調整において用いた2−フェニルグリシン2.0gを添加しない以外は、全て実施例3と同様に、絶縁材用樹脂組成物の調整と絶縁材の製造を行った。得られた耐熱性樹脂の誘電率は2.6であり、密度は1.45であった。TEMによる絶縁材皮膜の断面観察で、空隙は観察されなかった。
【0043】
「比較例4」
実施例4の絶縁材用樹脂組成物の調整において用いたイソニコチン酸2.0gを添加しない以外は、全て実施例4と同様に、絶縁材用樹脂組成物の調整と絶縁材の製造を行った。得られた耐熱性樹脂の誘電率は2.6であり、密度は1.42であった。TEMによる絶縁材皮膜の断面観察で、空隙は観察されなかった。
【0044】
「比較例5」
実施例4の絶縁材用樹脂組成物の調整においてイソニコチン酸に代わり融点212℃のアダマンタンを添加する以外は、全て実施例4と同様に、絶縁材用樹脂組成物の調整と絶縁材の製造を行った。得られた耐熱性樹脂の誘電率は2.6であり、密度は1.41であった。TEMによる絶縁材皮膜の断面観察で、空隙は観察されなかった。
【0045】
実施例1〜4においては、誘電率が2.1〜2.4と非常に低い耐熱性絶縁材を得ることが出来た。
比較例1〜4では、有機化合物(A)を含有せず、絶縁材中に空隙を有していないために誘電率を低減できなかった。比較例5では、有機化合物(A)を添加したため、耐熱性樹脂またはその前駆体(B)の熱硬化前に有機化合物(A)が熱分解してしまい、絶縁材中に空隙が生成せず誘電率を低減できなかった。
【0046】
【発明の効果】
本発明の絶縁材用樹脂組成物及びこれを用いた絶縁材は、電気特性、特に誘電特性および耐熱性に優れたものであり、これらの特性が要求される様々な分野、例えば、半導体用の層間絶縁膜、多層回路の層間絶縁膜などとして有用な合成樹脂である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulating material, and more particularly to a resin composition for an insulating material having excellent characteristics for electrical and electronic equipment, circuit board materials, and semiconductor devices, and an insulating material using the same. is there.
[0002]
[Prior art]
Among the characteristics required for electrical / electronic equipment, circuit board materials, and semiconductor device materials, electrical characteristics and heat resistance are the most important characteristics. In particular, an insulating material having a low dielectric constant is required as the circuit is miniaturized and the signal speed is increased. As a material for achieving both of these characteristics, an insulating material using a heat-resistant resin is expected. For example, conventionally used insulating materials of inorganic materials such as silicon dioxide show high heat resistance, but in the present situation where the dielectric constant is high and the required characteristics are becoming more severe, it is difficult to achieve compatibility with the above characteristics. It is becoming.
[0003]
A heat-resistant resin represented by polyimide resin is excellent in electrical characteristics and heat resistance, and can achieve both of the above two characteristics. It is actually used for printed circuit coverlays and semiconductor device passivation films. It has been.
[0004]
However, with the recent increase in functionality and performance of semiconductors, further significant improvements in electrical characteristics and heat resistance have been required. In particular, with respect to the dielectric constant, a low dielectric constant material of 2.5 or less is desired, and conventional insulating materials have not reached the required characteristics.
[0005]
One of the solutions is an insulating material having a fine gap, which has been actively researched, and further reducing the dielectric constant of the insulating material by filling the inside of the gap with air having a dielectric constant of 1. Specifically, a highly heat-resistant resin is used as a matrix, a thermally decomposable resin is added thereto, and this thermally decomposable resin is decomposed and volatilized by a heating process to form voids. Is. So far, for example, by adding a heat-decomposable resin other than polyimide to a resin composition consisting of polyimide and a solvent, the heat-decomposable resin is decomposed by a heating process to form voids, thereby reducing the dielectric constant of the insulating material. Attempts have been made. However, when a heat-resistant resin such as polyimide and a heat-decomposable resin are compatible, the glass transition temperature of the entire composition is lowered. Therefore, when the heat-decomposable resin is decomposed and volatilized, voids are crushed. The effect of reducing the rate may not be manifested. On the other hand, when using a heat-decomposable resin that is not compatible with heat-resistant resin such as polyimide, even if a phase separation structure can be formed, the resin composition for insulation becomes non-uniform during storage. There is a problem that it cannot be performed, and a heating process or the like when decomposing the thermally decomposable resin is required.
[0006]
[Problems to be solved by the invention]
In view of the present situation of the low dielectric constant insulating material as described above, the present invention provides a novel resin composition for an insulating material, which exhibits an extremely low dielectric constant and good insulating properties, and is excellent in heat resistance and water absorption. It aims at providing the used insulating material.
[0007]
[Means for Solving the Problems]
In view of the above-described conventional problems, the present inventors have made extensive studies and have completed the present invention by the following means.
[0008]
That is, this invention provides the resin composition for insulating materials as described in 1-4, and the insulating material as described in 5.
1. In the resin composition for an insulating material containing the organic compound (A) and the heat resistant resin or its precursor (B) as essential components, the heat resistant resin or its precursor (B) is the heat of the organic compound (A). A resin composition for an insulating material having a glass transition temperature higher than a decomposition temperature or a sublimation temperature.
[0009]
2. 2. The resin composition for an insulating material according to the item 1, wherein the organic compound (A) preferably has a melting point higher than the ring-closing temperature starting temperature of the precursor (B).
[0010]
3. 3. The resin composition for an insulating material according to 1 or 2, wherein the heat-resistant resin or its precursor (B) is preferably a polyimide resin or a polyimide precursor.
[0011]
4). 3. The resin composition for an insulating material according to 1 or 2, wherein the heat-resistant resin or its precursor (B) is preferably a polybenzoxazole resin or a polybenzoxazole precursor.
[0012]
5). Using the resin composition for an insulating material according to any one of claims 1 to 4, the temperature is higher than a thermal decomposition temperature of the organic compound (A), and the resin composition is obtained from a heat resistant resin or a precursor thereof (B). An insulating material manufactured by a method having a step of heat-treating at a temperature lower than the glass transition temperature of a resin.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The resin composition for an insulating material of the present invention produces an organic compound (A) and a heat resistant resin having a glass transition temperature higher than the thermal decomposition temperature or sublimation temperature of the organic compound (A) or the heat resistant resin. The precursor (B) is an essential component. The method for producing the heat resistant resin from the precursor may be a reaction by heating or a chemical ring closure reaction. It is possible to use a solvent as a component other than the organic compound (A) and the heat resistant resin or its precursor (B).
[0014]
The resin composition for an insulating material of the present invention is usually dissolved in a solvent as a varnish, applied onto a substrate or the like and heated to form a film, or impregnated into a glass cloth or the like, and heated to form an insulating material and can do. In this heating step, by first heating and drying, the organic compound (A) is precipitated from the uniform state of the composition containing the solvent, and accompanying this, phase separation occurs with the heat resistant resin or its precursor (B), The original high glass transition temperature of the heat resistant resin or its precursor (B) is developed. Next, the resin is cured at a temperature lower than the melting point of the organic compound (A) to form a phase separation structure. In addition, when a resin is produced by heating using a heat-resistant resin precursor, the resin is cured from the precursor (B) at a temperature lower than that of the organic compound (A), so that the resin is cured and a phase separation structure. Is preferably formed. Furthermore, the heating temperature is raised to a temperature higher than the temperature at which the organic compound (A) is thermally decomposed and to a temperature not higher than the glass transition temperature of the resin obtained from the heat resistant resin or its precursor (B). Before the glass transition temperature of the resin obtained from the conductive resin or its precursor (B) is reached, the organic compound (A) is thermally decomposed or sublimated and volatilized to form fine voids, resulting in a low dielectric constant. Insulating material can be obtained.
[0015]
Examples of the organic compound (A) used in the present invention include 1- (4-nitrophenylazo) -2-naphthol, 2- (4-imidazolyl) ethylamine, nepsilon-acetyl-L-lysine, α-cyano-4. -Hydroxycinnamic acid, 2,2-dihydroxy-1,3-indandione, tetrachlorophthalonitrile, trichloroisocyanuric acid, 2,4,6-trihydroxypyrimidine, N- (p-methoxyphenyl) -p- Phenylenediamine, DL-3-fluorophenylalanine, 3-hydroxy-4-methoxybenzoic acid, 3-hydroxy-2-naphthoic acid anilide, ethylenediaminetetraacetic acid, 2-carboxy-3-carboxymethyl-4-isopropenylpyrrolidine, ( +)-3 ', 5'-o- (1,1,3,3-tetraisopropyl-1,3 -Disiloxanediyl) cytidine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole, 1,9-dimethyl-methylene blue, nepsilon- (tert-butoxycarbonyl) -L-lysine, 1- (4- (trans-4-butylcyclohexyl) phenyl) -2- (trans-4- (4-isothiocyanatophenyl) cyclohexyl) ethane, coumarin 337, 2,2′-bis (3-hydroxy-1, 4-naphthoquinone), 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 7-nitro-4-fluorenecarboxylic acid, 4- Amino-5- (4-pyridyl) -4H-1,2,4-triazole-3-thiol, 5- (4- (2-pyridylsulfamoyl) ) Phenylazo) salicylic acid, (indan-1,3-diylidene) dimalononitrile, 2,4-difluorophenylboronic acid, 6-hydroxy-2-naphthoic acid, octakis (dimethylsilyloxy) silsesquioxane, 5-bromoisatin, 4 -(Phenylazo) benzoic acid, ethyl-2-thiouracil-5-carboxylate, 12β-hydroxy digitoxin, L-aspartyl-L-phenylalanine methyl ester, 1-methyl-DL-tryptophan, 3,4-dehydro-L-proline , Acenaphthoquinone, 4-chlorocinnamic acid, 5-formylsalicylic acid, 9- (β-d-ribofuranosyl) guanine, 4-hydroxy-9-fluorenone, 3-hydroxy-1H-indazole, 6-nitro-3,4 -Benzocoumarin, 1,4-fu Enylene diacetic acid, 2,6-pyridinedicarboxylic acid, 2,4,6-triaminopyrimidine, 4 ′, 5,7-trihydroxyflavanone, 6-fluoro-DL-tryptophan, 1,2-dihydroxyanthraquinone, 3- Fluoro-DL-tyrosine, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, dithiouracil, 3,4,7,8-tetramethyl-1,10-phenanthroline, 4,4′-biphenol 3-quinolinecarboxylic acid, L-ethionine, 5,6-dihydrouracil, hexamethylenetetramine, 4,5-imidazoledicarboxylic acid, 2-aminopurine, 7-hydroxy-3,4,8-trimethylcoumarin, 1, 3-dihydroxy-9-acridinecarboxylic acid, 7-amino-4-methyl-2 (1H) -quinoli , 2,3-naphthalenedicarboxamide, perylene, 4,4′-bis ((4-chlorophenyl) sulfonyl) -1,1′-biphenyl, D-asparagine, 1-hydrido-3,5,7,9 , 11,13,15-heptacyclopentylpentacyclo (9.5.1.13, 9.15,15.17,13) octasiloxane, (R)-(−)-2- (2,5-dihydrophenyl ) Glycine, 5-fluorouracil, 5-aminosalicylic acid, lanthionine, DL-methionine, L-tryptophan, 3- (3-hydroxyphenyl) -DL-alanine, 3- (3,4-dihydroxyphenyl) -DL-alanine, DL-alanine, L-histidine, L-isoleucine, 3- (3,4-dihydroxyphenyl) -L-alanine, D-alanine, DL- -Aminobutyric acid, DL-valine, DL-leucine, hydroxyethyl cellulose, 1,2,4,5-benzenetetracarboxylic acid, 2,4-diamino-6-hydroxypyrimidine, 18β-glycyrrhetinic acid, 2-piperidinecarboxylic acid 2-phenylglycine, L-valine, 2-aminonicotinic acid, 6-amino-1,3-dimethyluracil, fumaramide, 3,6-dimethyl-2,5-piperazinedione, DL-valine, DL-leucine, 1,2-dihydro-6-methyl-2-oxo-3-pyridinecarbonitrile, anthraquinone, 2,4-dihydroxypyrimidine-5-carboxylic acid, DL-aspartic acid, terephthalic acid, 1,1,4,5- Benzenetetracarboxylic dianhydride, 2,4-dihydroxy-5,6-dimethylpyrimidine, 2,5-diaminobenzenesulfonic acid, fumaric acid, 2- (4-thiazolyl) benzimidazole, 3,5,7,9,11,13,15-heptacyclopentylpentacyclo (9.5.1.13,9 .15,15.17,13) Octasiloxane-1-butyronitrile, 3,5,7,9,11,13,15-heptacyclopentylpentacyclo (9.5.1.13, 9.15, 15.17) 13) Octasiloxane-1-ol, 6-chloro-1,2-dihydro-4H-3,1-benzoxazine-2,4-dione, DL-5-hydroxytryptophan, 1,8-naphthalimide, L -Valine, 2,4-dihydroxy-5-methylpyrimidine, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 4-nitroimidazole, 2,6-pi Gindicarboxamide, 3- (4-hydroxyphenyl) -DL-alanine, 2- (3-sulfobenzoyl) pyridine-2-pyridylhydrazone, (2-hydroxyethyl) trimethylammonium chloride, 4-hydroxyaniline, silatrane glycol 4-tert-butylcalix (4) allene, L-alanine, triethylmethylammonium bromide, 1-amino-1-cyclopentanecarboxylic acid, 4-tert-butylcalix (6) allene, 2,5-dichloro-3 , 6-dihydroxy-1,4-benzoquinone, 2,6-dihydroxy-4-methyl-3-pyridinecarbonitrile, 4-chlorobenzohydrazine hydrochloride, 2-aminoterephthalic acid, 2,4-dihydroxy-6-methyl Pyrimidine 4,4'-su Phonylbis (2,6-dimethylphenol), 3,6-dihydroxypyridazine, isonicotinic acid, 4-azatricyclo (4.3.1.13,8) undecan-5-one, isophthalic acid, 6,11-dihydroxy- 5,12-naphthacenedione, 2-mercaptobenzimidazole, 3-cyano-7-hydroxy-4-methylcoumarin, (R)-(−)-2-phenylglycine, 5- (4-pyridyl) -1H— Examples include 1,2,4-triazole-3-thiol, octaphenylcyclotetrasilane, DL-tyrosine, but are not limited thereto. Among these, DL-valine, DL-leucine, 18β-glycyrrhetinic acid, 2-piperidinecarboxylic acid, 2-phenylglycine, L-valine, DL-valine, DL-leucine, anthraquinone, DL-aspartic acid, terephthalic acid, 1,1,4,5-benzenetetracarboxylic dianhydride, fumaric acid, L-valine, 2,6-pyridinedicarboxamide, 2- (3-sulfobenzoyl) pyridine-2-pyridylhydrazone, silatrane glycol , L-alanine, 1-amino-1-cyclopentanecarboxylic acid, 2,6-dihydroxy-4-methyl-3-pyridinecarbonitrile, 2-aminoterephthalic acid, 2,4-dihydroxy-6-methylpyrimidine, iso Nicotinic acid, isophthalic acid, (R)-(−)-2-phenylglycine, octaf Cycloalkenyl cyclotetrasilane, DL-tyrosine is preferable in view of thermal decomposition behavior. Moreover, only 1 type may be used among these and 2 or more types may be mixed and used.
[0016]
Examples of the heat-resistant resin or heat-resistant resin precursor (B) used in the present invention include polyimide, polyamic acid, polyamic acid ester, polyisoimide, polyamideimide, polyamide, bismaleimide, polybenzoxazole, polyhydroxyamide, poly Examples include, but are not limited to, benzothiazole. Among these, polyimide resins and polyimide precursors such as polyamic acid, polyamic acid ester, and polyisoimide, and polybenzoxazole precursors such as polybenzoxazole resin and polyhydroxyamide are preferable because of high heat resistance.
[0017]
The organic solvent used when the resin composition for an insulating material of the present invention is used as a varnish is preferably a solvent that completely dissolves the organic compound (A) and the heat-resistant resin or its precursor (B). Methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, cellosolve, butyl cellosolve, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, cellosolve acetate, butyl cellosolve acetate, propylene glycol Monomethyl ether acetate, 1,3-butylene glycol acetate, ethyl lactate, butyl lactate, methyl pyruvate, ethyl pyruvate, methyl ethyl ketone Methyl isobutyl ketone, cyclohexanone, do not cyclopentanone, although tetrahydroxyfuran like as being limited thereto. Moreover, only 1 type may be used among these and it can also use simultaneously in combination of 2 or more type. Further, a small amount of a surfactant may be added in order to improve the coating property and impregnation property.
[0018]
The minute voids formed to reduce the dielectric constant of the insulating material of the present invention are discontinuous closed cells having a diameter of 50 nm or less, preferably 10 nm or less. Further, the proportion of minute voids is preferably 5 to 60 vol%, more preferably 10 to 50 vol% with respect to the entire formed insulating material. When the addition amount is less than 5 vol%, the effect of reducing the dielectric constant due to the addition of the organic compound (A) cannot be sufficiently exhibited. On the other hand, when the addition amount exceeds 60 vol%, the mechanical properties and adhesion of the resin are remarkably lowered, which is not preferable.
[0019]
The resin composition for an insulating material of the present invention is obtained by blending each component in a range that forms the voids, and mixing and dissolving them uniformly. The blend ratio is such that the weight ratio (A / B) of the component (A) to the component (B) is 5/95 to 60/40, more preferably 10/90 to 50/50. At this time, as the combination of the component (A) and the component (B), a component (B) having a glass transition temperature higher than that of the thermal decomposition temperature or sublimation temperature of the component (A) is selected. When B) is a precursor, it is further preferred that component (A) has a melting point higher than the ring closure initiation temperature of the precursor. At this time, for example, when a polybenzoxazole precursor having a ring closure start temperature of about 250 ° C. is used as the heat resistant resin (A) component, by using an organic compound (B) having a melting point higher than 250 ° C., A phase separation structure between the heat resistant resin (A) and the organic compound (B) is obtained.
[0020]
As an example of the method for producing an insulating material of the present invention, the resin composition is dissolved in 10 to 30 wt% in the organic solvent, and is applied to an appropriate support such as glass, fiber, metal, silicon wafer, ceramic substrate, etc. Apply. Examples of the coating method include dipping, screen printing, spray coating, spin coating, roll coating, and the like. After coating, the coating is heat-dried to remove the solvent and form a tack-free coating film. Thereafter, the heat-resistant resin or its precursor (B) component, in the case of heat curing, is preferably cured at a temperature below the melting point of the organic compound (A) or cured by a chemical ring closure reaction. A desired insulating material film in which the heat-resistant resin component and the organic compound component are phase-separated can be formed. Depending on the application, it is possible to carry out the curing by heat curing or chemical ring-closing reaction after performing only a predetermined step and removing only the solvent by volatilization. Moreover, it can be impregnated into a base material such as glass fiber cloth, other cloth, or paper and dried to obtain a prepreg. As the impregnation method, brush coating, spraying, dipping, or the like can be used. A method in which the solvent is removed by heating and drying or a method in which the solvent is partially cured can be obtained. Furthermore, the film is subjected to a heat treatment at a temperature higher than the thermal decomposition temperature of the organic compound (A) and not higher than the glass transition temperature of the resin obtained from the heat-resistant resin or its precursor (B). The insulating material of the present invention can be obtained by vaporizing and stripping the compound (A). In addition, it is preferable to perform heat hardening with the heating apparatus which can exhaust the volatilized component. The insulating material of the present invention thus obtained can be used as, for example, an interlayer insulating film for a semiconductor, an interlayer insulating film of a multilayer circuit, or the like.
[0021]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0022]
Example 1
(1) Synthesis of polyimide resin
2.18 g (0.01 mol) of 2,2-bis (4- (4,4′-aminophenoxy) phenyl) hexafluoropropane and 2 in a separable flask equipped with a stirrer, a nitrogen inlet tube and a raw material inlet , 2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl 9.60 g (0.03 mol) is dissolved in 200 g of dried N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). The solution was cooled to 10 ° C. under dry nitrogen to obtain 2.94 g (0.01 mol) of biphenyltetracarboxylic dianhydride and 13.32 g of hexafluoroisopropylidene-2,2′-bis (phthalic anhydride) ( 0.03 mol) was added. After 5 hours from the addition, the temperature was returned to room temperature and stirred at room temperature for 2 hours to obtain a polyamic acid solution as a polyimide precursor.
After adding 50 g of pyridine to this polyamic acid solution, 5.1 g (0.05 mol) of acetic anhydride was dropped, and the temperature of the system was kept at 70 ° C. to carry out an imidization reaction for 7 hours.
This solution was dropped into 20 times the amount of water to recover the precipitate, and vacuum dried at 60 ° C. for 72 hours to obtain a solid body of polyimide resin as a heat resistant resin. The molecular weight of the polyimide resin was a number average molecular weight of 26000 and a weight average molecular weight of 54,000.
[0023]
(2) Measurement of glass transition temperature of heat-resistant resin
After dissolving 5.0 g of the polyimide resin synthesized in the above in 15.0 g of NMP and applying it onto a glass substrate that has been subjected to a release treatment, the film is held in an oven at 120 ° C. for 30 minutes and then at 230 ° C. for 90 minutes to form a film. After peeling off the film from the substrate, the film was further heated at 400 ° C. for 90 minutes to obtain a polyimide resin film. It was 335 degreeC when the glass transition temperature of this polyimide resin was measured with the differential scanning calorimeter.
[0024]
(3) Measurement of melting point and thermal decomposition temperature of organic compound (A)
When the melting point and thermal decomposition temperature of 2-aminoterephthalic acid were measured by thermogravimetric analysis under a nitrogen atmosphere, the melting point was 324 ° C. (decomposition).
[0025]
(4) Preparation of resin composition for insulating material and production of insulating material
After dissolving 10.0 g of the polyimide resin synthesized above in 50.0 g of NMP, 2.0 g of the above 2-aminoterephthalic acid was added and stirred to obtain a resin composition for an insulating material.
This insulating resin composition was spin-coated on a silicon wafer on which a tantalum film having a thickness of 200 nm was formed, and then heat-cured in an oven in a nitrogen atmosphere. In the heat treatment, after maintaining in order of 120 ° C. for 30 minutes, 230 ° C. for 120 minutes, and 315 ° C. for 180 minutes, the temperature is further increased to 335 ° C., and then the temperature is decreased to 200 ° C. for 15 minutes, and further 60 The temperature was returned to room temperature in minutes. In this way, an insulating material film having a thickness of 800 nm was obtained. On this insulation film, the area is 0.1 cm. 2 An aluminum electrode was formed by vapor deposition, and the capacitance between the substrate and tantalum was measured by an LCR meter. The dielectric constant of the insulating material calculated from the film thickness, electrode area, and capacitance was 2.4. Moreover, it was 1.10 when the density of the insulating material was calculated | required with the density gradient tube. Since the density when no 2-aminoterephthalic acid was added and there was no void was 1.41, the porosity was calculated to be 22.0%. Furthermore, when the cross section of the insulating film was observed with TEM, it was found that the voids having an average pore diameter of 9 nm were uniformly and discontinuously dispersed.
[0026]
"Example 2"
(1) Synthesis of polyimide precursor
In the synthesis of the polyimide resin of Example 1, 2.18 g (0.01 mol) of 2,2-bis (4- (4,4′-aminophenoxy) phenyl) hexafluoropropane used for the synthesis of the polyimide precursor and 2, 9.60 g (0.03 mol) of 2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl was converted to 8.01 g (0.04 mol) of 4,4′-diaminodiphenyl ether and biphenyltetracarboxylic dianhydride. 2.94 g (0.01 mol) of the product and 13.32 g (0.03 mol) of hexafluoroisopropylidene-2,2′-bis (phthalic anhydride) were added to 8.72 g (0.04 mol) of pyromellitic dianhydride. The solution of the polyamic acid which is a polyimide precursor was obtained like Example 1 except having replaced with (). This solution was dropped into 20 times the amount of water to recover the precipitate, and vacuum dried at 25 ° C. for 72 hours to obtain a solid material of polyamic acid which is a precursor of polyimide which is a heat resistant resin. The obtained polyamic acid had a number average molecular weight of 27,000 and a weight average molecular weight of 55,000.
[0027]
(2) Measurement of ring closure start temperature of polyimide precursor
It was 120 degreeC when the ring-closing start temperature of the polyamic acid synthesized by the above was measured with the differential scanning calorimeter.
[0028]
(3) Measurement of glass transition temperature of heat-resistant resin
After dissolving 5.0 g of the polyamic acid synthesized in the above in 20.0 g of NMP and applying it onto a glass substrate that has been subjected to a release treatment, the film is held in an oven at 100 ° C. for 30 minutes and then at 250 ° C. for 90 minutes to form a film. After peeling off the film from the substrate, the film was further heated at 450 ° C. for 90 minutes to obtain a polyimide resin film as a heat resistant resin. It was 419 degreeC when the glass transition temperature of this polyimide resin was measured with the differential scanning calorimeter.
[0029]
(4) Measurement of melting point and thermal decomposition temperature of organic compound (A)
When the melting point and thermal decomposition temperature of 2,6-pyridinedicarboxamide were measured by thermogravimetric analysis under a nitrogen atmosphere, the melting point was 317 ° C. and the thermal decomposition temperature was 373 ° C.
[0030]
(5) Preparation of resin composition for insulating material and production of insulating material
After dissolving 10.0 g of the polyamic acid synthesized above in 50.0 g of NMP, 2.0 g of high-purity 2,6-pyridinedicarboxamide was added and stirred to obtain a resin composition for an insulating material.
This insulating resin composition was spin-coated on a silicon wafer on which a tantalum film having a thickness of 200 nm was formed, and then heat-cured in an oven in a nitrogen atmosphere. In the heat treatment, after holding at 120 ° C. for 30 minutes and 260 ° C. for 120 minutes in order, further holding at 400 ° C. for 90 minutes, the temperature is lowered to 200 ° C. over 20 minutes, and the temperature is lowered to room temperature over 40 minutes. I went back. In this way, an insulating material film having a thickness of 700 nm was obtained. The dielectric constant of the heat resistant resin was measured in the same manner as in Example 1 to be 2.4. Moreover, it was 1.13 when the density of the insulating material was calculated | required with the density gradient tube. When 2,6-pyridinedicarboxamide was not added and there was no void at all, the density was 1.43. Therefore, the porosity was calculated to be 21.0%. Furthermore, when the cross section of the insulating film was observed with TEM, it was found that the voids having an average pore diameter of 8 nm were uniformly and discontinuously dispersed.
[0031]
"Example 3"
(1) Synthesis of polybenzoxazole resin
25 g of 4,4′-hexafluoroisopropylidenediphenyl-1,1′-dicarboxylic acid, 45 ml of thionyl chloride and 0.5 ml of dry dimethylformamide were placed in a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The residue was recrystallized using hexane to obtain 15 g of 4,4′-hexafluoroisopropylidenediphenyl-1,1′dicarboxylic acid chloride.
In a separable flask equipped with a stirrer, a nitrogen inlet tube, and a dropping funnel, 7.32 g (0.02 mol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added to 100 g of dried dimethylacetamide. After dissolution, 3.96 g (0.05 mol) of pyridine was added, and 4,4′-hexafluoroisopropylidenediphenyl-1,1′- synthesized above was added to 50 g of dimethylacetamide at −15 ° C. with introduction of dry nitrogen. What melt | dissolved 8.58 g (0.02 mol) of dicarboxylic acid chloride was dripped over 30 minutes. After completion of the dropping, the temperature was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was dropped into 1000 ml of water, and the precipitate was collected and vacuum-dried at 40 ° C. for 48 hours to obtain a solid of polyhydroxyamide as a polybenzoxazole precursor.
After adding 50 g of pyridine to a solution obtained by dissolving this polyhydroxyamide in 200 g of NMP, 3.1 g (0.03 mol) of acetic anhydride was added dropwise, and the temperature of the system was maintained at 70 ° C. to carry out an oxazolation reaction for 7 hours. .
This solution was dropped into 20 times the amount of water to recover the precipitate, and vacuum dried at 60 ° C. for 72 hours to obtain a solid material of polybenzoxazole resin, which is a heat resistant resin. The number average molecular weight of the obtained polybenzoxazole resin was 20000, and the weight average molecular weight was 40000.
[0032]
(2) Measurement of glass transition temperature of heat-resistant resin
After dissolving 5.0 g of the polybenzoxazole resin synthesized in the above in a mixed solvent of 8.0 g of NMP and 12.0 g of tetrahydrofuran and applying it onto a glass substrate that has been subjected to a release treatment, it is kept at 120 ° C. for 30 minutes in an oven, and then 240 ° C. For 90 minutes to form a film, and after peeling off the film from the substrate, the film was further heated at 400 ° C. for 90 minutes to obtain a polybenzoxazole resin film as a heat-resistant resin. It was 362 degreeC when the glass transition temperature of this polybenzoxazole resin was measured with the differential scanning calorimeter.
[0033]
(3) Measurement of melting point and thermal decomposition temperature of organic compound (A)
When the melting point and thermal decomposition temperature of 2-phenylglycine were measured by thermogravimetric analysis under a nitrogen atmosphere, the melting point was 290 ° C. and the thermal decomposition temperature was 321 ° C.
[0034]
(4) Preparation of resin composition for insulating material and production of insulating material
After 10.0 g of the polybenzoxazole resin synthesized above was dissolved in a mixed solvent of 16.0 g of NMP and 24.0 g of tetrahydrofuran, 2.0 g of 2-phenylglycine was added and stirred to obtain a resin composition for an insulating material. It was.
This insulating resin composition was spin-coated on a silicon wafer on which a tantalum film having a thickness of 200 nm was formed, and then heat-cured in an oven in a nitrogen atmosphere. The heat treatment is carried out in order of 120 ° C. for 30 minutes and 260 ° C. for 120 minutes, then further held at 350 ° C. for 90 minutes, then the temperature is lowered to 200 ° C. in 15 minutes, and the temperature is lowered to room temperature in 40 minutes. I went back. In this way, a 700 nm thick insulating film was obtained. The dielectric constant of this heat resistant resin was measured in the same manner as in Example 1 to be 2.1.
Moreover, it was 1.11 when the density of the insulating material was calculated | required with the density gradient tube. Since the density when no 2-phenylglycine was added and there was no void was 1.45, the porosity was calculated to be 23.4%. Furthermore, when the cross section of the insulating film was observed with TEM, it was found that the voids having an average pore diameter of 6 nm were uniformly and discontinuously dispersed.
[0035]
"Example 4"
(1) Synthesis of polyhydroxyamide
22 g of 2,2′-bis (trifluoromethyl) biphenyl-4,4′-dicarboxylic acid, 45 ml of thionyl chloride and 0.5 ml of dry dimethylformamide were placed in a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The residue was recrystallized using hexane to obtain 2,2′-bis (trifluoromethyl) biphenyl-4,4′-dicarboxylic acid chloride.
In a separable flask equipped with a stirrer, a nitrogen inlet tube, and a dropping funnel, 7.32 g (0.02 mol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added to 100 g of dried dimethylacetamide. After dissolution, 3.96 g (0.05 mol) of pyridine was added, and 2,2′-bis (trifluoromethyl) biphenyl-4,4 synthesized as described above was added to 50 g of dimethylacetamide at −15 ° C. with introduction of dry nitrogen. A solution in which 8.30 g (0.02 mol) of '-dicarboxylic acid chloride was dissolved was dropped over 30 minutes. After completion of the dropping, the temperature was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was dropped into 1000 ml of water, and the precipitate was collected and vacuum-dried at 40 ° C. for 48 hours to obtain a solid of polyhydroxyamide which is a polybenzoxazole precursor which is a heat-resistant resin. The number average molecular weight of the obtained polyhydroxyamide was 20000, and the weight average molecular weight was 40000.
[0036]
(2) Measurement of ring closure initiation temperature of polyhydroxyamide
It was 220 degreeC when the ring-closing start temperature of the polyhydroxyamide synthesized above was measured with a differential scanning calorimeter.
[0037]
(3) Measurement of glass transition temperature of heat-resistant resin
After dissolving 5.0 g of polyhydroxyamide synthesized in the above in 20.0 g of NMP and applying it onto a release-treated glass substrate, the film was held in an oven at 120 ° C. for 30 minutes and then held at 240 ° C. for 90 minutes. Then, after peeling off the film from the substrate, the film was further heated at 400 ° C. for 90 minutes to obtain a polybenzoxazole film which is a heat resistant resin. It was 410 degreeC when the glass transition temperature of this polybenzoxazole was measured with the differential scanning calorimeter.
[0038]
(4) Measurement of melting point and thermal decomposition temperature of organic compound (A)
When the melting point and thermal decomposition temperature of isonicotinic acid were measured by thermogravimetric analysis under a nitrogen atmosphere, the melting point was 315 ° C. (sublimation).
[0039]
(5) Preparation of resin composition for insulating material and production of insulating material
After 10.0 g of the polyhydroxyamide synthesized above was dissolved in 50.0 g of NMP, 2.0 g of isonicotinic acid was added and stirred to obtain a resin composition for an insulating material.
This insulating resin composition was spin-coated on a silicon wafer on which a tantalum film having a thickness of 200 nm was formed, and then heat-cured in an oven in a nitrogen atmosphere. In the heat treatment, after holding at 120 ° C. for 30 minutes and 260 ° C. for 120 minutes in order, further holding at 400 ° C. for 90 minutes, lowering the temperature to 200 ° C. over 20 minutes, and returning the temperature to room temperature over another 40 minutes. I went. In this way, an insulating material film having a thickness of 700 nm was obtained. The dielectric constant of this heat-resistant resin insulating material was measured in the same manner as in Example 1 and found to be 2.1. Moreover, it was 1.15 when the density of the heat resistant resin insulating material was calculated | required with the density gradient tube. Since the density when no isonicotinic acid was added and there was no void was 1.42, the porosity was calculated to be 19.0%. Furthermore, when the cross section of the insulating film was observed with TEM, it was found that the voids having an average pore diameter of 5 nm were uniformly and discontinuously dispersed.
[0040]
"Comparative Example 1"
In the same manner as in Example 1 except that 2.0 g of 2-aminoterephthalic acid used in the adjustment of the resin composition for insulating material of Example 1 is not added, the adjustment of the resin composition for insulating material and the manufacture of the insulating material Went. The obtained heat resistant resin insulating material had a dielectric constant of 2.9 and a density of 1.41. No voids were observed in the cross-sectional observation of the insulating material film by TEM.
[0041]
“Comparative Example 2”
The adjustment and insulation of the resin composition for insulating material are the same as in Example 2 except that 2.0 g of 2,6-pyridinedicarboxamide used in the adjustment of the resin composition for insulating material of Example 2 is not added. The material was manufactured. The obtained heat resistant resin had a dielectric constant of 3.0 and a density of 1.43. No voids were observed in the cross-sectional observation of the insulating material film by TEM.
[0042]
“Comparative Example 3”
In the same manner as in Example 3 except that 2.0 g of 2-phenylglycine used in the adjustment of the resin composition for insulating material of Example 3 was not added, the adjustment of the resin composition for insulating material and the production of the insulating material were performed. went. The obtained heat resistant resin had a dielectric constant of 2.6 and a density of 1.45. No voids were observed in the cross-sectional observation of the insulating material film by TEM.
[0043]
“Comparative Example 4”
In the same manner as in Example 4 except that 2.0 g of isonicotinic acid used in the adjustment of the resin composition for insulating material of Example 4 was not added, the resin composition for insulating material was adjusted and the insulating material was manufactured. It was. The obtained heat resistant resin had a dielectric constant of 2.6 and a density of 1.42. No voids were observed in the cross-sectional observation of the insulating material film by TEM.
[0044]
“Comparative Example 5”
In the same manner as in Example 4 except that adamantane having a melting point of 212 ° C. is added instead of isonicotinic acid in the adjustment of the resin composition for insulating material of Example 4, the adjustment of the resin composition for insulating material and the production of the insulating material Went. The obtained heat resistant resin had a dielectric constant of 2.6 and a density of 1.41. No voids were observed in the cross-sectional observation of the insulating material film by TEM.
[0045]
In Examples 1 to 4, a heat-resistant insulating material having a very low dielectric constant of 2.1 to 2.4 could be obtained.
In Comparative Examples 1 to 4, the dielectric constant could not be reduced because the organic compound (A) was not contained and the insulating material did not have voids. In Comparative Example 5, since the organic compound (A) was added, the organic compound (A) was thermally decomposed before thermosetting the heat resistant resin or its precursor (B), and no voids were formed in the insulating material. The dielectric constant could not be reduced.
[0046]
【The invention's effect】
The resin composition for an insulating material and the insulating material using the same according to the present invention are excellent in electrical characteristics, particularly dielectric characteristics and heat resistance, and are used in various fields where these characteristics are required, for example, for semiconductors. It is a synthetic resin useful as an interlayer insulating film, an interlayer insulating film of a multilayer circuit, and the like.

Claims (3)

2−アミノテレフタル酸、2,6−ピリジンジカルボキシアミド、2−フェニルグリシン、またはイソニコチン酸である成分(A)と、ポリイミド樹脂、ポリイミド前駆体、ポリベンゾオキサゾール樹脂またはポリベンゾオキサゾール前駆体である成分(B)とを必須成分と前記成分(B)が、前記成分(A)の熱分解温度または昇華温度より高いガラス転移温度を有することを特徴とする絶縁材用樹脂組成物。 Component (A) that is 2-aminoterephthalic acid, 2,6-pyridinedicarboxamide, 2-phenylglycine, or isonicotinic acid, and a polyimide resin, polyimide precursor, polybenzoxazole resin, or polybenzoxazole precursor there component (B) and as essential components, wherein the component (B), the thermal decomposition temperature or insulation resin composition characterized by having a higher glass transition temperature sublimation temperature of the component (a). 前記成分(A)が、前記成分(B)の閉環開始温度よりも高い融点を有することを特徴とする請求項1記載の絶縁材用樹脂組成物。 Wherein component (A), claim 1 insulation resin composition, wherein it has a higher melting point than the closed-ring-beginning temperature of said component (B). 請求項1または請求項2に記載の絶縁材用樹脂組成物を用いて、請求項1または請求項2に記載の成分(A)の熱分解温度より高い温度で、且つ、請求項1または請求項2に記載の成分(B)より得られる樹脂のガラス転移温度以下で熱処理する工程を有する方法で製造されたことを特徴とする絶縁材。By using an insulating material for a resin composition according to claim 1 or claim 2, at a temperature higher than the thermal decomposition temperature of the component (A) according to claim 1 or claim 2, and claim 1, wherein An insulating material produced by a method having a step of heat-treating at or below the glass transition temperature of a resin obtained from the component (B) according to Item 2 .
JP2000188372A 2000-06-22 2000-06-22 Resin composition for insulating material and insulating material using the same Expired - Fee Related JP4590690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000188372A JP4590690B2 (en) 2000-06-22 2000-06-22 Resin composition for insulating material and insulating material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000188372A JP4590690B2 (en) 2000-06-22 2000-06-22 Resin composition for insulating material and insulating material using the same

Publications (2)

Publication Number Publication Date
JP2002008446A JP2002008446A (en) 2002-01-11
JP4590690B2 true JP4590690B2 (en) 2010-12-01

Family

ID=18688165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000188372A Expired - Fee Related JP4590690B2 (en) 2000-06-22 2000-06-22 Resin composition for insulating material and insulating material using the same

Country Status (1)

Country Link
JP (1) JP4590690B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164336A1 (en) * 2016-03-25 2017-09-28 日産化学工業株式会社 Method for producing porous film
JP6666602B2 (en) * 2016-03-25 2020-03-18 日産化学株式会社 Resin composition for forming porous film and porous film
JP2018016787A (en) * 2016-07-15 2018-02-01 三菱ケミカル株式会社 Polyimide composition, polyimide film and polyimide laminate obtained from polyimide composition, and method for producing polyimide laminate
CN113927920A (en) * 2021-09-13 2022-01-14 湖北三江航天江北机械工程有限公司 Composite material antenna housing forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611830A (en) * 1992-06-25 1994-01-21 Chisso Corp Photosensitive resin composition
JPH0827379A (en) * 1994-07-15 1996-01-30 Toshiba Chem Corp Polyimide precursor composition
JPH0968802A (en) * 1995-08-31 1997-03-11 Hitachi Chem Co Ltd Photosensitive resin composition and production of heat resistant relief polymer pattern
JPH11140183A (en) * 1997-11-04 1999-05-25 Hitachi Ltd Thermosetting resin composition
JP2000117842A (en) * 1998-10-20 2000-04-25 Matsushita Electric Ind Co Ltd Manufacture of porous material
JP2001164125A (en) * 1999-09-28 2001-06-19 Sumitomo Bakelite Co Ltd Resin composition for insulation material and insulation material using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611830A (en) * 1992-06-25 1994-01-21 Chisso Corp Photosensitive resin composition
JPH0827379A (en) * 1994-07-15 1996-01-30 Toshiba Chem Corp Polyimide precursor composition
JPH0968802A (en) * 1995-08-31 1997-03-11 Hitachi Chem Co Ltd Photosensitive resin composition and production of heat resistant relief polymer pattern
JPH11140183A (en) * 1997-11-04 1999-05-25 Hitachi Ltd Thermosetting resin composition
JP2000117842A (en) * 1998-10-20 2000-04-25 Matsushita Electric Ind Co Ltd Manufacture of porous material
JP2001164125A (en) * 1999-09-28 2001-06-19 Sumitomo Bakelite Co Ltd Resin composition for insulation material and insulation material using the same

Also Published As

Publication number Publication date
JP2002008446A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
CN102089366A (en) Polyimide metal laminate and solar cell
JP2001114893A (en) Polybenzoxazole resin and its precursor
US6204356B1 (en) Polybenzoxazole resin and precursor thereof
JP2000128987A (en) Polybenzoxazole precursor and polybenzoxazole
JP2001163975A (en) Polybenzoxazole resin and its precursor
JP4590690B2 (en) Resin composition for insulating material and insulating material using the same
JP2624724B2 (en) Polyimide siloxane composition
JP2001189109A (en) Resin composition for insulator, and insulator using the same
JP3681106B2 (en) Organic insulating film material and organic insulating film
JP2001098160A (en) Resin composition for insulating material and insulating material using the same
JP2000143804A (en) Polybenzoxazole precursor and resin
JP4945858B2 (en) Organic insulating film material and organic insulating film
JP2001302913A (en) Polyimide precursor solution and polyamide coating film obtainable therefrom
JP2631878B2 (en) Polyimide siloxane composition and film
WO2013111241A1 (en) Polyimide precursor and resin composition using same
JP4586229B2 (en) Organic insulating film and method for producing the organic insulating film material
JP2001011181A (en) Resin composition for electrical insulation material and electrical insulation material using the same
JP4378805B2 (en) Polybenzoxazole resin and precursor thereof
JP2000248077A (en) Organic insulation film material for semiconductor and production
TWI833140B (en) Hardmask composition and method of forming patterns
JP2001283638A (en) Resin composition for insulating material and insulating material using the same
JP2002356577A (en) Resin for porous insulating film, porous insulating film and production method thereof
JP2000344896A (en) Organic insulation film material, and organic insulation film and production thereof
JP4483008B2 (en) Resin composition for insulating material and insulating material using the same
JPH10298285A (en) Polyamic acid and polyimide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees