JP2008256412A - Sample solid phase load channel device - Google Patents

Sample solid phase load channel device Download PDF

Info

Publication number
JP2008256412A
JP2008256412A JP2007096762A JP2007096762A JP2008256412A JP 2008256412 A JP2008256412 A JP 2008256412A JP 2007096762 A JP2007096762 A JP 2007096762A JP 2007096762 A JP2007096762 A JP 2007096762A JP 2008256412 A JP2008256412 A JP 2008256412A
Authority
JP
Japan
Prior art keywords
sample
liquid
syringe
channel device
phase load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007096762A
Other languages
Japanese (ja)
Inventor
Tsutoshi Imanaka
努志 今中
Kenji Akatani
健次 赤谷
Manabu Takayanagi
学 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GL Science Inc
Original Assignee
GL Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GL Science Inc filed Critical GL Science Inc
Priority to JP2007096762A priority Critical patent/JP2008256412A/en
Publication of JP2008256412A publication Critical patent/JP2008256412A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system capable of feeding a liquid without contacting a sample liquid to a glass or metal part of a liquid feeder for reducing such a labor work that in measuring an object component in water sample, a sample liquid is fed to a solid phase to be condensed, but high adsorptive agricultural chemical and inorganic material are contained therein, and these materials are adsorbed in a sample liquid feeder to cause the troublesome of precise measuring so that the labor work of separate condensing operation is required for measuring the objective component. <P>SOLUTION: In a channel device feeding a sample liquid to a solid phase with a syringe made of glass or metal and the like through a channel switching part, this sample solid phase load channel device feeds the sample liquid without contacting it to the syringe by setting a sample liquid flowing out part between the syringe and the channel switching part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、水中の対象成分を測定する際に、試料液を固相抽出装置へ送液を行ない、濃縮する装置に関する。   The present invention relates to an apparatus for feeding and concentrating a sample solution to a solid-phase extraction device when measuring a target component in water.

水中の対象成分を測定する際に、試料液を固相抽出カートリッジ等へ送液を行ない、これを濃縮することが行なわれている。それらの対象成分には、吸着性の高い農薬や無機物質なども含まれていることがある。それら吸着性のある物質は、試料液の送液装置部に吸着してしまう場合がある。   When measuring a target component in water, a sample solution is sent to a solid-phase extraction cartridge or the like and concentrated. These target components may also contain highly adsorbent agricultural chemicals and inorganic substances. These adsorptive substances may be adsorbed by the sample liquid delivery device.

従来、無機成分の分析に於いて、試料液の送液に際して、通常ぺリスタタイプの非金属送液ポンプを用いられているが、正確な送液に難点があった。又、脂溶性の高い成分は、配管に吸着してしまうことがあった。更に、テフロン(登録商標)等吸着性が低い材質は、硬すぎて配管その他に使用することができない等の問題があった。   Conventionally, in the analysis of inorganic components, a peristal type non-metal liquid feed pump is usually used for feeding a sample liquid, but there is a problem in accurate liquid feeding. Moreover, the component with high fat solubility might adsorb | suck to piping. Furthermore, a material having low adsorptivity such as Teflon (registered trademark) has a problem that it is too hard to be used for piping or the like.

又、プランジャーを用いた送液システムが多用されているが、シリンジに金属、ガラス等を用いて試料液を吸引、吐出して送液するため、農薬や無機物質の吸着の問題から逃れられることが出来なかった。   In addition, liquid feeding systems using plungers are widely used, but sample liquid is sucked and discharged using a metal, glass, etc. in the syringe, so that the problem of adsorption of agricultural chemicals and inorganic substances can be avoided. I couldn't.

従来のプランジャー方式を使った送液システムを図1により説明する。試料液容器1をチェック弁(或いは切換弁)3を経て、固相カートリッジ4と連結してある。チェック弁3には、金属製、ガラス製等のシリンジ5を連結してある。この他、移動相送液路、洗浄液送液路を設けることは適宜実施可能である。   A conventional liquid delivery system using a plunger system will be described with reference to FIG. The sample liquid container 1 is connected to a solid phase cartridge 4 through a check valve (or switching valve) 3. A syringe 5 made of metal or glass is connected to the check valve 3. In addition, it is possible to appropriately provide a mobile phase liquid feeding path and a cleaning liquid liquid feeding path.

この動作は、シリンジ5の吸引により、試料液6は試料液容器1から吸引され、送液路11を通り、チェック弁3を介してシリンジ5に吸引される。このため、試料液6はシリンジ5内に必要量満たされる。そこで計量後、プランジャーの押し出しにより、チェック弁3を介して固相カートリッジ4に送液される。   In this operation, the sample liquid 6 is sucked from the sample liquid container 1 by the suction of the syringe 5, passes through the liquid feeding path 11, and is sucked into the syringe 5 through the check valve 3. For this reason, the sample liquid 6 is filled in the syringe 5 with a necessary amount. Therefore, after the measurement, the liquid is fed to the solid phase cartridge 4 through the check valve 3 by pushing out the plunger.

従って、試料液6は、シリンジ5内に取り込まれ、シリンジ5内に目的成分、就中吸着する成分の吸着は避けられない。このため、無機分析では、ガラスからの金属イオンの溶出によるブランク影響などが出ることは予防することが出来ない。   Therefore, the sample solution 6 is taken into the syringe 5 and the adsorption of the target component, especially the component that is adsorbed in the syringe 5 is inevitable. For this reason, in an inorganic analysis, it cannot prevent that the blank influence by the elution of the metal ion from glass, etc. appear.

又、試料液6とシリンジ5との間に、バルブ3を介してシリンジ5により吸引された試料液6を溜めておき、バルブ3を切換えることにより、該試料液6を分析流路2に導入するシステム(特許文献1)は、既に公開されている。
しかし、このような従来例では切換えバルブなどで装置が大型化、複雑化することになり、高額化も避けられない。
Further, the sample liquid 6 sucked by the syringe 5 through the valve 3 is stored between the sample liquid 6 and the syringe 5, and the sample liquid 6 is introduced into the analysis channel 2 by switching the valve 3. The system (Patent Document 1) that performs this has already been published.
However, in such a conventional example, the switching valve or the like increases the size and complexity of the device, and the cost is unavoidable.

特開昭60−142262号公報JP 60-142262 A

そこで、現在試料液を送液しているどの装置でも、吸着性の高い物質や無機物質は、ガラスや送液ラインへ吸着してしまうため、測定対象成分から外しているのが現状である。これに対し、送液ラインへの吸着は、材質の選定や試料液へ溶媒を加えることで吸着度を低減させ行なっているのが現状である。   Therefore, in any apparatus that currently feeds sample liquids, substances with high adsorptivity and inorganic substances are adsorbed to glass and the liquid feed line, and are therefore excluded from the components to be measured. On the other hand, at present, the adsorption to the liquid feeding line is performed by reducing the degree of adsorption by selecting a material and adding a solvent to the sample liquid.

しかし、物性によってはガラス等へ吸着してしまう成分も多く、その対策がない。そのため、対象成分を測定するには、マニュアル操作で別途、濃縮操作を行なう必要がある。
更に、正確な試料液の送液のためには、ガラスシリンジを用いた正確な計量送液が重要なことである。
However, depending on the physical properties, there are many components that are adsorbed on glass and the like, and there is no countermeasure. Therefore, in order to measure the target component, it is necessary to perform a concentration operation separately by manual operation.
Furthermore, accurate liquid feeding using a glass syringe is important for accurate liquid feeding of the sample liquid.

そこで本発明に於いては、正確な計量送液の出来るガラス、金属等のシリンジを用いて、試料液の送液を行ない、尚且、送液システムのガラスや金属部分に接触することなく、試料液を送液できるシステムであり、装置も小型で極めて簡単、操作も極めて容易なシステムを提案せんとするものである。   Therefore, in the present invention, the sample liquid is fed using a syringe of glass, metal or the like that can accurately measure and feed the liquid, and the sample is not brought into contact with the glass or metal part of the liquid feeding system. It is a system that can send liquid, and the system is small, extremely simple, and easy to operate.

上記課題を解決するため、本願発明に於いては下記を提案する。まず第一に、流路切換部を介し、ガラスや金属等からなるシリンジにより試料液を固相へ送液する流路装置において、該シリンジと該流路切換部の間に試料液等滞留部を設けることにより、試料液を該シリンジへ接することなく、送液することを特徴とする試料固相負荷流路装置を提案する。   In order to solve the above problems, the present invention proposes the following. First of all, in a flow path device for sending a sample liquid to a solid phase by a syringe made of glass, metal or the like via a flow path switching section, a sample liquid retention section is provided between the syringe and the flow path switching section. A sample solid-phase load channel device is proposed, in which the sample liquid is fed without contacting the syringe.

又、第二に、前記試料液等滞留部は、試料液の1回の吸引及び/或いは吐出量の1〜1.5倍程度の容量であることを特徴とする試料固相負荷流路装置を提案する。   Secondly, the sample liquid retention portion has a capacity of about 1 to 1.5 times as much as a single suction and / or discharge amount of the sample liquid. Propose.

又、第三に、前記吸引及び/或いは吐出の際に生じる該シリンジ内の減圧/加圧状態が解消するまで停止時間を置くように制御されるシリンジ駆動部を設けたことを特徴とする試料固相負荷流路装置。を提案する。   Thirdly, the sample is provided with a syringe drive unit that is controlled so that a stop time is set until the decompression / pressurization state in the syringe that occurs during the suction and / or discharge is eliminated. Solid phase load channel device. Propose.

又、第四に、前記シリンジ内の圧力を計測する圧力計をシリンジに設け、該圧力計をデータ解析部に連結したことを特徴とする試料固相負荷流路装置を提案する。   Fourthly, the present invention proposes a sample solid-phase load channel device characterized in that a pressure gauge for measuring the pressure in the syringe is provided in the syringe and the pressure gauge is connected to a data analysis unit.

又、第五に、前記データ解析部に送られた圧力データに基づいて、補正された送液量の表示部を設けることを特徴とする試料固相負荷流路装置を提案する。   Fifth, the present invention proposes a sample solid-phase load channel device characterized in that a display unit for a corrected liquid feeding amount is provided based on the pressure data sent to the data analysis unit.

又、第六に、前記試料液滞留部に液体が供給されていることを特徴とする試料固相負荷流路装置を提案する。   Sixth, a sample solid-phase load channel device is proposed in which a liquid is supplied to the sample solution retention part.

又、第七に、前記シリンジの駆動部と連係させた位置センサーを設け、前記吸引及び/或いは吐出の際に生じる該試料液等滞留部内の液面の移動を感知することを特徴とする試料固相負荷流路装置を提案する。   Seventhly, a sample provided with a position sensor linked to the drive unit of the syringe, and detecting the movement of the liquid level in the sample liquid etc. retention part generated during the suction and / or discharge. A solid-phase load channel device is proposed.

又、第八に、前記液体が、水或いはエチレングリコールであることを特徴とする試料固相負荷流路装置を提案する。   Eighth, a sample solid phase load channel device is proposed in which the liquid is water or ethylene glycol.

又、第九に、試料液が農薬或いは無機成分であることを特徴とする試料固相負荷流路装置を提案する。   Ninth, a sample solid-phase load channel device is proposed in which the sample solution is an agrochemical or an inorganic component.

又、第十に、前記農薬が、イミダゾリノン系、オキシン銅或いはジクワットであることを特徴とする試料固相負荷流路装置を提案する。   Tenthly, a sample solid-phase load channel device is proposed in which the pesticide is imidazolinone, oxine copper or diquat.

本発明によれば、送液流路に設けたバルブとシリンジ間に、試料液等滞留部を連結し、液体試料はシリンジに接液することなく、液体試料を送液できるので、プランジャー方式の送液システムを使用する故に、正確な送液が出来ると共に、送液試料はシリンジに接触することはなく、金属、ガラスに接触せず送液することが出来、無機分析に於ける金属イオンの溶出によるブランク影響や吸着影響が低減される。
又、試料液が農薬ではイミダゾリノン系農薬が金属に吸着する傾向があり、それらの吸着が防がれる。
又、試料液等滞留部は、小型で簡単な構成であり、装置が簡易、小型化でき設備及び操作が極めて簡略化できる。
According to the present invention, since the liquid sample can be fed without contacting the syringe, the plunger system is connected between the syringe and the valve provided in the liquid feed channel. Therefore, it is possible to send liquid accurately without contacting the syringe and the metal ion in the inorganic analysis. The blank effect and adsorption effect due to elution are reduced.
Further, when the sample solution is a pesticide, the imidazolinone pesticide tends to be adsorbed to the metal, and the adsorption thereof is prevented.
Further, the sample liquid retaining portion has a small and simple structure, and the apparatus can be simplified and miniaturized, and the equipment and operation can be greatly simplified.

本発明によれば、シリンジ内の減圧、加圧状態が解消するまでシリンジ駆動を停止させ、減圧状態が解消するのを待って、再度駆動することにより正確な送液量の確保が出来る。   According to the present invention, the syringe drive is stopped until the decompression and pressurization state in the syringe is resolved, and after waiting for the decompression state to be resolved, the accurate amount of liquid feeding can be ensured by driving again.

本発明によれば、シリンジにシリンジ内圧力を計測する圧力計を設け、該圧力計とデータ解析部を連結したことを特徴とするので、シリンジ内の圧力が簡単に計測でき、且つ送液時の圧力データがデータ解析部に送られ、送液量が圧力にて補正した数値結果が得られ、送液量が正確に確保される。   According to the present invention, the pressure gauge for measuring the pressure in the syringe is provided in the syringe, and the pressure gauge is connected to the data analysis unit, so that the pressure in the syringe can be easily measured, and at the time of liquid feeding The pressure data is sent to the data analysis unit, and a numerical result obtained by correcting the liquid feeding amount with the pressure is obtained, so that the liquid feeding amount is accurately ensured.

本発明によれば、試料液等滞留部に、液体就中、水、エチレングリコールを供給したことを特徴とするので、試料液等滞留部が空気だけである場合、空気の圧縮などで正確な送液が出来ない不便を解消し、正確な送液を期待できる。   According to the present invention, since the sample liquid etc. staying part is supplied with water, ethylene glycol, etc., when the sample liquid etc. staying part is only air, it is accurate by compressing air. This eliminates the inconvenience of not being able to deliver liquids and can expect accurate liquid delivery.

本発明によれば、前記シリンジの駆動部と連係させた位置センサーを設けたことを特徴とするので、試料液等滞留部を設けた本装置では、本装置で空気の吸引、吐出の際に生じるシリンジ内の液面の移動及び空気の圧縮等の状態により、シリンジ内の減圧、加圧状態が把握できる。   According to the present invention, there is provided a position sensor linked to the drive unit of the syringe. Therefore, in the present apparatus provided with the sample liquid retention part, the apparatus performs the suction and discharge of air. The pressure reduction and pressurization state in the syringe can be grasped by the state such as the movement of the liquid level in the syringe and the compression of air.

本発明によれば、試料液が農薬や無機成分であっても、試料液のガラス、金属を含むシリンジ等に対する接触が防がれ、ブランク影響や吸着影響が低減される。   According to the present invention, even when the sample solution is an agrochemical or an inorganic component, contact of the sample solution with a glass, a syringe containing metal, or the like is prevented, and the blank effect and the adsorption effect are reduced.

本発明は図2に示すように、従来のプランジャー方式を使った送液システムに於いて、流路切換部たるチェック弁(或いは切換弁)3とシリンジ5との間に、試料液等滞留部7を設けることが特徴である。試料液、空気、液体等の試料液等を滞留させる試料液等滞留部は、吸着の起こり難いテフロン(登録商標)、PEEK、ポリプロピレン等で、ループ、直筒状等適宜的に形成し、シリンジ5の吸引ボリュームと同等若しくは大きい容量、例えば1.5倍程度に形成する。その他の構成は、試料液容器1を送液路2によりチェック弁3を経て、固相としての固相カートリッジ4に連結すること、この他移動相送液路、洗浄液送液路を設けることが出来ること、図1にて説明した従来例と同じである。
この他、固相としてはディスク型固相等各種の型のものを使用しうる。
As shown in FIG. 2, in the liquid feeding system using a conventional plunger system, the present invention retains a sample liquid or the like between a check valve (or switching valve) 3 serving as a flow path switching unit and a syringe 5. The feature is that the portion 7 is provided. The sample liquid retention portion for retaining the sample liquid, such as sample liquid, air, liquid, etc., is suitably formed of Teflon (registered trademark), PEEK, polypropylene, etc., which are unlikely to be adsorbed, and appropriately formed as a loop, a straight cylinder, etc. The suction volume is equal to or larger than the suction volume, for example, about 1.5 times. In other configurations, the sample liquid container 1 is connected to the solid phase cartridge 4 as the solid phase via the check valve 3 by the liquid supply path 2, and other mobile phase liquid supply path and cleaning liquid supply path are provided. What can be done is the same as the conventional example described in FIG.
In addition, various types such as a disk-type solid phase can be used as the solid phase.

次いで、その作動について説明する。シリンジ5の駆動部(眞空ポンプ等を使用するが図示せず)、例えばシリンジポンプによりシリンジ5が吸引されると、試料液等滞留部7、チェック弁3を介して試料液容器1から試料液6が吸引され、試料液等滞留部7に吸入される。従って、試料液6は、シリンジ5内に入り、又は接触することはない。このため、試料液6に混入しているSS(浮遊固形物質)成分も入り込むことがなく、プランジャーシールの劣化の問題も解決し、従来のプランジャー送液システムに比し、寿命が長く、長期使用に堪える効果も派生している。   Next, the operation will be described. When the syringe 5 is sucked by a drive unit of the syringe 5 (using a vacuum pump or the like, not shown), for example, a syringe pump, the sample solution is removed from the sample solution container 1 via the sample solution retention portion 7 and the check valve 3. 6 is aspirated and sucked into the sample liquid retention portion 7. Therefore, the sample solution 6 does not enter or come into contact with the syringe 5. For this reason, the SS (floating solid substance) component mixed in the sample liquid 6 does not enter, the problem of deterioration of the plunger seal is solved, and the life is longer than that of the conventional plunger liquid feeding system. Derived from long-term use.

シリンジ5内の圧力を計測するために、シリンジ5に圧力計10を設けてある。該圧力計としては、眞空計、弾性圧力計、電気抵抗圧力計等各種の小型のものが使用される。この圧力計により計測されたデータは、別途設置されるPC等のデータ解析部に伝達され、送液コントロールの試料とされる。
又、該PCにより、計算される送液コントロールにより適正な送液量が算出され、PC表示部に表示されることは推奨される。
In order to measure the pressure in the syringe 5, a pressure gauge 10 is provided in the syringe 5. As the pressure gauge, various small types such as a vacuum gauge, an elastic pressure gauge, and an electric resistance pressure gauge are used. The data measured by this pressure gauge is transmitted to a data analysis unit such as a separately installed PC, and used as a sample for liquid feeding control.
In addition, it is recommended that an appropriate liquid feeding amount is calculated by the PC by the liquid feeding control calculated and displayed on the PC display unit.

位置センサーは、試料液等滞留部7に於ける空気と液との位置関係を計測するセンサーであり、赤外線を利用した液面センサーを一例とし、試料液等滞留部7内の適宜箇所に設けられ、充填された試料液6及び/或いは液体8の一端に当る際に、接触感知するセンサー或いは圧力感知センサーにより試料液等滞留部7内に充填された試料6及び/或いは液体8の面の動きを感知し、或いは空気の上下端の位置を感知し、シリンジ5駆動部を制御するように構成してある。
試料液6の粘性によっては、位置センサーの計測結果を基に、シリンジ駆動部の作動停止時間を決定する制御も考えられる。
The position sensor is a sensor that measures the positional relationship between the air and the liquid in the sample liquid retention part 7, and is provided at an appropriate location in the sample liquid retention part 7, taking a liquid level sensor using infrared rays as an example. The surface of the sample 6 and / or liquid 8 filled in the sample liquid retaining portion 7 by a sensor for detecting contact or a pressure sensor when the sample liquid 6 and / or the liquid 8 is applied to one end. It is configured to sense the movement or sense the positions of the upper and lower ends of the air and control the syringe 5 drive unit.
Depending on the viscosity of the sample liquid 6, control for determining the operation stop time of the syringe drive unit based on the measurement result of the position sensor may be considered.

実施例1のシステムに於いて、試料液6を速い流速で流すためには、試料液等滞留部7は内径が小さいと、内部が減圧になり、吸引速度が稼ぐことが出来ない。そのため、送液プログラムによる送液の場合、プログラム的に補正するか、試料液等滞留部7の内径の大きいものを用い、内部抵抗を減らす必要がある。内径が大きい場合、その取付方法によってシリンジ5内に試料液が混入する虞が生じる。そのため、試料液等滞留部7の径を大きくする際には図3の如く、試料液等滞留部7とシリンジ5の連結の際に、試料液等滞留部7の下端部とシリンジ5の上端を連結する構造とするのが良い。   In the system of the first embodiment, in order to flow the sample liquid 6 at a high flow rate, if the sample liquid retaining portion 7 has a small inner diameter, the inside is decompressed and the suction speed cannot be increased. Therefore, in the case of liquid feeding by the liquid feeding program, it is necessary to correct the program or use a sample liquid etc. having a large inner diameter 7 to reduce the internal resistance. When the inner diameter is large, the sample solution may be mixed into the syringe 5 depending on the mounting method. Therefore, when the diameter of the sample liquid retention portion 7 is increased, the lower end portion of the sample liquid retention portion 7 and the upper end of the syringe 5 are connected when the sample liquid retention portion 7 and the syringe 5 are connected as shown in FIG. It is good to make the structure which connects.

又、全く同様に試料液等滞留部7下端と、上向きに設置したシリンジ5の下端とを連結する構造とすることも出来る(図4)。
このように、試料液等滞留部7の内径を大きくする時は試料液等滞留部7配管の下側から試料液を取り入れる取付構造が有効である。
Moreover, it can also be made the structure which connects the lower end of the syringe 5 installed upwards and the lower end of the syringe 5 installed upwards in exactly the same way (FIG. 4).
As described above, when the inner diameter of the sample liquid retaining portion 7 is increased, a mounting structure for taking the sample liquid from the lower side of the pipe of the sample liquid retaining portion 7 is effective.

図2によるプランジャー方式による送液システムに於いて、粘性が高いサンプルを送液する場合、プランジャー吸引によりシリンジ5内が減圧になるため、正確な送液が困難である。かかる場合、シリンジ5を吸引又は吐出が終了したところで、シリンジ駆動部の作動を数秒一時停止することで、続く吸引、排出により、正確な送液が出来る。   In the plunger-type liquid feeding system shown in FIG. 2, when a highly viscous sample is fed, the inside of the syringe 5 is depressurized by the plunger suction, so that accurate liquid feeding is difficult. In such a case, when the suction or discharge of the syringe 5 is completed, the operation of the syringe drive unit is temporarily stopped for several seconds, so that accurate liquid feeding can be performed by the subsequent suction and discharge.

この一時停止は、試料液6の粘性を考慮し、所望量、吸引、吐出が出来る程及び試料液6内の気泡(空気空間)が混入しない程度の時間、約2〜20秒停止させるのが良い。   In consideration of the viscosity of the sample liquid 6, this temporary stop is stopped for about 2 to 20 seconds for a desired amount, a time that can be sucked and discharged, and a time that bubbles (air space) in the sample liquid 6 are not mixed. good.

図2によるシステム実施例により、100ml送液に於ける送液速度の違いによる実送液量と空間との関係を示す実験により送液誤差を図5に示す表により表示する。これによれば、送液速度が速くなるに従い、誤差が拡大することが示される。
但し、空間Vol(試料液等滞留部7に供給されている液体8(水、エチレングリコール等)と試料液6との空気空間9)が大きくない時(〜1或いは1.5ml)は、送液速度が多少速くても、誤差はあまり大きくない。1割程度の誤差であれば、60ml/minの場合は、空間Vol:1ml、40ml/minの場合は空間Vol:1.5mlでの送液が可能であることが分かる。
According to the embodiment of the system shown in FIG. 2, the liquid feeding error is displayed in the table shown in FIG. 5 by an experiment showing the relationship between the actual liquid feeding amount and the space due to the difference in the liquid feeding speed in 100 ml liquid feeding. According to this, it is shown that the error increases as the liquid feeding speed increases.
However, when the space Vol (the air space 9 between the liquid 8 (water, ethylene glycol, etc.) supplied to the sample liquid retention portion 7 and the sample liquid 6) is not large (˜1 or 1.5 ml), Even if the liquid speed is somewhat high, the error is not so large. If the error is about 10%, it can be seen that liquid can be sent in the space Vol: 1 ml in the case of 60 ml / min, and in the space Vol: 1.5 ml in the case of 40 ml / min.

本実験に於いて使用された液体は、水道水であり、精製水でも同様のデータが得られている。又、試料液等滞留部7は内径2mmのものを使用した。   The liquid used in this experiment is tap water, and similar data are obtained with purified water. In addition, the sample liquid retention portion 7 has an inner diameter of 2 mm.

図2によるシステム実施例により、100ml送液に於ける送液速度の違いによる実送液量と送液速度と関係を示す実験による送液誤差を図6の表により表示する。送液誤差は空間Volが大きくなるに従い、誤差は拡大する。
但し、送液速度があまり速くない場合(〜40ml/min)は、空間Volが多少大きくても、誤差はあまり大きくない。1割程度の誤差であれば、空間Vol:2mlの場合は40ml/min、空間Vol:1mlの場合は60ml/minでの送液が可能である。
According to the embodiment of the system shown in FIG. 2, an error of liquid feeding by an experiment showing the relationship between the actual liquid feeding amount and the liquid feeding speed due to the difference in the liquid feeding speed in 100 ml liquid feeding is displayed in the table of FIG. The liquid feeding error increases as the space Vol increases.
However, when the liquid feeding speed is not so high (˜40 ml / min), the error is not so large even if the space Vol is somewhat large. If the error is about 10%, the liquid can be fed at 40 ml / min when the space Vol is 2 ml, and 60 ml / min when the space Vol is 1 ml.

本実験に使用された液体は、水道水である。又、精製水でも同様の結果が得られた。又、試料液等滞留部7の内径は2mmを使用した。   The liquid used in this experiment is tap water. Similar results were obtained with purified water. Further, the inner diameter of the sample liquid retaining portion 7 was 2 mm.

試料液滞留部7に、液体を充填させるシステムについて説明する。これは試料液等滞留部7内が空気のみの場合、空気の圧縮などで正確な送液が出来ない場合に備えるものである。この液体としては、水又はエチレングリコールが用いられる。   A system for filling the sample liquid retention part 7 with a liquid will be described. This is provided in the case where the sample liquid retaining portion 7 is only air, and when accurate liquid feeding cannot be performed due to air compression or the like. As this liquid, water or ethylene glycol is used.

予め、試料液等滞留部7に水、エチレングリコール等の液体8を充填させておく。そして、シリンジ5の駆動により吸引操作を行なう。その際の動作を拡大分解説明図7により示す。試料液等滞留部7内は、水、エチレングリコール等の試料液等滞留部内の液体8と試料液6が空間9を介在させて吸引されている。従って、試料液6のシリンジ5への吸引は阻止される。   In advance, a liquid 8 such as water or ethylene glycol is filled in the sample liquid retention portion 7 in advance. Then, a suction operation is performed by driving the syringe 5. The operation at that time is shown in FIG. In the sample liquid retention part 7, the liquid 8 and the sample liquid 6 in the sample liquid retention part such as water and ethylene glycol are sucked through the space 9. Accordingly, the suction of the sample liquid 6 into the syringe 5 is prevented.

従来のプランジャー方式の送液システム図Conventional plunger feed system diagram 本発明のプランジャー方式の送液システム図Plunger type liquid feeding system of the present invention 本発明のプランジャー方式の他実施例送液システム図Other embodiment of the plunger system of the present invention Liquid delivery system diagram 本発明のプランジャー方式の他実施例送液システム図Other embodiment of the plunger system of the present invention Liquid delivery system diagram 本発明による送液誤差の実施例表Example table of liquid feeding error according to the present invention 本発明による送液誤差の実施例表Example table of liquid feeding error according to the present invention 本発明実施例作動解説説明図Operation explanation diagram of the embodiment of the present invention

符号の説明Explanation of symbols

1 試料容器
2 送液路
3 チェック弁/切換バルブ
4 固相(カートリッジ)
5 シリンジ
6 試料液
7 試料液等滞留部(プレボリューム)
8 試料液等滞留部内液体(エチレングリコール等)
9 空間
10 圧力計
1 Sample container 2 Liquid feed path 3 Check valve / switching valve 4 Solid phase (cartridge)
5 Syringe 6 Sample liquid 7 Sample liquid retention area (pre-volume)
8 Sample liquid and other liquid in the reservoir (ethylene glycol, etc.)
9 Space 10 Pressure gauge

Claims (10)

流路切換部を介し、ガラスや金属等からなるシリンジにより試料液を固相へ送液する流路装置において、該シリンジと該流路切換部の間に試料液等滞留部を設けることにより、試料液を該シリンジへ接することなく、送液することを特徴とする試料固相負荷流路装置。   In the flow path device for feeding the sample liquid to the solid phase by a syringe made of glass, metal or the like via the flow path switching section, by providing a retention section for the sample liquid between the syringe and the flow path switching section, A sample solid-phase load channel device for feeding a sample solution without contacting the syringe. 前記試料液等滞留部は、試料液の1回の吸引及び/或いは吐出量の1〜1.5倍程度の容量であることを特徴とする請求項1に記載の試料固相負荷流路装置。   2. The sample solid-phase load channel device according to claim 1, wherein the sample solution retention portion has a capacity of about 1 to 1.5 times a single suction and / or discharge amount of the sample solution. . 前記吸引及び/或いは吐出の際に生じる該シリンジ内の減圧/加圧状態が解消するまで停止時間を置くように制御されるシリンジ駆動部を設けたことを特徴とする請求項1に記載の試料固相負荷流路装置。   The sample according to claim 1, further comprising a syringe drive unit that is controlled so that a stop time is set until the decompression / pressurization state in the syringe that occurs during the suction and / or discharge is eliminated. Solid phase load channel device. 前記シリンジ内の圧力を計測する圧力計をシリンジに設け、該圧力計をデータ解析部に連結したことを特徴とする請求項1に記載の試料固相負荷流路装置。   2. The sample solid-phase load channel device according to claim 1, wherein a pressure gauge for measuring the pressure in the syringe is provided in the syringe, and the pressure gauge is connected to a data analysis unit. 前記データ解析部に送られた圧力データに基づいて、補正された送液量の表示部を設けることを特徴とする請求項4に記載の試料固相負荷流路装置。   5. The sample solid-phase load channel device according to claim 4, further comprising a display unit for correcting a liquid feeding amount based on pressure data sent to the data analysis unit. 前記試料液滞留部に液体が供給されていることを特徴とする請求項1に記載の試料固相負荷流路装置。   2. The sample solid phase load channel device according to claim 1, wherein a liquid is supplied to the sample solution retention part. 前記シリンジの駆動部と連係させた位置センサーを設け、前記吸引及び/或いは吐出の際に生じる試料液等滞留部内の液面の移動を感知することを特徴とする請求項1に記載の試料固相負荷流路装置。   2. The sample fixing device according to claim 1, wherein a position sensor linked to the drive unit of the syringe is provided to sense the movement of the liquid level in the sample liquid retention portion that occurs during the suction and / or discharge. Phase load channel device. 前記液体が、水或いはエチレングリコールであることを特徴とする請求項6に記載の試料固相負荷流路装置。   The sample solid phase load channel device according to claim 6, wherein the liquid is water or ethylene glycol. 前記試料液が農薬或いは無機成分を含むことを特徴とする請求項1に記載の試料固相負荷流路装置。   The sample solid-phase load channel device according to claim 1, wherein the sample solution contains an agrochemical or an inorganic component. 前記農薬が、イミダゾリノン系、オキシン銅或いはジクワットであることを特徴とする請求項9に記載の試料固相負荷流路装置。   The sample solid-phase load channel device according to claim 9, wherein the pesticide is imidazolinone, oxine copper, or diquat.
JP2007096762A 2007-04-02 2007-04-02 Sample solid phase load channel device Pending JP2008256412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096762A JP2008256412A (en) 2007-04-02 2007-04-02 Sample solid phase load channel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096762A JP2008256412A (en) 2007-04-02 2007-04-02 Sample solid phase load channel device

Publications (1)

Publication Number Publication Date
JP2008256412A true JP2008256412A (en) 2008-10-23

Family

ID=39980129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096762A Pending JP2008256412A (en) 2007-04-02 2007-04-02 Sample solid phase load channel device

Country Status (1)

Country Link
JP (1) JP2008256412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108452552A (en) * 2018-04-02 2018-08-28 中国烟草总公司郑州烟草研究院 Solid-phase micro-extracting device and its solid phase microextraction pre-treatment component

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264912A (en) * 1985-09-17 1987-03-24 Minoru Atake Distributive injection apparatus
JPS6281040U (en) * 1985-11-09 1987-05-23
JPH04329365A (en) * 1991-05-02 1992-11-18 Olympus Optical Co Ltd Sample separate injecting method
JPH06235722A (en) * 1993-02-10 1994-08-23 Jasco Corp Automatic sample injector
JPH1096735A (en) * 1996-09-25 1998-04-14 Aloka Co Ltd Aerial discharge type dispensing device
JP2001033358A (en) * 1999-07-22 2001-02-09 Aloka Co Ltd Automatic dispenser
JP2001133445A (en) * 1999-11-05 2001-05-18 Shimadzu Corp Liquid chromatograph
JP2004093194A (en) * 2002-08-29 2004-03-25 Ngk Insulators Ltd Column treatment apparatus
JP2005121524A (en) * 2003-10-17 2005-05-12 Srl Inc Reaction coil for oxygen reaction, and liquid chromatographic apparatus using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264912A (en) * 1985-09-17 1987-03-24 Minoru Atake Distributive injection apparatus
JPS6281040U (en) * 1985-11-09 1987-05-23
JPH04329365A (en) * 1991-05-02 1992-11-18 Olympus Optical Co Ltd Sample separate injecting method
JPH06235722A (en) * 1993-02-10 1994-08-23 Jasco Corp Automatic sample injector
JPH1096735A (en) * 1996-09-25 1998-04-14 Aloka Co Ltd Aerial discharge type dispensing device
JP2001033358A (en) * 1999-07-22 2001-02-09 Aloka Co Ltd Automatic dispenser
JP2001133445A (en) * 1999-11-05 2001-05-18 Shimadzu Corp Liquid chromatograph
JP2004093194A (en) * 2002-08-29 2004-03-25 Ngk Insulators Ltd Column treatment apparatus
JP2005121524A (en) * 2003-10-17 2005-05-12 Srl Inc Reaction coil for oxygen reaction, and liquid chromatographic apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108452552A (en) * 2018-04-02 2018-08-28 中国烟草总公司郑州烟草研究院 Solid-phase micro-extracting device and its solid phase microextraction pre-treatment component
CN108452552B (en) * 2018-04-02 2023-08-04 中国烟草总公司郑州烟草研究院 Solid-phase microextraction device and solid-phase microextraction pretreatment component thereof

Similar Documents

Publication Publication Date Title
JP3491948B2 (en) Solvent pump feeder
US20230103942A1 (en) Bottle pressurization delivery system
US10156551B2 (en) Sampling systems and methods of using the same
CN106104267B (en) Seal moving with piston in high pressure pump
JP5736457B2 (en) Solid phase extraction device
JP2011503549A (en) Sample injection system
US10725062B2 (en) Dispensing device
JP6398867B2 (en) Autosampler
JP4622575B2 (en) Bubble removal device
JP5333941B2 (en) Solid phase extraction device
JP2008089181A (en) Minute amount distribution device for liquid medium
JP2008256412A (en) Sample solid phase load channel device
JP4988382B2 (en) Solid phase extraction device for sample solution
JP5055108B2 (en) Automatic solid phase pretreatment apparatus and solid phase pretreatment method for sample water
JP5509087B2 (en) Analysis apparatus and control method thereof
JP2009543068A (en) Reduction of pressure reduction during sample introduction in high pressure liquid chromatography
CN105115788B (en) Water pollutant time weighted average concentration sampler based on osmotic pumps and Solid Phase Extraction
JP4664858B2 (en) High-performance liquid chromatography column packing apparatus and packing method
US20030133843A1 (en) Set comprising a pipette and a cartridge, as well as a method for applying a sample to the cartridge and an analytical method
JP6284312B2 (en) Sample introduction method and sample introduction apparatus
JP6916690B2 (en) Liquid transfer system for separation columns and automatic pretreatment equipment
KR20160109334A (en) pipette for containing constant quantity
CZ869488A3 (en) apparatus for metering small amounts of volumes of liquids with a low viscosity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306