JP2001033358A - Automatic dispenser - Google Patents

Automatic dispenser

Info

Publication number
JP2001033358A
JP2001033358A JP11207455A JP20745599A JP2001033358A JP 2001033358 A JP2001033358 A JP 2001033358A JP 11207455 A JP11207455 A JP 11207455A JP 20745599 A JP20745599 A JP 20745599A JP 2001033358 A JP2001033358 A JP 2001033358A
Authority
JP
Japan
Prior art keywords
dispensing
container
pressure
negative pressure
destination container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11207455A
Other languages
Japanese (ja)
Other versions
JP3373453B2 (en
Inventor
Tomoyuki Yoshimura
共之 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP20745599A priority Critical patent/JP3373453B2/en
Publication of JP2001033358A publication Critical patent/JP2001033358A/en
Application granted granted Critical
Publication of JP3373453B2 publication Critical patent/JP3373453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately perform quantitative dispensation in an automatic dispenser for sucking a sample from a dispensation source container by a negative pressure being applied to a dispensation destination container. SOLUTION: In the automatic dispenser, a vacuum blood-sampling tube 50 is airtightly connected to a dispensation container 70. After an atmospheric release valve 84 is closed down and a negative pressure is applied to the dispensation container 70 by a syringe pump 168, a pump valve 164 is closed down. Serum 54 flows from the vacuum blood-sampling tube 50 to the dispensation container 70 due to suction by the negative pressure. Along with the decrease in the air capacity of the dispensation container 70 due to the inflow, the air pressure of the dispensation container 70 increases. A differential pressure sensor 172 detects the difference between an initial negative pressure being retained in space at the side of a pump and the current air pressure of the dispensation container 70. A control part 180 detects the amount of inflow of a sample from the vacuum blood-sampling tube 50 according to the relationship between the air pressure and the air capacity based on the state equation of gas, releases the atmospheric release valve 84 when the amount of inflow reaches a specific value, cancels the negative pressure, and stops suction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動分注装置に関
し、特に分注先容器に付与される陰圧により分注元容器
から試料を吸引する分注装置における分注量制御に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic dispensing apparatus, and more particularly to a dispensing amount control in a dispensing apparatus that aspirates a sample from a dispensing source container by a negative pressure applied to a dispensing destination container.

【0002】[0002]

【従来の技術】現在、臨床検査分野で行われる血液検査
では、被検者の血液が密閉式採血管(真空採血管)に採
取され、それを遠心分離して得られる血清が検体として
用いられるのが一般的である。この真空採血管から血清
を採取する作業は、衛生管理上、当該採血管の封止栓を
取らずに行われることがある。真空採血管から封止栓を
取らずに内部の血液試料を抜取るために、従来から各種
の装置が提案されている。例えば、特開平7−7752
7号公報には、遠心分離後の採血管から血清のみを採取
する装置が開示されている。この装置で血液試料の採取
を行う場合には、まず、倒立させた採血管の封止栓(中
央部がゴム部材)に対して単管型の採取針が穿刺され、
その下方に採取容器が配置される。採取針を介して採血
管内部と採取容器とは気密接続される。その状態におい
て、ポンプを利用して採取容器の気密空間に陰圧を付与
すると、血清が採取針を介して採血管から採取容器へ吸
引・採取される。
2. Description of the Related Art At present, in a blood test performed in a clinical test field, blood of a subject is collected in a closed blood collection tube (vacuum blood collection tube), and serum obtained by centrifuging the blood is used as a specimen. It is common. The operation of collecting the serum from the vacuum blood collection tube may be performed without removing the sealing plug of the blood collection tube for sanitary management. Various devices have been conventionally proposed for extracting an internal blood sample without removing a sealing plug from a vacuum blood collection tube. For example, JP-A-7-7752
No. 7 discloses a device for collecting only serum from a blood collection tube after centrifugation. When a blood sample is collected with this device, first, a single-tube type collection needle is punctured into a sealing stopper (a rubber member at the center) of an inverted blood collection tube,
A collection container is arranged below it. The inside of the blood collection tube and the collection container are airtightly connected via the collection needle. In this state, when a negative pressure is applied to the airtight space of the collection container using a pump, serum is sucked and collected from the blood collection tube to the collection container via the collection needle.

【0003】このような血液試料を採取する装置の多く
は、採血管内の血液試料を採取容器に全量抜取るもので
ある。この場合、全量抜取りを行った後に、採取容器か
ら分注が実行され、その上で、各種の試薬を使用して血
液分析が行われる。これに対して、特開平9−7995
3号公報に記載される血液試料採取装置は、定量抜取り
を行うものである。定量抜取りが可能な血液試料採取装
置によれば、採血管から直接、1又は複数の採取容器へ
の分注を行うことができる。
[0003] Many of the apparatuses for collecting such a blood sample extract the entire amount of the blood sample in a blood collection tube into a collection container. In this case, after the entire amount has been extracted, dispensing is performed from the collection container, and then blood analysis is performed using various reagents. In contrast, Japanese Patent Laid-Open No. 9-7995
The blood sample collecting device described in Japanese Patent Publication No. 3 performs a quantitative sampling. According to the blood sample collecting apparatus capable of quantitative sampling, dispensing can be performed directly from a blood collection tube to one or a plurality of collection containers.

【0004】図7は、この従来の定量抜取り可能な血液
試料採取装置の模式的な構成図である。倒立された真空
採血管2は封止栓4で封止されており、その封止栓4に
カプラー6の単管型の採取針8が穿刺される。カプラー
6の下にはカプラー台10を介して採取容器12が配置
される。この採取容器12はカプラー台10に設けられ
るパッキング材に圧接され、その内部の気密を保つこと
ができる。この気密空間は、採取針6によって真空採血
管2に連通されるとともに、カプラー台10に接続され
たエアチューブ16によって当該気密空間に対する減圧
及び大気開放を周期的に行う減圧・大気開放手段につな
がる。減圧・大気開放手段は、エアチューブ16に接続
される三方弁18と、この三方弁18の一つの方向に接
続された減圧ポンプ20と、三方弁18の残りの一方向
が大気に開放されている開放端22とによって構成され
る。減圧ポンプ20によって採取容器12の気密空間に
陰圧を付与すると、採取針8を介して採血管2から血清
24が採取容器12へ吸引・採取される。
FIG. 7 is a schematic diagram showing the configuration of this conventional blood sampling apparatus capable of quantitatively sampling. The inverted vacuum blood collection tube 2 is sealed with a sealing stopper 4, and a single-tube type collection needle 8 of a coupler 6 is punctured into the sealing stopper 4. A collection container 12 is disposed below the coupler 6 via a coupler stand 10. The sampling container 12 is pressed against a packing material provided on the coupler stand 10 to keep the inside airtight. This airtight space is communicated with the vacuum blood collection tube 2 by the sampling needle 6 and is connected to a decompression / atmosphere opening means for periodically performing pressure reduction and air opening to the airtight space by the air tube 16 connected to the coupler stand 10. . The decompression / atmosphere release means includes a three-way valve 18 connected to the air tube 16, a decompression pump 20 connected in one direction of the three-way valve 18, and a remaining one-way of the three-way valve 18 opened to the atmosphere. Open end 22. When a negative pressure is applied to the airtight space of the collection container 12 by the decompression pump 20, the serum 24 is sucked and collected from the blood collection tube 2 to the collection container 12 through the collection needle 8.

【0005】この従来の装置では、減圧・大気開放手段
を制御し、一回の減圧及び大気開放を併せて基本ステッ
プとして、それを繰り返し実行させることにより、所望
量の血液試料の抜取りが行われる。このとき、一回の減
圧時間が、採取針8を通過する血清の流速が一定とみな
せる短い時間に設定される。このように、この従来の装
置は、吸引開始からの経過時間と抜取り量とが比例関係
にあるとみなすことができる範囲での吸引を繰り返すこ
とにより、採取容器12への血清の分注量を精度良く制
御しようとするものである。
In this conventional apparatus, a desired amount of blood sample is withdrawn by controlling the decompression / release to atmosphere means and repeatedly executing the steps as a single step of decompression and release to atmosphere. . At this time, one decompression time is set to a short time in which the flow rate of the serum passing through the collection needle 8 can be regarded as constant. As described above, the conventional apparatus repeats the suction in a range in which the elapsed time from the start of the suction and the withdrawal amount can be regarded as being in a proportional relationship, thereby reducing the amount of the serum dispensed into the collection container 12. It is intended to control with high accuracy.

【0006】[0006]

【発明が解決しようとする課題】採血管から採取容器へ
血清が分注されるにつれて、採取容器内の陰圧は低減
し、採取針8を通過する血清流速も低下する。上述の従
来の装置は、この血清流速の過渡特性の影響を受けない
ようにするために一回の減圧時間を短くしている。しか
し、どんなに一回の減圧時間を短くしても、吸引を開始
してからある有限時間後の流速は微妙に変化し、分注量
の制御に関しその影響を皆無にすることはできない。こ
こで、一回の減圧時間を短くすればそれだけ、流速の過
渡特性の影響自体は軽減され得る。しかし、この場合、
一定の分注量を得るための繰り返し回数は増加するた
め、例えば減圧時間の制御ばらつき等の要因による誤差
が累積されることになる。
As the serum is dispensed from the blood collection tube to the collection container, the negative pressure in the collection container decreases, and the flow rate of the serum passing through the collection needle 8 also decreases. In the above-described conventional apparatus, one decompression time is shortened so as not to be affected by the transient characteristic of the serum flow rate. However, no matter how short the decompression time is, the flow rate after a finite time from the start of suction slightly changes, and the influence on the control of the dispensed volume cannot be completely eliminated. Here, the shorter the decompression time, the shorter the effect of the transient characteristics of the flow velocity can be reduced. But in this case,
Since the number of repetitions for obtaining a constant dispensing amount increases, errors due to factors such as, for example, variation in control of the decompression time are accumulated.

【0007】また、血清流速の過渡特性は、血清の粘性
や採血管2内の空気層26の体積の影響も受ける。よっ
て、減圧時間を一定にしても、血液サンプル毎に分注量
のばらつきが生じる。また、採取針8の管径のばらつき
等に応じて、血清流速は装置毎に異なりうる。
[0007] The transient characteristics of the serum flow velocity are also affected by the viscosity of the serum and the volume of the air layer 26 in the blood collection tube 2. Therefore, even if the decompression time is fixed, the dispensed amount varies for each blood sample. Further, the serum flow rate may vary from device to device depending on the variation in the diameter of the collection needle 8 and the like.

【0008】このように採血管からの定量抜き取りを行
う従来の装置は、その分注量の制御に関し様々な誤差要
因を有しており、精度の良い制御が難しいという問題を
有していた。
[0008] As described above, the conventional apparatus for extracting a fixed amount from a blood collection tube has various error factors in controlling the dispensed amount, and has a problem that it is difficult to perform accurate control.

【0009】本発明は上記問題点を解消するためになさ
れたもので、分注先容器へ付与される陰圧によって分注
元容器から試料を吸引する際に精度の良い分注量制御が
行われる自動分注装置を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and a precise dispensing amount control is performed when a sample is sucked from a dispensing source container by a negative pressure applied to a dispensing destination container. It is an object of the present invention to provide an automatic dispensing device.

【0010】[0010]

【課題を解決するための手段】本発明に係る自動分注装
置は、分注元容器に分注先容器を気密接続し、前記分注
先容器に陰圧を付与して前記分注元容器から前記分注先
容器へ試料を吸引・採取する自動分注装置であり、当該
自動分注装置において前記分注先容器内部の気体圧力を
検出する圧力検出手段と、前記陰圧付与後の気体圧力の
上昇幅に基づいて前記分注先容器への試料の採取量を制
御する採取量制御手段とを備えたものである。
According to the present invention, there is provided an automatic dispensing apparatus, wherein a dispensing source container is air-tightly connected to a dispensing source container, and a negative pressure is applied to the dispensing destination container. An automatic dispensing device for aspirating and collecting a sample from the dispensing destination container to the dispensing destination container, wherein the automatic dispensing device detects a gas pressure inside the dispensing destination container, and a gas after applying the negative pressure. Sampling amount control means for controlling the amount of sample to be collected in the dispensing destination container based on the pressure increase width.

【0011】分注元容器から分注先容器へ試料が吸引さ
れると、その吸引量に応じて分注先容器の内部の気体
(例えば空気)に付与された陰圧が緩和されるととも
に、分注先容器内の当該気体の体積は減少する。ここで
分注先容器内の気体体積とその圧力とは、気体の状態方
程式によって関係付けられる。本発明によれば、圧力検
出手段が分注先容器内の気体圧力をモニタする。採取量
制御手段は、圧力検出手段の出力に基づいて、分注先容
器に付与された陰圧の初期値からの気体圧力の上昇幅を
検知し、状態方程式に基づく関係を利用して、当該圧力
上昇幅に対応する容器内の気体体積の減少幅を評価す
る。この気体体積の減少幅は、分注先容器に採取された
試料の体積に相当する。つまり、採取量制御手段は、気
体体積の減少幅に基づいて分注先容器への試料の採取量
を制御することができる。
When the sample is sucked from the dispensing source container to the dispensing destination container, the negative pressure applied to the gas (for example, air) inside the dispensing destination container is reduced in accordance with the amount of suction, and The volume of the gas in the dispensing container decreases. Here, the gas volume in the dispensing destination container and its pressure are related by a gas state equation. According to the present invention, the pressure detecting means monitors the gas pressure in the dispensing destination container. Based on the output of the pressure detection means, the sampling amount control means detects the range of increase in gas pressure from the initial value of the negative pressure applied to the dispensing destination container, and uses the relationship based on the equation of state to The amount of decrease in the gas volume in the container corresponding to the amount of pressure rise is evaluated. This decrease in the gas volume corresponds to the volume of the sample collected in the dispensing destination container. That is, the collection amount control means can control the collection amount of the sample in the dispensing destination container based on the decrease width of the gas volume.

【0012】他の本発明に係る自動分注装置において
は、前記採取量制御手段が、前記気体圧力の上昇幅に基
づいて前記分注先容器への試料の採取量が目標値に達し
たことを判定する採取量判定手段と、前記採取量判定手
段による判定タイミングに従って前記分注先容器内部の
気体圧力を更に上昇させて、前記分注先容器への試料の
流入を停止させる採取停止手段とを有する。
In another automatic dispensing apparatus according to the present invention, the collection amount control means may determine that the collection amount of the sample into the dispensing destination container has reached a target value based on the increase width of the gas pressure. Sampling amount determining means for determining, and further increasing the gas pressure inside the dispensing destination container according to the determination timing by the sampling amount determining means, collection stopping means for stopping the flow of the sample into the dispensing destination container, Having.

【0013】本発明によれば、採取量判定手段が、陰圧
が付与され分注元容器からの試料の吐出が開始された時
点からの気体圧力の上昇幅が所定値に達したことに基づ
いて、分注先容器への試料の採取量が目標値に達したこ
とを判定する。採取停止手段は、採取量が目標値に達し
たという採取量判定手段による判定結果を受けると、そ
れに応答して分注先容器内部の気体圧力を上昇させる。
このとき気体圧力は、分注元容器からの試料の流入が停
止される値まで増加される。その下限値は、例えば、分
注元容器内部の気体圧力、倒立時の分注元容器内の試料
の重さ、分注元容器と分注先容器との連通路のコンダク
タンス、試料の粘性といった要因の影響を受け、単純に
分注先容器の気体圧力だけでは一般に定まらない。普通
には、分注先容器の陰圧が完全に解消されなくても試料
の流入は停止され得る。ここで、流入を急峻に停止させ
るために、下限値より高い値に気体圧力を上昇させるよ
うに採取停止手段を構成することもできる。例えば、採
取停止手段は、大気圧又はそれ以上の値に気体圧力を上
昇させるように構成することができる。
[0013] According to the present invention, the sampling amount judging means determines that the increasing range of the gas pressure from the time when the negative pressure is applied and the discharge of the sample from the dispensing source container starts has reached a predetermined value. Then, it is determined that the amount of the sample collected in the dispensing destination container has reached the target value. Upon receiving the determination result by the collection amount determining means that the collection amount has reached the target value, the collection stopping unit increases the gas pressure inside the dispensing destination container in response to the determination result.
At this time, the gas pressure is increased to a value at which the inflow of the sample from the dispensing source container is stopped. The lower limit is, for example, the gas pressure inside the dispensing source container, the weight of the sample in the dispensing source container when inverted, the conductance of the communication path between the dispensing source container and the dispensing destination container, the viscosity of the sample, and the like. Due to the influence of factors, it is generally not determined simply by the gas pressure of the dispensing destination container. Usually, the inflow of the sample can be stopped even if the negative pressure of the dispensing container is not completely released. Here, in order to stop the inflow steeply, the sampling stopping means may be configured to increase the gas pressure to a value higher than the lower limit. For example, the collection stopping means can be configured to increase the gas pressure to atmospheric pressure or higher.

【0014】本発明の好適な態様は、前記採取停止手段
が、前記分注容器内部を外気に連通させて前記分注容器
内部の気体圧力を大気圧に戻す自動分注装置である。
A preferred embodiment of the present invention is an automatic dispensing apparatus in which the collection stopping means returns the gas pressure inside the dispensing container to the atmospheric pressure by communicating the inside of the dispensing container with the outside air.

【0015】さらに他の本発明に係る自動分注装置は、
前記陰圧を発生させて前記分注先容器に付与するポンプ
と、前記採取量制御手段による採取量制御が行われてい
る間、前記ポンプを前記分注先容器から遮断するポンプ
遮断弁とを有するものである。
Still another automatic dispensing apparatus according to the present invention comprises:
A pump for generating the negative pressure and applying it to the dispensing destination container, and a pump shutoff valve for shutting off the pump from the dispensing destination container while the collection amount control is being performed by the collection amount control unit. Have

【0016】本発明によれば、陰圧を発生するポンプが
分注先容器に接続され、ポンプにて陰圧が発生される
と、当該陰圧が分注先容器の内部の空間にも及ぼされ
る。これにより、分注元容器からの試料の吸引、採取が
始まり、採取量制御手段による採取量制御が開始され
る。ポンプ遮断弁は、ポンプから分注先容器へ陰圧が付
与されると速やかに閉じられ、ポンプに関わる空間が分
注先容器から遮断される。これにより、採取量制御に関
係する空間、つまり試料流入による気体圧力の変化が生
じる空間はポンプ遮断弁から分注先容器側の空間に制限
される。このように制御に関係する気体空間を抑制した
場合における当該空間への試料の流入による気体空間の
減少の割合は、ポンプ遮断弁が開放され気体空間が抑制
されない場合に比べ増大される。つまり、より大きな気
体圧力の上昇幅が得られることになり、気体圧力変動の
検出感度が増大する。なお、ポンプ遮断弁によって分注
先容器から遮断されるポンプに関係する空間には、ポン
プ自体の気室のほか、ポンプと分注先容器とをつなぐ配
管が含まれ得る。また、ポンプは分注先容器から圧力媒
体となる気体を吸引できるものであれば種類を問わず、
例えばシリンジポンプを用いることもできる。
According to the present invention, a pump for generating a negative pressure is connected to the dispensing destination container, and when a negative pressure is generated by the pump, the negative pressure is also applied to the space inside the dispensing destination container. It is. Thus, the suction and collection of the sample from the dispensing source container starts, and the collection amount control by the collection amount control unit starts. The pump shutoff valve is closed immediately when a negative pressure is applied from the pump to the dispensing destination container, and the space related to the pump is shut off from the dispensing destination container. Thereby, the space related to the collection amount control, that is, the space in which the gas pressure changes due to the sample inflow is limited to the space from the pump shutoff valve to the dispensing destination container side. In this way, when the gas space related to the control is suppressed, the rate of reduction of the gas space due to the inflow of the sample into the space is increased as compared with the case where the pump cutoff valve is opened and the gas space is not suppressed. That is, a larger increase in the gas pressure can be obtained, and the detection sensitivity of the gas pressure fluctuation increases. The space related to the pump that is shut off from the dispensing destination container by the pump shutoff valve may include a pipe connecting the pump and the dispensing destination container, in addition to the air chamber of the pump itself. In addition, any type of pump can be used as long as it can suck gas serving as a pressure medium from the dispensing destination container.
For example, a syringe pump can be used.

【0017】別の本発明に係る自動分注装置は、前記分
注先容器と共通に前記陰圧を付与される陰圧気室と、前
記採取量制御手段による採取量制御が行われている間、
前記陰圧気室を前記分注先容器から遮断する陰圧気室遮
断弁とを有し、前記圧力検出手段が、前記分注先容器と
前記陰圧気室との気体圧力の差圧を検出する差圧センサ
であるものである。
In another automatic dispensing apparatus according to the present invention, a negative pressure air chamber to which the negative pressure is applied in common with the dispensing destination container and a collection amount control by the collection amount control means are performed. ,
A negative pressure chamber shutoff valve for shutting off the negative pressure chamber from the dispensing destination container, wherein the pressure detecting means detects a differential pressure of a gas pressure between the dispensing destination container and the negative pressure chamber. It is a pressure sensor.

【0018】本発明によれば、陰圧気室と陰圧気室を分
注先容器から遮断する陰圧気室遮断弁とが設けられる。
陰圧気室は陰圧気室遮断弁を開放している状態では、分
注先容器の気体空間と連通するように構成され、ポンプ
等の陰圧を発生する手段によって分注先容器と基本的に
同じ陰圧が付与される。一方、陰圧気室遮断弁を閉じる
と、分注先容器と陰圧気室とは遮断され、よって分注先
容器に試料が吸引されその内部の気体圧力が当初付与さ
れた陰圧から変動しても、陰圧気室には分注先容器に当
初付与されたと同じ陰圧が保持される。本発明では圧力
検出手段として、2つの部位の圧力の差を検出する差圧
センサが設けられ、分注先容器と陰圧気室との差圧を検
出する。分注先容器に陰圧が付与され採取量制御手段に
よる採取量制御が開始されると陰圧気室遮断弁は閉じら
れ、陰圧気室には制御開始時の分注先容器の陰圧が保持
されるので、差圧センサからは、分注先容器の制御開始
時における圧力と現在の圧力との差が出力される。
According to the present invention, a negative pressure air chamber and a negative pressure air chamber shutoff valve for shutting off the negative pressure air chamber from the dispensing destination container are provided.
The negative pressure air chamber is configured to communicate with the gas space of the dispensing destination container when the negative pressure air chamber shutoff valve is open, and is basically connected to the dispensing destination container by means such as a pump that generates a negative pressure. The same negative pressure is applied. On the other hand, when the negative pressure air chamber shutoff valve is closed, the dispensing destination container and the negative pressure air chamber are shut off, so that the sample is sucked into the dispensing destination container and the gas pressure in the interior fluctuates from the initially applied negative pressure. In the negative pressure chamber, the same negative pressure as initially applied to the dispensing destination container is maintained. In the present invention, a differential pressure sensor that detects a difference between the pressures of two parts is provided as a pressure detecting unit, and detects a differential pressure between the dispensing destination container and the negative pressure air chamber. When a negative pressure is applied to the dispensing destination container and the collection amount control by the collection amount control means is started, the negative pressure air chamber shutoff valve is closed, and the negative pressure of the dispensing destination container at the start of the control is held in the negative pressure air chamber. Therefore, the difference between the pressure at the start of the control of the dispensing destination container and the current pressure is output from the differential pressure sensor.

【0019】[0019]

【発明の実施の形態】[実施形態1]次に、本発明の実
施形態について図面を参照して説明する。
[Embodiment 1] Next, an embodiment of the present invention will be described with reference to the drawings.

【0020】図1は、本発明の原理を説明する模式図で
ある。液状試料を収容した分注元容器30と分注先容器
32とが気密接続される。両容器30,32は連通管3
4を介して連通している。分注先容器32には減圧ポン
プ36が接続され、減圧ポンプ36は分注先容器32内
の空気を吸引することができる。同図(a)は、吸引開
始前の状態を示すものであり、このときの分注先容器3
2及びそれに連なる部分の空気で満たされた密閉空間の
容積をV0とする。この状態にて減圧ポンプ36を動作
して当該密閉空間の圧力を瞬時にP0に低下させると、
密閉空間に陰圧が付与されることにより、分注元容器3
0から分注先容器32への液状試料の吸引動作が開始さ
れる。同図(b)は吸引が開始された後の状態を示す図
である。吸引動作が開始されてからの時刻tにおける密
閉空間の圧力をP(t)、密閉空間内に流入した液状試料
の体積をΔV(t)とすると、この密閉空間内についての
気体の状態方程式として次式が成立する。
FIG. 1 is a schematic diagram for explaining the principle of the present invention. The dispensing source container 30 containing the liquid sample and the dispensing destination container 32 are hermetically connected. Both containers 30 and 32 are communicating pipes 3
4. A pressure reducing pump 36 is connected to the dispensing destination container 32, and the pressure reducing pump 36 can suck the air in the dispensing destination container 32. FIG. 7A shows the state before the start of suction, and the dispensing destination container 3 at this time.
2 and volume of the closed space filled with part of the air communicating therewith and V 0. In this state, when the pressure reducing pump 36 is operated to instantaneously reduce the pressure in the closed space to P 0 ,
By applying a negative pressure to the enclosed space, the dispensing source container 3
From 0, the suction operation of the liquid sample into the dispensing destination container 32 is started. FIG. 6B is a diagram showing a state after suction has started. Assuming that the pressure in the closed space at time t from the start of the suction operation is P (t) and the volume of the liquid sample flowing into the closed space is ΔV (t), the gas state equation in the closed space is The following equation holds.

【0021】[0021]

【数1】 P00 n=P(t){V0−ΔV(t)}n ………(1) ここでnは1から密閉空間内の気体の比熱比γまでのい
ずれかの値をとり、特に、完全に断熱的である場合には
n=γであり、また等熱的である場合にはn=1とな
る。なお、気体が空気である場合の比熱比γは1.4で
ある。ΔV(t)≪V0を仮定して、ΔV(t)について近似
的に(1)式を解くと次式が得られる。
P 0 V 0 n = P (t) {V 0 −ΔV (t)} n (1) where n is any one from 1 to the specific heat ratio γ of the gas in the closed space. In particular, n = γ when completely adiabatic, and n = 1 when isothermal. The specific heat ratio γ when the gas is air is 1.4. Assuming that ΔV (t) ≪V 0 , the following equation is obtained by approximately solving equation (1) for ΔV (t).

【0022】[0022]

【数2】 ΔV(t)=(P(t)−P0)V0/nP(t) ………(2) この式は、連通管34からの液状試料の流入が開始され
てからの密閉空間内の圧力変化P(t)をモニタすること
によって、その時刻の液状試料の流入体積ΔV(t)を知
ることができることを示している。したがって、圧力変
化P(t)が、目標とする分注量に応じた圧力レベルに達
したタイミングで、密閉空間を大気開放する等の手段に
よって液状試料の流入を停止させることにより、所望の
量の定量分注を達成することができる。
ΔV (t) = (P (t) −P 0 ) V 0 / nP (t) (2) This equation is obtained after the flow of the liquid sample from the communication pipe 34 is started. This shows that by monitoring the pressure change P (t) in the closed space, the inflow volume ΔV (t) of the liquid sample at that time can be known. Therefore, at the timing when the pressure change P (t) reaches a pressure level corresponding to the target dispensed volume, the inflow of the liquid sample is stopped by a means such as opening the closed space to the atmosphere, so that the desired volume can be reduced. Can be achieved.

【0023】図2は、本発明の第一の実施形態である血
清自動分注装置の構成を示す模式図である。分注元容器
となる真空採血管50には血液試料が採取されている。
この試料は遠心分離により血餅52と血清54とが分離
材56を介して異なる層に分離されている。また、血清
54の上には空気層58が存在する。真空採血管50は
開口端を上部に向けて配置され、開口端は封止栓60で
封止される。また分注先容器となる分注容器70もその
開口端を上部に向けて配置され、その開口端は封止栓7
2で封止される。
FIG. 2 is a schematic diagram showing the configuration of the automatic serum dispensing apparatus according to the first embodiment of the present invention. A blood sample is collected in the vacuum blood collection tube 50 serving as a dispensing source container.
In this sample, the clot 52 and the serum 54 are separated into different layers via a separating material 56 by centrifugation. An air layer 58 exists on the serum 54. The vacuum blood collection tube 50 is arranged with the open end facing upward, and the open end is sealed with a sealing plug 60. A dispensing container 70 serving as a dispensing destination container is also arranged with its open end facing upward, and the open end is sealed with a sealing plug 7.
Sealed with 2.

【0024】真空採血管50と分注容器70とは連通管
74によって連通され、連通管74の真空採血管50側
の端部は血清54の層内に差し込まれる。分注容器70
の封止栓72には、チューブ76の一方端が差し込まれ
る。チューブ76の他方端には分注先容器に陰圧を付与
する手段である減圧ポンプ80、圧力検出手段である圧
力センサ82、及び大気開放弁84が互いに並列に接続
される。圧力センサ82により検出される圧力変動信号
は、増幅器86によって増幅された後、制御部88へ入
力される。また、大気開放弁84の開閉は制御部88に
よって制御することができる。
The vacuum blood collection tube 50 and the dispensing container 70 are connected by a communication tube 74, and the end of the communication tube 74 on the vacuum blood collection tube 50 side is inserted into the serum 54 layer. Dispensing container 70
One end of the tube 76 is inserted into the sealing plug 72. The other end of the tube 76 is connected in parallel with a pressure reducing pump 80 as a means for applying a negative pressure to the dispensing container, a pressure sensor 82 as a pressure detecting means, and an atmosphere release valve 84. The pressure fluctuation signal detected by the pressure sensor 82 is input to the control unit 88 after being amplified by the amplifier 86. The opening and closing of the atmosphere release valve 84 can be controlled by the control unit 88.

【0025】図3は、減圧ポンプ80により陰圧を付与
した場合の分注容器70内の気体圧力(ここでは空気
圧)の変化を示す模式的なグラフである。時刻tSにて
減圧ポンプ80を動作して、分注容器70内の空気圧を
大気圧PATから所定の陰圧P0まで速やかに低下させる
(圧力曲線100)。分注容器70を含む密閉空間の空
気圧が所定の陰圧P0に達したことは圧力センサ82の
出力に基づいて制御部88により検知され、その時点
(t=t0)で減圧ポンプ80は停止される。
FIG. 3 is a schematic graph showing a change in gas pressure (here, air pressure) in the dispensing container 70 when a negative pressure is applied by the vacuum pump 80. Operating the vacuum pump 80 at time t S, to quickly lower the air pressure in the dispensing container 70 from the atmospheric pressure P AT to a predetermined negative pressure P 0 (pressure curve 100). The fact that the air pressure in the closed space including the dispensing container 70 has reached the predetermined negative pressure P 0 is detected by the control unit 88 based on the output of the pressure sensor 82, and at that time (t = t 0 ), the pressure reducing pump 80 Stopped.

【0026】分注容器70内に陰圧が付与されると、真
空採血管50内の血清54が連通管74を介して吸い上
げられ分注容器70へ流入する。血清の流入とともに、
分注容器70内の空間容積が減少し、上述した原理によ
り空気圧は徐々に上昇していく(圧力曲線102)。な
お、図3には、3通りの圧力曲線102-1,102-2,
102-3が示されているが、これらは順に真空採血管5
0内の空気層58の体積が大、中、小の場合に対応して
いる。空気層58の体積が大きいほど、血清54の吸引
に伴う当該空気層58の圧力低下幅が小さいので、血清
54が真空採血管50から流出されやすい。そのため、
空気層58の体積が大きいほど、分注容器70へ流入す
る血清の体積ΔV(t)の増加が速やかで、空気圧も速や
かに上昇することとなる。また、吸引される液状試料の
粘性等の他の要因に応じても同様の圧力曲線102の相
違が生じ得る。例えば、粘性が小さいほど圧力曲線10
2は速やかに上昇する。
When a negative pressure is applied to the dispensing container 70, the serum 54 in the vacuum blood collection tube 50 is sucked up through the communication tube 74 and flows into the dispensing container 70. With the influx of serum,
The space volume in the dispensing container 70 decreases, and the air pressure gradually increases according to the above-described principle (pressure curve 102). FIG. 3 shows three types of pressure curves 102-1, 102-2,
102-3 are shown, which are in turn vacuum collection tubes 5
This corresponds to the case where the volume of the air layer 58 in 0 is large, medium, and small. The larger the volume of the air layer 58, the smaller the pressure drop of the air layer 58 due to the suction of the serum 54, and therefore the more easily the serum 54 flows out of the vacuum blood collection tube 50. for that reason,
As the volume of the air layer 58 increases, the volume ΔV (t) of the serum flowing into the dispensing container 70 increases more rapidly, and the air pressure also increases more rapidly. A similar difference in the pressure curve 102 may occur depending on other factors such as the viscosity of the liquid sample to be aspirated. For example, as the viscosity decreases, the pressure curve 10
2 rises quickly.

【0027】次に図4は、本装置の分注動作時の分注容
器70内の空気圧の変化を示す模式的なグラフである。
制御部88は減圧ポンプ80の停止される時刻t0後、
真空採血管50から分注容器70への血清の採取量の制
御を開始する。具体的には、制御部88は圧力センサ8
2の出力P(t)と、あらかじめ制御部88に設定された
閾値Pthとを比較し、P(t)≧Pthとなったことを検知
すると、分注容器70への血清の採取量が目標値に達し
たと判定する。そして、制御部88は大気開放弁84を
開放して分注容器70内の圧力Pを大気圧PATに戻す
(圧力曲線104)。これにより、真空採血管50から
の血清の吸引が停止される。
FIG. 4 is a schematic graph showing a change in the air pressure in the dispensing container 70 during the dispensing operation of the present apparatus.
After time t 0 at which the pressure reducing pump 80 is stopped,
Control of the amount of serum collected from the vacuum blood collection tube 50 to the dispensing container 70 is started. Specifically, the control unit 88 controls the pressure sensor 8
2 is compared with a threshold value P th preset in the control unit 88, and when it is detected that P (t) ≧ P th , the amount of serum collected in the dispensing container 70 is determined. Is determined to have reached the target value. Then, the control unit 88 returns the pressure P in the dispensing container 70 by opening the air release valve 84 to the atmospheric pressure P AT (pressure curve 104). Thereby, the suction of the serum from the vacuum blood collection tube 50 is stopped.

【0028】大気開放弁84開放後の圧力曲線104-1
〜104-3はそれぞれ圧力曲線102-1〜102-3に対
応している。それぞれの場合の大気開放弁84の開放タ
イミングはtR1,tR2,tR3となり、互いに異なるタイ
ミングで弁の開放が行われることになる。すなわち本装
置では、分注容器70内の空気圧上昇が所定の幅に達し
たことに基づいて血清の流入を停止させるので、種々の
要因に起因する圧力曲線102の相違にかかわらず、分
注容器70への血清の採取量は一定に保たれる。
Pressure curve 104-1 after opening the atmosphere release valve 84
To 104-3 correspond to the pressure curves 102-1 to 102-3, respectively. The opening timing of the atmosphere release valve 84 in each case is t R1 , t R2 , and t R3 , and the valves are opened at different timings. That is, in the present apparatus, the inflow of serum is stopped based on the increase in the air pressure in the dispensing container 70 reaching a predetermined width. Therefore, regardless of the difference in the pressure curve 102 due to various factors, the dispensing container The amount of serum collected to 70 is kept constant.

【0029】[実施形態2]図5は、本発明の第二の実
施形態である血清自動分注装置の構成を示す模式図であ
る。図において実施形態1と同様の機能を有する構成要
素には同一の符号を付し説明の簡略化を図る。
[Second Embodiment] FIG. 5 is a schematic diagram showing a configuration of an automatic serum dispensing apparatus according to a second embodiment of the present invention. In the figure, components having the same functions as those in the first embodiment are denoted by the same reference numerals, and the description is simplified.

【0030】本装置では真空採血管50は倒立されて分
注容器70に気密接続される。この構成では、倒立され
た真空採血管50の開口を封止する封止栓150にカプ
ラー152の単管型の採取針154が穿刺される。カプ
ラー152の下にはカプラー台156を介して採取容器
70が配置される。この採取容器70はカプラー台15
6のパッキング材に圧接され、その内部の気密を保つこ
とができる。
In this apparatus, the vacuum blood collection tube 50 is inverted and hermetically connected to the dispensing container 70. In this configuration, a single-tube type collection needle 154 of the coupler 152 is punctured into the sealing stopper 150 that seals the opening of the inverted vacuum blood collection tube 50. The collection container 70 is disposed below the coupler 152 via a coupler stand 156. This collection container 70 is used for the coupler table 15.
6 is pressed against the packing material to keep the inside airtight.

【0031】カプラー台156の側部に設けられ分注容
器70内部と連通する空気孔160には、チューブ16
2、ポンプ弁164及びチューブ166を介してシリン
ジポンプ168が接続される。チューブ162の途中に
接続される分岐管170には大気開放弁84が設けられ
る。
An air hole 160 provided on the side of the coupler base 156 and communicating with the inside of the dispensing container 70 has a tube 16.
2. The syringe pump 168 is connected via the pump valve 164 and the tube 166. The branch pipe 170 connected in the middle of the tube 162 is provided with an atmosphere release valve 84.

【0032】また本装置では圧力検出手段として差圧セ
ンサ172が用いられる。差圧センサ172はその2つ
のポート(検知端)がポンプ弁164の前後に接続さ
れ、ポンプ弁164の前後、すなわち分注容器70の内
部とシリンジポンプ168側の空間との圧力差を検出す
る。なお、差圧センサ172は両ポート間の気密を保つ
構造を有している。
In this apparatus, a differential pressure sensor 172 is used as a pressure detecting means. The differential pressure sensor 172 has two ports (detection ends) connected before and after the pump valve 164, and detects a pressure difference between before and after the pump valve 164, that is, between the inside of the dispensing container 70 and the space on the syringe pump 168 side. . Note that the differential pressure sensor 172 has a structure for maintaining airtightness between both ports.

【0033】この差圧センサ172により検出される圧
力差信号は、増幅器86によって増幅された後、制御部
180へ入力される。また、制御部180は大気開放弁
84の開閉、ポンプ弁164の開閉、及びシリンジポン
プ168の駆動機構182の制御を行う。
The pressure difference signal detected by the differential pressure sensor 172 is amplified by the amplifier 86 and then input to the control unit 180. Further, the control unit 180 controls opening and closing of the atmosphere release valve 84, opening and closing of the pump valve 164, and control of the drive mechanism 182 of the syringe pump 168.

【0034】図6は、本装置の分注動作時の差圧センサ
172の出力である差圧値Dの時間変化を示す模式的な
グラフである。ここで差圧値Dは差圧センサ172の分
注容器70側のポートでの空気圧PFとシリンジポンプ
168側のポートでの空気圧PBとの差(PF−PB)で
定義される。
FIG. 6 is a schematic graph showing a time change of the differential pressure value D which is the output of the differential pressure sensor 172 during the dispensing operation of the present apparatus. Here differential pressure values D is defined by the difference between the air pressure P B in the air pressure P F and the syringe pump 168 side of the port in dispensing container 70 side of the port of the differential pressure sensor 172 (P F -P B) .

【0035】初期状態では、大気開放弁84とポンプ弁
164の両方が開放され、分注容器70及びそれにつな
がるチューブ162,166、分岐管170、差圧セン
サ172内部はすべて大気圧PATとなっている。この状
態では差圧センサ172の両端には圧力差はないので、
差圧値D=0である。
[0035] In the initial state, both the air open valve 84 and the pump valve 164 is opened, dispensing container 70 and tubes 162, 166 connected thereto, is the branch pipes 170, all differential pressure sensor 172 inside the atmospheric pressure P AT ing. In this state, there is no pressure difference between both ends of the differential pressure sensor 172,
The differential pressure value D = 0.

【0036】本装置の分注の開始動作において、制御部
180はポンプ弁164を閉じ(時刻t=tS1)、シリ
ンジポンプ168のピストンを引いてポンプ弁164か
らシリンジポンプ168に至る空間(ポンプ側空間と称
し、その体積をVSで表す)を所定の陰圧PSにする(時
刻t=tS2)。この所定の陰圧は差圧センサ172の出
力DがPAT−PS(≡DS)となることから検知すること
ができる。
In the dispensing start operation of the present apparatus, the controller 180 closes the pump valve 164 (time t = t S1 ), pulls the piston of the syringe pump 168, and moves the space (pump) from the pump valve 164 to the syringe pump 168. A side space, whose volume is represented by V S ) is set to a predetermined negative pressure P S (time t = t S2 ). This predetermined negative pressure can be detected from the fact that the output D of the differential pressure sensor 172 becomes P AT -P S (≡D S ).

【0037】次に、大気開放弁84を閉じた状態でポン
プ弁164を開くと、ポンプ弁164から分注容器70
側の空間(分注容器側空間と称する)と上記ポンプ側空
間との圧力が平均化される。平均化が完了すると差圧セ
ンサ172の出力値Dは0となり、それと同時にポンプ
弁164が閉じられる(時刻t=t0)。この気圧の平
均化によって分注容器側空間の気圧は陰圧となり、真空
採血管50からの血清の吸引、吐出が始まる。よって実
施形態1の原理の説明で述べた吸引開始時の気圧P
0は、ポンプ側空間と分注容器側空間との平均化気圧と
なる。すなわち、吸引開始時点での分注容器側空間の容
積をV0とすると、
Next, when the pump valve 164 is opened with the atmosphere release valve 84 closed, the dispensing container 70 is opened from the pump valve 164.
The pressure in the space on the side (referred to as the dispensing container side space) and the pressure in the pump side space are averaged. When the averaging is completed, the output value D of the differential pressure sensor 172 becomes 0, and at the same time, the pump valve 164 is closed (time t = t 0 ). By averaging the air pressure, the air pressure in the dispensing container side space becomes a negative pressure, and the suction and discharge of the serum from the vacuum blood collection tube 50 start. Therefore, the pressure P at the start of suction described in the description of the principle of Embodiment 1
0 is the average pressure of the pump side space and the dispensing container side space. That is, if the volume of the dispensing container side space at the start of suction is V 0 ,

【数3】 P0={PAT0+(PAT−PS)VS}/(V0+VS) ………(3) である。ポンプ弁164を開放している時間はチューブ
162などの配管系のコンダクタンス等によって変動し
得るが、通常は数mS〜数十mSといった時間である。
P 0 = {P AT V 0 + (P AT −P S ) V S } / (V 0 + V S ) (3) The time during which the pump valve 164 is open can vary depending on the conductance of the piping system such as the tube 162, but is usually several mS to several tens mS.

【0038】以下の動作は上述した実施形態1と基本的
に同様であり、真空採血管50からの血清の流入による
分注容器側空間の減少に伴う当該空間の気圧P(t)の上
昇(圧力曲線200)を差圧センサ172によってモニ
タする。なお、時刻t0以降における分注容器側空間の
気圧P(t)と差圧センサ172の出力Dとは、D=P(t)
−P0の関係を有している。制御部180は、差圧セン
サ172の出力値Dがあらかじめ設定された閾値Pth
対応する値Dth(=Pth−P0)に達したことを検知す
ると(時刻t=tR)、大気開放弁84を開放して、分
注容器70内の陰圧を解消して真空採血管50からの血
清の流入を停止させる。なお、このときの差圧センサ1
72の出力値DEはPAT−P0となる。
The following operation is basically the same as that of the first embodiment described above, and the pressure P (t) in the space increases due to the decrease in the space on the dispensing container side due to the inflow of serum from the vacuum blood collection tube 50 ( The pressure curve 200) is monitored by the differential pressure sensor 172. It should be noted that the pressure P (t) in the dispensing container side space and the output D of the differential pressure sensor 172 after time t 0 are D = P (t).
−P 0 . When detecting that the output value D of the differential pressure sensor 172 has reached the value D th (= P th −P 0 ) corresponding to the preset threshold value P th (time t = t R ), The air release valve 84 is opened, the negative pressure in the dispensing container 70 is eliminated, and the inflow of serum from the vacuum blood collection tube 50 is stopped. At this time, the differential pressure sensor 1
The output value DE of 72 is P AT -P 0 .

【0039】本装置では、ポンプ弁164によって分注
容器側空間をポンプ側空間から遮断可能である。このポ
ンプ弁164の第1の作用として、血清流入による圧力
変動の及ぶ空間が制限される。分注容器70内の空間の
容積変化に伴う圧力変動は、その変動が及ぶ空間が狭い
ほど大きくなるので、上述のように血清の分注容器70
への吸引量の制御を行う際に、ポンプ弁164を閉止し
てポンプ側空間を遮断することにより、差圧センサ17
2において大きな出力が得られる。これにより、制御部
180は差圧センサ172の出力に基づく圧力変化の高
感度な検知が可能であり、その圧力変化に基づく制御を
高精度に行うことができる。
In this apparatus, the dispensing container side space can be shut off from the pump side space by the pump valve 164. As a first operation of the pump valve 164, the space over which the pressure fluctuation due to the inflow of serum is limited. Since the pressure fluctuation due to the change in the volume of the space in the dispensing container 70 becomes larger as the space over which the fluctuation reaches becomes smaller, the serum dispensing container 70
When controlling the suction amount to the pump, the pump valve 164 is closed to shut off the pump side space, so that the differential pressure sensor 17
2, a large output is obtained. Thereby, the control unit 180 can detect the pressure change based on the output of the differential pressure sensor 172 with high sensitivity, and can perform the control based on the pressure change with high accuracy.

【0040】ポンプ弁164の第2の作用として、分注
容器70に付与された陰圧と共通の陰圧を有するポンプ
側空間が、吸引量の制御を行う間、当該初期の陰圧に保
持されることが挙げられる。すなわち、ポンプ弁164
を閉じることにより、ポンプ弁164からシリンジポン
プ168側のチューブ166、シリンジポンプ168の
シリンダ空間が、血清の吸引が開始される時点で分注容
器70に付与された陰圧を保持する陰圧気室となる。差
圧センサ172を用いて、この陰圧気室と分注容器70
内部との気体圧力差を検知する構成とすることにより、
吸引開始後の差圧センサ172の出力値Dがそのまま、
吸引が開始されてからの分注容器70における圧力変動
幅を表す。これにより、定量分注における閾値の設定が
容易となる。また制御部180において、例えば吸引開
始時の気体圧力を記憶し、現在得られる気体圧力と記憶
された吸引開始時の気体圧力との差を計算するといった
構成をとる必要がなく、制御部180での処理が容易と
なる。ちなみにポンプ弁164は分注容器70からシリ
ンジポンプ168を遮断するポンプ遮断弁としての機能
と、分注容器70から陰圧気室を遮断する陰圧気室遮断
弁としての機能とを果たしている。
As a second operation of the pump valve 164, the pump side space having the same negative pressure as the negative pressure applied to the dispensing container 70 holds the initial negative pressure while controlling the suction amount. It is mentioned that it is done. That is, the pump valve 164
Is closed, the tube 166 on the side of the syringe pump 168 from the pump valve 164 and the cylinder space of the syringe pump 168 maintain the negative pressure air chamber holding the negative pressure applied to the dispensing container 70 when the suction of the serum is started. Becomes Using the differential pressure sensor 172, this negative pressure air chamber and the dispensing container 70
By detecting the gas pressure difference with the inside,
The output value D of the differential pressure sensor 172 after the start of suction is
The pressure fluctuation width in the dispensing container 70 since the start of suction is shown. This facilitates the setting of the threshold in the quantitative dispensing. In addition, the control unit 180 does not need to take a configuration in which, for example, the gas pressure at the start of suction is stored and the difference between the currently obtained gas pressure and the stored gas pressure at the start of suction is calculated. Processing becomes easy. Incidentally, the pump valve 164 has a function as a pump shutoff valve for shutting off the syringe pump 168 from the dispensing container 70 and a function as a negative pressure air chamber shutoff valve for shutting off the negative pressure air chamber from the dispensing container 70.

【0041】[0041]

【発明の効果】採取量の時間変化は分注元容器内の空気
体積や液状試料の粘性等の種々の要因で異なり得るが、
本発明の自動分注装置によれば、試料の採取量が当該採
取に伴う分注先容器の容積変化と直接の関係を有する当
該分注先容器の気体圧力に基づいて検知されるので、上
記種々の要因によって影響を受けない精度のよい定量分
注が可能となる。さらに圧力をモニタすることにより、
例えば血清中のフィブリン等による分注元容器と分注先
容器との連通部分の詰まり状態を監視することが可能と
なり、高精度かつ信頼性の高い分注制御が実現される効
果もある。
According to the present invention, the time variation of the sampling amount may vary depending on various factors such as the air volume in the dispensing source container and the viscosity of the liquid sample.
According to the automatic dispensing device of the present invention, the amount of sample to be collected is detected based on the gas pressure of the dispensing destination container having a direct relationship with the change in volume of the dispensing destination container accompanying the collection, Accurate quantitative dispensing that is not affected by various factors becomes possible. By further monitoring the pressure,
For example, it is possible to monitor the clogging state of the communicating portion between the dispensing source container and the dispensing destination container due to fibrin or the like in serum, and there is also an effect that highly accurate and highly reliable dispensing control is realized.

【0042】また、本発明によれば分注元容器からの試
料の採取に伴う気体圧力の変動を検出する際に、ポンプ
遮断弁によって気体圧力の変動が及ぶ空間範囲が限定さ
れる。これにより、比較的大きな気体圧力の変動幅が得
られ、高感度の気体圧力の検出が可能となり、一層、高
精度の分注制御が可能となる。
Further, according to the present invention, when detecting the fluctuation of the gas pressure accompanying the sampling of the sample from the dispensing source container, the spatial range over which the fluctuation of the gas pressure is affected by the pump cutoff valve is limited. As a result, a relatively large fluctuation range of the gas pressure can be obtained, the gas pressure can be detected with high sensitivity, and the dispensing control can be performed with higher accuracy.

【0043】また、本発明によれば分注元容器からの試
料の採取開始時の陰圧が陰圧気室に保持され、差圧セン
サによってその陰圧気室と分注先容器との気体圧力差を
検知する構成とすることにより、採取開始時からの気体
圧力の変動幅の値そのものを差圧センサの出力として得
ることができ、制御手段の構成が簡単になるという効果
が得られる。
Further, according to the present invention, the negative pressure at the start of the collection of the sample from the dispensing source container is held in the negative pressure air chamber, and the gas pressure difference between the negative pressure air chamber and the dispensing destination container is detected by the differential pressure sensor. Is detected, the value itself of the fluctuation range of the gas pressure from the start of sampling can be obtained as the output of the differential pressure sensor, and the effect that the configuration of the control means is simplified is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の原理を説明する模式図である。FIG. 1 is a schematic diagram illustrating the principle of the present invention.

【図2】 本発明の第一の実施形態である血清自動分注
装置の構成を示す模式図である。
FIG. 2 is a schematic diagram illustrating a configuration of an automatic serum dispensing apparatus according to a first embodiment of the present invention.

【図3】 本発明の第一の実施形態において減圧ポンプ
により陰圧を付与した場合の分注容器内の気体圧力の変
化を示す模式的なグラフである。
FIG. 3 is a schematic graph showing a change in gas pressure in a dispensing container when a negative pressure is applied by a vacuum pump in the first embodiment of the present invention.

【図4】 本装置の第一の実施形態における分注動作時
の分注容器内の気体圧力の変化を示す模式的なグラフで
ある。
FIG. 4 is a schematic graph showing a change in gas pressure in a dispensing container during a dispensing operation in the first embodiment of the present apparatus.

【図5】 本発明の第二の実施形態である血清自動分注
装置の構成を示す模式図である。
FIG. 5 is a schematic diagram showing a configuration of an automatic serum dispensing apparatus according to a second embodiment of the present invention.

【図6】 本装置の第二の実施形態における分注動作時
の差圧センサの出力の時間変化を示す模式的なグラフで
ある。
FIG. 6 is a schematic graph showing a time change of an output of a differential pressure sensor during a dispensing operation in a second embodiment of the present apparatus.

【図7】 従来の定量抜取り可能な血液試料採取装置の
模式的な構成図である。
FIG. 7 is a schematic configuration diagram of a conventional blood sample collecting apparatus capable of quantitatively sampling.

【符号の説明】 30 分注元容器、32 分注先容器、34 連通管、
36 減圧ポンプ、50 真空採血管、54 血清、5
8 空気層、60,72 封止栓、70 分注容器、7
4 連通管、76,162,166 チューブ、80
減圧ポンプ、82 圧力センサ、84 大気開放弁、8
8,180 制御部、152 カプラー、154 採取
針、156 カプラー台、164 ポンプ弁、168
シリンジポンプ、172 差圧センサ。
[Description of reference symbols] 30-minute dispensing source container, 32-minute dispensing destination container, 34 communication pipe,
36 vacuum pump, 50 vacuum blood collection tube, 54 serum, 5
8 air layer, 60, 72 sealing stopper, 70 dispensing container, 7
4 communication pipe, 76, 162, 166 tube, 80
Pressure reducing pump, 82 Pressure sensor, 84 Atmospheric release valve, 8
8,180 control unit, 152 coupler, 154 sampling needle, 156 coupler stand, 164 pump valve, 168
Syringe pump, 172 differential pressure sensor.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 分注元容器に分注先容器を気密接続し、
前記分注先容器に陰圧を付与して前記分注元容器から前
記分注先容器へ試料を吸引・採取する自動分注装置にお
いて、 前記分注先容器内部の気体圧力を検出する圧力検出手段
と、 前記陰圧付与後の気体圧力の上昇幅に基づいて前記分注
先容器への試料の採取量を制御する採取量制御手段と、 を有することを特徴とする自動分注装置。
1. A dispensing destination container is airtightly connected to a dispensing source container,
In an automatic dispensing apparatus that applies a negative pressure to the dispensing destination container and aspirates and collects a sample from the dispensing source container to the dispensing destination container, a pressure detection that detects a gas pressure inside the dispensing destination container An automatic dispensing apparatus, comprising: means; and a sampling amount control means for controlling a sampling amount of the sample into the dispensing destination container based on a rising width of the gas pressure after the application of the negative pressure.
【請求項2】 請求項1記載の自動分注装置において、 前記採取量制御手段は、前記気体圧力の上昇幅に基づい
て前記分注先容器への試料の採取量が目標値に達したこ
とを判定する採取量判定手段と、 前記採取量判定手段による判定タイミングに従って前記
分注先容器内部の気体圧力を更に上昇させて、前記分注
先容器への試料の流入を停止させる採取停止手段と、 を有することを特徴とする自動分注装置。
2. The automatic dispensing device according to claim 1, wherein the collection amount control unit determines that the collection amount of the sample into the dispensing destination container has reached a target value based on the increase width of the gas pressure. A sampling amount determining means for determining, and a sampling stopping means for further increasing the gas pressure inside the dispensing destination container in accordance with the determination timing by the sampling amount determining means to stop the flow of the sample into the dispensing destination container. An automatic dispensing device, comprising:
【請求項3】 請求項2記載の自動分注装置において、 前記採取停止手段は、前記分注容器内部を外気に連通さ
せて前記分注容器内部の気体圧力を大気圧に戻すもので
あることを特徴とする自動分注装置。
3. The automatic dispensing device according to claim 2, wherein the collection stopping means returns the gas pressure inside the dispensing container to atmospheric pressure by communicating the inside of the dispensing container with outside air. Automatic dispensing device characterized by the following.
【請求項4】 請求項1から請求項3のいずれかに記載
の自動分注装置において、 前記陰圧を発生させて前記分注先容器に付与するポンプ
と、 前記採取量制御手段による採取量制御が行われている
間、前記ポンプを前記分注先容器から遮断するポンプ遮
断弁と、 を有することを特徴とする自動分注装置。
4. The automatic dispensing device according to claim 1, wherein a pump for generating the negative pressure and applying the negative pressure to the dispensing destination container, and a collection amount by the collection amount control unit. An automatic dispensing device, comprising: a pump shutoff valve for shutting off the pump from the dispensing destination container while the control is being performed.
【請求項5】 請求項1から請求項4のいずれかに記載
の自動分注装置において、 前記分注先容器と共通に前記陰圧を付与される陰圧気室
と、 前記採取量制御手段による採取量制御が行われている
間、前記陰圧気室を前記分注先容器から遮断する陰圧気
室遮断弁と、 を有し、 前記圧力検出手段は、前記分注先容器と前記陰圧気室と
の気体圧力の差圧を検出する差圧センサであること、 を特徴とする自動分注装置。
5. The automatic dispensing device according to claim 1, wherein the negative pressure air chamber to which the negative pressure is applied in common with the dispensing destination container, and the collection amount control means. A negative pressure air chamber shutoff valve that shuts off the negative pressure air chamber from the dispensing destination container while the collection amount control is being performed; and wherein the pressure detection unit includes the dispensing destination container and the negative pressure air chamber. An automatic dispensing device, characterized in that the sensor is a differential pressure sensor that detects a differential pressure between the gas pressure and the gas pressure.
JP20745599A 1999-07-22 1999-07-22 Automatic dispensing device Expired - Fee Related JP3373453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20745599A JP3373453B2 (en) 1999-07-22 1999-07-22 Automatic dispensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20745599A JP3373453B2 (en) 1999-07-22 1999-07-22 Automatic dispensing device

Publications (2)

Publication Number Publication Date
JP2001033358A true JP2001033358A (en) 2001-02-09
JP3373453B2 JP3373453B2 (en) 2003-02-04

Family

ID=16540066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20745599A Expired - Fee Related JP3373453B2 (en) 1999-07-22 1999-07-22 Automatic dispensing device

Country Status (1)

Country Link
JP (1) JP3373453B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256412A (en) * 2007-04-02 2008-10-23 Gl Sciences Inc Sample solid phase load channel device
JP2009089759A (en) * 2007-10-04 2009-04-30 Aloka Co Ltd Blood collecting method and blood collecting tube coupler
CN116369916A (en) * 2023-06-01 2023-07-04 南昌大学第一附属医院 Controllable blood sampling system and application method thereof
CN116839990B (en) * 2023-06-28 2024-03-19 深圳市生命力生物保健科技江苏有限公司 Sample extraction detection device for vitamin processing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256412A (en) * 2007-04-02 2008-10-23 Gl Sciences Inc Sample solid phase load channel device
JP2009089759A (en) * 2007-10-04 2009-04-30 Aloka Co Ltd Blood collecting method and blood collecting tube coupler
CN116369916A (en) * 2023-06-01 2023-07-04 南昌大学第一附属医院 Controllable blood sampling system and application method thereof
CN116369916B (en) * 2023-06-01 2023-08-08 南昌大学第一附属医院 Controllable blood sampling system
CN116839990B (en) * 2023-06-28 2024-03-19 深圳市生命力生物保健科技江苏有限公司 Sample extraction detection device for vitamin processing

Also Published As

Publication number Publication date
JP3373453B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
JP4570120B2 (en) Improved method and apparatus for aspirating and dispensing liquids
US9482563B2 (en) Real time measurements of fluid volume and flow rate using two pressure transducers
EP1059535B1 (en) Method of verifying aspirated volume in automatic diagnostic system
JPH03214058A (en) Automatic pipetting and diluting apparatus
JP7008986B2 (en) Dynamic vacuum attenuation leak detection method and equipment
AU3390899A (en) Blood clot detector
JP2007536559A (en) Apparatus and method for detecting leaks in hermetically sealed packages
JP4677076B2 (en) Liquid level detector
WO2015136991A1 (en) Dispensing device and dispensing method
EP3101431A1 (en) Automatic analytical apparatus
CN110383075A (en) Automatic analysing apparatus
JPS63109373A (en) Sampling method and apparatus therefor
JP4083280B2 (en) Micromechanical pipette device
JP3373453B2 (en) Automatic dispensing device
JPH0121467B2 (en)
US11453002B2 (en) Microfluidic device to deliver a controlled amount of liquid to an analysis tool for analysis
JPS63109330A (en) Method and apparatus for detecting liquid level
JP4209565B2 (en) Automatic dispensing device
JPH06109745A (en) Nozzle clogging detector
JP3635045B2 (en) Automatic dispensing device
CN110168381B (en) Automatic analyzer, waste liquid method of automatic analyzer, and three-way solenoid valve
JP2688163B2 (en) Dispensing device
JPS6224151A (en) Suction discharger for automatic chemical analyzer
JP2004177308A (en) Method for judging attraction state and automatic chemical analyzer
JPH10239323A (en) Automatic dispenser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees