JP5333941B2 - Solid phase extraction device - Google Patents

Solid phase extraction device Download PDF

Info

Publication number
JP5333941B2
JP5333941B2 JP2010022861A JP2010022861A JP5333941B2 JP 5333941 B2 JP5333941 B2 JP 5333941B2 JP 2010022861 A JP2010022861 A JP 2010022861A JP 2010022861 A JP2010022861 A JP 2010022861A JP 5333941 B2 JP5333941 B2 JP 5333941B2
Authority
JP
Japan
Prior art keywords
phase extraction
solid phase
switching valve
flow path
way
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010022861A
Other languages
Japanese (ja)
Other versions
JP2011158450A (en
Inventor
毅 須藤
哲昭 小沼
孝之 市島
Original Assignee
平沼産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平沼産業株式会社 filed Critical 平沼産業株式会社
Priority to JP2010022861A priority Critical patent/JP5333941B2/en
Publication of JP2011158450A publication Critical patent/JP2011158450A/en
Application granted granted Critical
Publication of JP5333941B2 publication Critical patent/JP5333941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and inexpensive solid phase extraction device capable of performing automatically sending of a conditioning reagent, cleaning pure water and sample water, and operation from an elution process by an eluent to recovery of concentrated liquid. <P>SOLUTION: This solid phase extraction device has a channel constitution including; a multichannel selector valve (2a) capable of selecting successively the sample water (1a), pure water (1b) used for cleaning, and a plurality of reagents (1c) for conditioning of a solid phase extraction column (4), or the like; a three-way selector valve (2b) capable of selecting a channel (3a) from the multichannel selector valve (2a) and a channel (3b) from the eluent (1d); and the solid phase extraction column (4) to which a channel (3c) from the three-way selector valve (2b) is connected, or the like. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は固相抽出装置に関するものである。   The present invention relates to a solid phase extraction apparatus.

固相抽出法を用いて試料に含まれる微量成分を濃縮し分析する手段は、環境水、飲料水および食品中の有害成分の分析の前処理手段として広く活用されている。これらの試料水の有害成分の人体に影響する許容基準は年々厳しくなる傾向にあるが、それに伴う機器分析装置の分析感度は飛躍的には高感度化されていない現状である。したがって、より正確な分析結果を得るためには、あらかじめ分析成分を濃縮した試料水を測定しなければならない。この目的のために、固相抽出法は有効な濃縮法として広く活用されてきた技術である。   Means for concentrating and analyzing trace components contained in a sample using a solid phase extraction method are widely used as pretreatment means for analyzing harmful components in environmental water, drinking water and food. Although the acceptance criteria that affect the human body of harmful components of these sample waters tend to be stricter year by year, the analytical sensitivity of the instrumental analyzers associated therewith has not been dramatically increased. Therefore, in order to obtain a more accurate analysis result, it is necessary to measure sample water in which analysis components are concentrated in advance. For this purpose, solid-phase extraction is a technique that has been widely used as an effective concentration method.

従来の技術による固相抽出装置の一例を図2〜4に示した。固相抽出法は、あらかじめ複数のコンデショニング試薬1cによって固相抽出カラム4に充填されている吸着剤を活性化させた後(以下コンデショニングと呼ぶ)、これに一定量(Aml)の試料水1aを送液し吸着剤に分析成分だけを捕集しておき、次に少量の溶離液1dを固相抽出カラム4に送液して吸着剤に吸着された分析成分を溶出させ、得られた濃縮液(Bml)を分析装置によって定量される。最終的な濃縮率は前記試料水Amlを濃縮液Bmlで除算することによって計算され、通常濃縮率は10〜100倍程度である。   An example of a conventional solid phase extraction apparatus is shown in FIGS. In the solid phase extraction method, the adsorbent packed in the solid phase extraction column 4 is activated in advance by a plurality of conditioning reagents 1c (hereinafter referred to as conditioning), and then a fixed amount (Aml) of sample water is added thereto. 1a is fed and only the analysis components are collected in the adsorbent, and then a small amount of eluent 1d is sent to the solid phase extraction column 4 to elute the analysis components adsorbed on the adsorbent. The concentrated solution (Bml) is quantified by an analyzer. The final concentration rate is calculated by dividing the sample water Aml by the concentrated solution Bml, and the normal concentration rate is usually about 10 to 100 times.

濃縮率を大きくするためには、試料水1aを大量に使用し且つ溶離液1dの使用量を少なくすることで濃縮率を高めることができる。しかし試料水1aを多量に使用すると固相抽出カラム4への送液時間が長時間におよび処理能力が低下する。この対策として、送液速度を大きくし且つ吸着剤の吸着能力を高める改善が実施されるが、単に吸着剤の充填量を増して吸着能力を高めると、固相抽出カラム4の送液抵抗が増大し送液速度が低下する。固相抽出カラム4の改良品として、送液抵抗が小さくかつ吸着能力の高い吸着剤の開発が行われ市販されるに至っている。   In order to increase the concentration rate, the concentration rate can be increased by using a large amount of sample water 1a and reducing the amount of eluent 1d used. However, when the sample water 1a is used in a large amount, the liquid feeding time to the solid phase extraction column 4 is long and the processing capacity is lowered. As a countermeasure, an improvement is made to increase the liquid feeding speed and increase the adsorption capacity of the adsorbent. However, if the adsorption capacity is increased simply by increasing the amount of adsorbent, the liquid feeding resistance of the solid phase extraction column 4 is reduced. Increases and decreases the feeding speed. As an improved product of the solid phase extraction column 4, an adsorbent having a low liquid feeding resistance and a high adsorbing capacity has been developed and marketed.

前記固相抽出法の工程は、固相抽出カラム4の複数の試薬によるコンデショニング、試料水1aの送液、固相抽出カラム4の洗浄および固相抽出カラム4への溶離液1dの送液による溶出工程からなる。一般に試料水1aは多検体の場合が多く、図2に示したような装置を用いて行われる場合が多い。図2の耐圧容器8には減圧ポンプ9が接続されており、耐圧容器8の内部を負圧に保つことができる。また、耐圧容器8の上部には固相抽出カラム4を複数個装着できる構造となっている。固相抽出作業に先んじて耐圧容器8の内部は減圧ポンプ9によって適宜減圧調整された状態となっており、この状態で固相抽出カラム4に複数のコンデショニング試薬1c、洗浄水1b、試料水1aの順序で加えられ分析成分が固相抽出カラム4に吸着される。次工程では図3に示したように、耐圧容器8の内部に濃縮液回収容器1eが設置され固相抽出カラム4に加えられた溶離液1dによって濃縮された濃縮液が回収される。以後、上記手段を減圧抽出法と呼ぶ。   The steps of the solid phase extraction method include conditioning the solid phase extraction column 4 with a plurality of reagents, feeding the sample water 1a, washing the solid phase extraction column 4, and feeding the eluent 1d to the solid phase extraction column 4. Elution step. In general, the sample water 1a is often a multi-specimen and is often performed using an apparatus as shown in FIG. A decompression pump 9 is connected to the pressure vessel 8 in FIG. 2, and the inside of the pressure vessel 8 can be kept at a negative pressure. In addition, a plurality of solid phase extraction columns 4 can be mounted on the upper part of the pressure vessel 8. Prior to the solid phase extraction operation, the inside of the pressure vessel 8 is appropriately pressure-reduced by the vacuum pump 9, and in this state, a plurality of conditioning reagents 1 c, washing water 1 b, sample water are added to the solid phase extraction column 4. The analysis components are added in the order of 1a and adsorbed to the solid phase extraction column 4. In the next step, as shown in FIG. 3, the concentrated liquid collection container 1 e is installed inside the pressure resistant container 8, and the concentrated liquid concentrated by the eluent 1 d added to the solid phase extraction column 4 is collected. Hereinafter, the above means is referred to as a reduced pressure extraction method.

減圧抽出法の特徴は、安価で一度に複数個の固相抽出カラム4を装着し多検体の処理を行うことができるが、一方、耐圧容器の減圧の微調整が難しく送液速度を一定に保つことに難点がある。また、固相抽出カラム4の送液抵抗は個々に異なることが多く、送液抵抗の小さな固相抽出カラム4の送液速度が大きくなり、抽出効率にばらつきが発生する傾向を示す。さらに、各固相抽出カラム4の残液量を常時観察し、空引きによる他の固相抽出カラム4の送液減速に注意する必要がある。   The feature of the vacuum extraction method is that it is inexpensive and can be equipped with a plurality of solid-phase extraction columns 4 at a time to process multiple samples. On the other hand, it is difficult to finely adjust the pressure reduction of the pressure vessel, and the liquid feeding speed is kept constant. There are difficulties in keeping. In addition, the liquid feeding resistance of the solid phase extraction column 4 is often different individually, and the liquid feeding speed of the solid phase extraction column 4 having a small liquid feeding resistance is increased, and the extraction efficiency tends to vary. Furthermore, it is necessary to always observe the amount of the remaining liquid in each solid phase extraction column 4 and to pay attention to the liquid feed deceleration of other solid phase extraction columns 4 due to emptying.

前記減圧抽出法に対して加圧抽出法があり、この方法は減圧抽出法に比較して送液速度を一定に制御できる特徴を備えている。加圧抽出法はペリスタブルポンプや図4に示したダブルプランジャポンプ5cによって一方向に送液される。ペリスタブルポンプは柔軟性チューブをしごくことによって送液されるため、柔軟性チューブが有機溶剤によって溶解し試料を汚染する恐れがあるために、ガラスやテフロン(登録商標)材を使用したダブルプランジャポンプ5cが使用されることが多い。図4に示したダブルプランジャポンプ5cは、二つのプランジャ5aをギヤ10aおよび10bを介してモータ11によって各々上下に同期して駆動され、プランジャ5aの降下時は試薬を逆止弁12を経由して吸引し、上昇時は逆止弁を経由して固相抽出カラム4に試薬を供給する。したがって、送液方向は固定され一方向となっている。以上の機能を備えた加圧送液装置が市販されている。また、自動化装置の検討も行われている(特許文献1)。   As compared with the reduced pressure extraction method, there is a pressurized extraction method as compared with the reduced pressure extraction method, and this method has a feature that the liquid feeding speed can be controlled to be constant. In the pressure extraction method, liquid is fed in one direction by a peristable pump or a double plunger pump 5c shown in FIG. Since the peristable pump is fed by squeezing the flexible tube, the flexible tube may be dissolved by the organic solvent and contaminate the sample. Therefore, a double plunger pump using glass or Teflon (registered trademark) material 5c is often used. In the double plunger pump 5c shown in FIG. 4, two plungers 5a are driven in synchronism with each other by a motor 11 via gears 10a and 10b. When the plunger 5a is lowered, the reagent is passed through the check valve 12. The reagent is supplied to the solid-phase extraction column 4 via a check valve when it rises. Therefore, the liquid feeding direction is fixed and is one direction. A pressurized liquid feeding apparatus having the above functions is commercially available. Also, an automatic device has been studied (Patent Document 1).

実際の送液操作においては、コンデショニング試薬1c、純水1b、試料水1aおよび溶離液1dなどの順序で送液される。送液に先んじてダブルプランジャポンプ5cの二つのプランジャ5aに試薬を充填する作業が行われる。プランジャ5aの容量は一般に10mlで最大約30mL/分の吐出能力を備えている装置が一般的である。充填操作によって使用される試薬の容量は各プランジャ5aの少なくても5〜6往復によって行われ、使用される試薬は100〜120ml(約4分)に及び試薬の消費量が多くなる欠点がある。また、加圧抽出法により1台のダブルプランジャポンプ5cを用いて行うと、各試薬の充填操作→送液→充填操作→送液・・・と操作が煩雑且つ長時間を要し、効率的な抽出操作が困難である。これに対し、試薬ごとに複数のダブルプランジャポンプ5cを用いると、充填操作は最初の一回で済むが試薬の数だけダブルプランジャポンプ5cが必要となり、コストアップは避けられない。以上述べた減圧および加圧抽出法のそれぞれの長所を活用した固相抽出装置の開発が望まれている。   In the actual liquid feeding operation, the conditioning reagent 1c, pure water 1b, sample water 1a, eluent 1d, etc. are fed in the order. Prior to the liquid feeding, an operation of filling the two plungers 5a of the double plunger pump 5c with the reagent is performed. The capacity of the plunger 5a is generally 10 ml, and a device having a discharge capacity of about 30 mL / min at a maximum is common. The volume of the reagent used by the filling operation is performed by at least 5 to 6 reciprocations of each plunger 5a, and the used reagent is 100 to 120 ml (about 4 minutes), and there is a disadvantage that the consumption of the reagent increases. . In addition, if one double plunger pump 5c is used by the pressure extraction method, each reagent filling operation → liquid feeding → filling operation → liquid feeding. Difficult extraction operation. On the other hand, when a plurality of double plunger pumps 5c are used for each reagent, the filling operation may be performed only once, but the double plunger pumps 5c are required for the number of reagents, and an increase in cost is inevitable. Development of a solid-phase extraction apparatus utilizing the advantages of the above-described reduced pressure and pressurized extraction methods is desired.

特開2008−215859号公報JP 2008-215859 A

本発明が解決しようとする固相抽出装置の課題は、1)コンデショニングから溶出までの濃縮工程をシーケンスプログラム上で自動的に行えること、2)試薬の消費量が必要最小量であること、3)送液速度が一定で且つ任意の送液速度が設定できることである。以上の機能の他に多検体試料に対応できるように、必要に応じて固相抽出装置を増設できる機能と安価であることも必要である。以上の機能を満たした固相抽出装置は考案されていない。
前記諸課題に着目し、本発明は、流路切換弁技術と減圧送液および加圧送液技術を有効に活用することによって、試薬消費量の削減と濃縮工程の自動化を実現できる他、装置の簡素化によってコンパクトで安価な固相抽出装置を提供することを目的としてなされたものである。
The problems of the solid-phase extraction apparatus to be solved by the present invention are as follows: 1) the concentration process from conditioning to elution can be automatically performed on the sequence program, and 2) the reagent consumption is the minimum necessary amount, 3) The liquid feeding speed is constant and an arbitrary liquid feeding speed can be set. In addition to the above functions, it is also necessary to be able to add a solid-phase extraction apparatus as needed and to be inexpensive so that it can handle multiple sample samples. No solid-phase extraction apparatus that satisfies the above functions has been devised.
Focusing on the above-mentioned problems, the present invention can realize reduction of reagent consumption and automation of the concentration process by effectively utilizing the flow path switching valve technology and the reduced pressure feeding and pressurized feeding technology. The purpose of the present invention is to provide a compact and inexpensive solid-phase extraction apparatus by simplification.

本目的を達成する手段として、図1に示した特許請求項1の固相抽出装置において、試料水1a、洗浄に使用される純水1bおよび固相抽出カラム4のコンデショニング用の複数の試薬1c等を順次選択できる多チャンネル切換弁2aと、多チャンネル切換弁2aからの流路3aと溶離液1dからの流路3bを選択できる三方切換弁2bと、三方切換弁2bからの流路3cを接続した固相抽出カラム4と、固相抽出カラム4の下部からの流路3dと濃縮液回収容器1eへの流路3eと吸引および吐出が可能な4方切換弁2eと二つのプランジャ5aを具備するダブルプランジャポンプ5への流路3fを切換える三方切換弁2cと、三方切換弁2cとダブルプランジャポンプ5間に配置された三方ジョイント6と、三方ジョイント6の一端に接続された溶離液1dの一定量を貯めるためのコイルチューブ7と、コイルチューブ7と溶離液1dおよび前記流路3bを選択できる三方切換弁2dからなる流路構成を特徴とする固相抽出装置を使用することによって、試薬消費量の削減と濃縮工程の自動化を実現できた。   As means for achieving this object, a plurality of reagents for conditioning the sample water 1a, the pure water 1b used for washing, and the solid phase extraction column 4 in the solid phase extraction apparatus of claim 1 shown in FIG. A multi-channel switching valve 2a that can sequentially select 1c, etc., a three-way switching valve 2b that can select a flow path 3a from the multi-channel switching valve 2a and a flow path 3b from the eluent 1d, and a flow path 3c from the three-way switching valve 2b. , A flow path 3d from the lower part of the solid phase extraction column 4, a flow path 3e to the concentrated liquid recovery container 1e, a four-way switching valve 2e capable of suction and discharge, and two plungers 5a A three-way switching valve 2c for switching the flow path 3f to the double plunger pump 5 comprising: a three-way joint 6 disposed between the three-way switching valve 2c and the double plunger pump 5, and one end of the three-way joint 6 A solid-phase extraction apparatus characterized by a flow path configuration comprising a coil tube 7 for storing a certain amount of the eluent 1d and a three-way selector valve 2d capable of selecting the coil tube 7, the eluent 1d and the flow path 3b. By using it, it was possible to reduce reagent consumption and automate the concentration process.

図1に本発明による流路図と各種切換弁(2a〜2e)およびダブルプランジャポンプ5(双方向性)を制御するCPUボードからなる模式図を示した。また図5に装置の外観図を示した。   FIG. 1 shows a flow chart according to the present invention and a schematic diagram including a CPU board for controlling various switching valves (2a to 2e) and a double plunger pump 5 (bidirectional). FIG. 5 shows an external view of the apparatus.

第一の課題であるコンデショニング用試薬1cから試料水1aおよび洗浄水1bまでの試薬の送液は、多チャンネル切換弁2aの流路切換によって自動的に切換えられ、固相抽出カラム4にダブルプランジャポンプ5の減圧送液方式によってシーケンシャルに供給することができる。また、溶出工程の自動化に関してはダブルプランジャポンプ5の双方向送液機能を応用し、プランジャ5aの吸引により溶離液1dをコイルチューブ7に一旦充填した後直ちに吐出動作に切換えて、コイルチューブ7の溶離液を固相抽出カラムに送液し濃縮液を濃縮液回収容器1eに回収される。従って、すべての送液操作は自動化され固相抽出操作の簡素化と効率化が実現できた。   The first problem is that the reagent supply from the conditioning reagent 1c to the sample water 1a and the washing water 1b is automatically switched by switching the flow path of the multi-channel switching valve 2a, and doubled to the solid phase extraction column 4. The plunger pump 5 can supply sequentially by the reduced pressure liquid feeding method. As for the automation of the elution process, the bidirectional liquid feeding function of the double plunger pump 5 is applied. After the eluent 1d is once filled in the coil tube 7 by the suction of the plunger 5a, the coil tube 7 is switched to the discharge operation immediately. The eluent is sent to the solid phase extraction column, and the concentrate is recovered in the concentrate recovery container 1e. Therefore, all liquid feeding operations were automated, and the solid phase extraction operation was simplified and improved in efficiency.

第二の課題であった試薬消費量に関し、多チャンネル切換弁2aと減圧送液方式の採用によって、試薬1cおよび試料水1aの選択送液の自動化と充填操作に伴う試薬の浪費を皆無にすることができた。また、溶離液1dについてもコイルチューブ7へのダブルプランジャポンプ5による減圧充填後の加圧送液方式の採用によって、従来は必要量に無関係に100〜120mLを浪費したが、本発明では必要量(約10mL)の最大20%(2mL)まで削減可能となった。   Regarding the reagent consumption, which was the second problem, the adoption of the multi-channel switching valve 2a and the reduced-pressure liquid feeding method eliminates the waste of reagents accompanying the automation and filling operation of the selective liquid feeding of the reagent 1c and the sample water 1a. I was able to. In addition, the eluent 1d was wasted 100 to 120 mL irrespective of the required amount by adopting the pressurized liquid feeding method after the reduced pressure filling by the double plunger pump 5 to the coil tube 7, but in the present invention, the required amount ( It was possible to reduce to a maximum of 20% (2 mL) of about 10 mL).

第三の課題である一定速度の送液と任意の速度設定に関しては、従来の技術である図2および図3に示した減圧送液法の欠点である送液速度が不安定で且つ送液速度の設定および管理の煩雑さを一挙に解決することができた。すなわち、従来の技術は固相抽出カラム4の出口から気体を媒体とて減圧するのに対し、本発明では直接液体(試料水1a等)を媒体としてダブルプランジャポンプ5により減圧するために、定流量送液が確保(0.1〜30mL/分±2%)できた。また、独立した二つモータ11によって駆動されるダブルプランジャポンプ5の送液量をタッチキーによって定量的に設定が可能となった。   Regarding the third problem, the constant-rate liquid feeding and arbitrary speed setting, the liquid-feeding speed, which is a drawback of the conventional vacuum feeding method shown in FIGS. The complexity of speed setting and management could be solved at once. That is, while the conventional technique reduces the pressure from the outlet of the solid-phase extraction column 4 using a gas as a medium, the present invention directly reduces the pressure by the double plunger pump 5 using a liquid (sample water 1a, etc.) as a medium. The flow rate was ensured (0.1-30 mL / min ± 2%). In addition, the amount of liquid delivered by the double plunger pump 5 driven by the two independent motors 11 can be quantitatively set with a touch key.

本発明による流路切換弁技術と減圧送液および加圧送液技術を有効に活用した固相抽出装置を使用することによって、試薬消費量の削減と濃縮工程の自動化を実現できる他、装置の簡素化によってコンパクトで安価な固相抽出装置を提供できる。   By using the solid-phase extraction device that effectively utilizes the flow path switching valve technology and the reduced pressure feeding and pressurized feeding technology according to the present invention, the reagent consumption can be reduced and the concentration process can be automated. A compact and inexpensive solid-phase extraction apparatus can be provided.

本発明の一実施例を示す固相抽出装置のブロック図。The block diagram of the solid-phase extraction apparatus which shows one Example of this invention. 従来の減圧送液法によるコンデショニング試薬、純水、試料水の送液状態を示す固相抽出装置の一例。An example of the solid-phase extraction apparatus which shows the liquid-feeding state of the conditioning reagent by the conventional pressure reduction liquid feeding method, a pure water, and sample water. 従来の減圧送液法による溶離液による溶出工程を示す固相抽出装置の一例。An example of the solid-phase extraction apparatus which shows the elution process by the eluent by the conventional pressure reduction liquid feeding method. 従来の加圧送液法によるコンデショニング試薬、純水、試料水の送液状態を示す固相抽出装置の一例。An example of the solid-phase extraction apparatus which shows the feeding state of the conditioning reagent by the conventional pressurized liquid feeding method, a pure water, and sample water. 本発明の固相抽出装置の外観図。The external view of the solid-phase extraction apparatus of this invention.

本発明の実施例を図1に基づいて説明する。図1は本発明による固相抽出装置(以下本装置と略記)の流路図を主体とするブロック図を示したものである。
本装置は大別して固相抽出を行うための流路と、これらの流路に配置された切換弁(2a〜2e)と、ダブルプランジャポンプ5を制御するメインCPUボード14および本装置を運転し且つプログラムシーケンスを設定登録するためのタッチキー機能付液晶表示器13から構成される。
An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram mainly showing a flow chart of a solid phase extraction apparatus (hereinafter abbreviated as the present apparatus) according to the present invention.
This apparatus is roughly divided into a flow path for performing solid phase extraction, switching valves (2a to 2e) arranged in these flow paths, a main CPU board 14 for controlling the double plunger pump 5, and the present apparatus. The liquid crystal display 13 has a touch key function for setting and registering a program sequence.

流路の開始点は多チャンネル切換弁2aから始まる。多チャンネル切換弁2aは試料水1a、洗浄水1b、コンデショニング試薬1c(有機溶剤、緩衝液等)等複数個の試薬を順次切換え、流路3aを経由して固相抽出カラム4に送液するためのものである。多チャンネル切換弁2aはメインCPUボードの指示に従いモータ11によって駆動される。多チャンネル切換弁2aのポートは通常4〜8ポートを備えており、試薬ばかりでなく固相抽出カラム4内の充填剤を乾燥するなどに使用する空気または窒素ガスなども接続される。多チャンネル切換弁2aの材質は耐薬品性でかつ有機物や金属化合物を溶出しない材質が使用され、本装置ではセラミックス系(二酸化ケイ素およびジルコニア)の摺り合せ弁と配管としては内径1〜2mmのテフロン(登録商標)チューブが使用される。また、後述する4方切換弁2eの材質も同様である。その他の切換弁2b〜2dはテフロン(登録商標)製の電磁弁が使用される。   The starting point of the flow path starts from the multi-channel switching valve 2a. The multi-channel switching valve 2a sequentially switches a plurality of reagents such as sample water 1a, washing water 1b, and conditioning reagent 1c (organic solvent, buffer solution, etc.), and sends the solution to the solid phase extraction column 4 via the flow path 3a. Is to do. The multi-channel switching valve 2a is driven by the motor 11 in accordance with instructions from the main CPU board. The ports of the multi-channel switching valve 2a are usually provided with 4 to 8 ports, and not only the reagent but also air or nitrogen gas used for drying the packing material in the solid phase extraction column 4 is connected. The material of the multi-channel switching valve 2a is a chemical-resistant material that does not elute organic substances and metal compounds. In this equipment, ceramic (silicon dioxide and zirconia) sliding valves and piping are teflon with an inner diameter of 1-2mm. A (registered trademark) tube is used. The same applies to the material of a four-way switching valve 2e described later. As the other switching valves 2b to 2d, electromagnetic valves made of Teflon (registered trademark) are used.

固相抽出法の最初の作業として、一般にコンデショニングと言われる固相抽出カラム4の活性化が行われる。固相抽出カラム4は一回の抽出作業で新品に交換され使い捨てされる場合が多く、従ってコンデショニングは1試料に対して必ず1回実施される。一般的に有機溶剤(メタノール、アセトン等)が通液された後純水洗浄→緩衝液→純水洗浄の順序で行われる。以上の試薬の選択と通液量(約10〜20mL)および通液速度(約10mL/分)はコンデショニングファイル内に設定され条件で送液される。以降、使用される流路は流路3a→三方切換弁2b→流路3c→固相抽出カラム4→流路3d→三方切換弁2c→流路3f→三方ジョイント6→ダブルプランジャポンプ5→廃液槽16の流路で減圧送液される。   As the first operation of the solid phase extraction method, activation of the solid phase extraction column 4 generally called conditioning is performed. In many cases, the solid-phase extraction column 4 is replaced with a new one in a single extraction operation and is discarded. Therefore, conditioning is always performed once for one sample. Generally, after an organic solvent (methanol, acetone, etc.) is passed through, pure water cleaning → buffer solution → pure water cleaning is performed in this order. The selection of the above reagents, the flow rate (about 10 to 20 mL), and the flow rate (about 10 mL / min) are set in the conditioning file and sent under the conditions. Thereafter, the flow path used is: flow path 3a → three-way switching valve 2b → flow path 3c → solid phase extraction column 4 → flow path 3d → three-way switching valve 2c → flow path 3f → three-way joint 6 → double plunger pump 5 → waste liquid The solution is sent under reduced pressure through the flow path of the tank 16.

コンデショニング終了後、サンプルロードファイルの設定値に従い試料水1aが送液(通常100mL〜1000mL、通液速度1〜20mL/分)される。また試料水1aは多チャンネル切換弁2aの未使用ポートに割りふることができるので、自動化への応用性に優れている。試料水1aの送液後は洗浄用純水1bが送液され固相抽出カラム4および流路内が洗浄される。本装置は、以上のコンデショニングから試料水1aおよび洗浄工程はプログラムシーケンスに従い自動的に行われ、繰り返し精度の高い送液と試薬浪費を最小限に留めた送液が特徴である。   After the conditioning is completed, the sample water 1a is fed according to the set value of the sample load file (usually 100 mL to 1000 mL, liquid flow rate 1 to 20 mL / min). Moreover, since the sample water 1a can be allocated to the unused port of the multichannel switching valve 2a, it is excellent in applicability to automation. After feeding the sample water 1a, the pure water 1b for washing is sent to wash the solid phase extraction column 4 and the flow path. From the above conditioning, this apparatus is characterized in that the sample water 1a and the washing process are automatically performed in accordance with the program sequence, and liquid feeding with high repeatability and liquid waste is minimized.

試料水1aの送液後純水1bによる洗浄が行われた後、溶出ファイルに設定された溶離液1dによる溶出工程が実施される。溶出工程の最初に、溶離液1dをコイルチューブ7に充填する作業から始まる。溶離液1dは三方切換弁2d→コイルチューブ7→三方ジョイント6→ダブルプランジャポンプ5→廃液槽16の流路で充填される。一般に溶離液1dの必要量は10mL以下の場合が多く、従ってコイルチューブ7の内体積は10mL以上通常2割増しの体積で少なくてもダブルプランジャポンプ5のプランジャ5aの1ストロークの体積以上が適当である。コイルチューブ7は通常内径2〜3mmのテフロン(登録商標)チューブをコイル状に巻いた状態で使用される。コイルチューブ7の内径を大きくするとコイルチューブ7の長さを短縮できるが、他の試薬の入換え作業時に試薬消費量が多くなる傾向を示すので好ましくない。   After the sample water 1a is fed and washed with pure water 1b, an elution step with the eluent 1d set in the elution file is performed. At the beginning of the elution process, the coil tube 7 is filled with the eluent 1d. The eluent 1d is filled in the flow path of the three-way switching valve 2d → coil tube 7 → three-way joint 6 → double plunger pump 5 → waste liquid tank 16. In general, the required amount of the eluent 1d is often 10 mL or less, and therefore, the inner volume of the coil tube 7 is 10 mL or more and usually 20% or more, but at least one stroke of the plunger 5a of the double plunger pump 5 is appropriate. is there. The coil tube 7 is usually used in a state where a Teflon (registered trademark) tube having an inner diameter of 2 to 3 mm is wound in a coil shape. If the inner diameter of the coil tube 7 is increased, the length of the coil tube 7 can be shortened, but this is not preferable because the reagent consumption tends to increase during replacement of other reagents.

溶出ファイルには溶離液1dの吐出量が設定されるが、コイルチューブ7に充填される溶離液の量は、通常自動的に吐出量の2割増しの溶離液1dが充填されるので、装置使用者はコイルチューブ7への充填量を考慮する必要はない。溶出工程では、前記減圧送液で溶離液1dを吸引したプランジャ5aが吐出動作に切換わることで開始される。ダブルプランジャポンプ5は、前記図4に示したダブルプランジャポンプ5cが1つのモータで駆動されているのに対して独立したモータ11によって各プランジャ5aを駆動しており、4方切換弁の二組の流路を切換えて使用することによって、吐出または吸引送液の併用が可能である他、プランジャ5aの単独駆動が可能である特徴も備えている。これらの機能の活用によって課題を解決することができた。   The elution volume of the eluent 1d is set in the elution file, but the eluent 1d that is 20% higher than the amount of elution is usually automatically filled in the coil tube 7, so that the apparatus is used. The person need not consider the filling amount of the coil tube 7. The elution process starts when the plunger 5a that has sucked the eluent 1d by the reduced-pressure liquid supply is switched to the discharge operation. In the double plunger pump 5, the double plunger pump 5 c shown in FIG. 4 is driven by one motor, whereas each plunger 5 a is driven by an independent motor 11, and two sets of four-way switching valves are provided. By switching and using the flow path, it is possible to use both discharge and suction liquid feeding, as well as the feature that the plunger 5a can be driven independently. We were able to solve the problem by using these functions.

溶出工程は、ダブルプランジャポンプ5→三方ジョイント6→コイルチューブ7→三方切換弁2d→流路3b→三方切換弁2b→流路3c→固相抽出カラム4→流路3d→三方切換弁2c→流路3e→濃縮液回収容器1eの流路で濃縮液が回収される。溶離液1dによる固相抽出カラム4に吸着された分析成分の溶出は、通常10mL以下の溶離液1dを使って行われ回収率を高める目的で送液速度10mL/分以下の比較的低速で送液される。回収され濃縮液の液量は、場合によって溶出ファイルに設定された液量以下となることもあるが、この場合は溶離液を適宜添加して一定量に定容する作業が行われる。定容された試料は機器分析装置によって分析成分が測定される。   The elution process is as follows: double plunger pump 5 → three-way joint 6 → coil tube 7 → three-way switching valve 2d → channel 3b → three-way switching valve 2b → channel 3c → solid phase extraction column 4 → channel 3d → three-way switching valve 2c → The concentrated liquid is recovered through the flow path 3e → the concentrated liquid recovery container 1e. The elution of the analysis component adsorbed on the solid phase extraction column 4 by the eluent 1d is usually performed using the eluent 1d of 10 mL or less, and is sent at a relatively low speed of 10 mL / min or less for the purpose of increasing the recovery rate. To be liquidated. In some cases, the volume of the collected concentrated liquid may be equal to or less than the liquid volume set in the elution file. In this case, the eluent is appropriately added to perform a constant volume adjustment. Analytical components of the sample having a constant volume are measured by an instrument analyzer.

1a:試料水
1b:純水
1c:コンデショニング試薬
1d:溶離液
1e:濃縮液回収容器
2a:多チャンネル切換弁
2b:三方切換弁
2c:三方切換弁
2d:三方切換弁
2e:四方切換弁
3a:流路
3b:流路
3c:流路
3d:流路
3e:流路
3f:流路
4 :固相抽出カラム
5 :ダブルプランジャポンプ
6 :三方ジョイント
7 :チューブコイル
8 :減圧容器
9 :減圧ポンプ
10a:ギヤ
10b:ギヤ
11 :モータ
12 :逆止弁
13 :表示器
14 :メインCPUボード
15 :I/Oポート
16 :廃液槽
1a: Sample water 1b: Pure water 1c: Conditioning reagent 1d: Eluent 1e: Concentrated liquid recovery container 2a: Multi-channel switching valve 2b: Three-way switching valve 2c: Three-way switching valve 2d: Three-way switching valve 2e: Four-way switching valve 3a : Channel 3b: Channel 3c: Channel 3d: Channel 3e: Channel 3f: Channel 4: Solid phase extraction column 5: Double plunger pump 6: Three-way joint 7: Tube coil 8: Pressure reducing container 9: Pressure reducing pump 10a: Gear 10b: Gear 11: Motor 12: Check valve 13: Indicator 14: Main CPU board 15: I / O port 16: Waste liquid tank

Claims (5)

海水、湖沼水、河川水などの環境水および食品等に含まれる有害成分を化学分析するための濃縮処理手段において使用される固相抽出装置において、試料水(1a)、洗浄に使用される純水(1b)および固相抽出カラム(4)のコンデショニング用の複数の試薬(1c)を順次選択できる多チャンネル切換弁(2a)と、多チャンネル切換弁(2a)からの流路(3a)と溶離液(1d)からの流路(3b)を選択できる三方切換弁(2b)と、三方切換弁(2b)からの流路(3c)を接続した固相抽出カラム(4)と、固相抽出カラム(4)の下部からの流路(3d)と濃縮液回収容器(1e)への流路(3e)と吸引および吐出が可能な4方切換弁(2e)と二つのプランジャ(5a)を具備するダブルプランジャポンプ(5)への流路(3f)を切換える三方切換弁(2c)と、三方切換弁(2c)とダブルプランジャポンプ(5)間に配置された三方ジョイント(6)と、三方ジョイント(6)の一端に接続された溶離液(1d)の一定量を貯めるためのコイルチューブ(7)と、コイルチューブ(7)と溶離液(1d)との流路およびコイルチューブ(7)と流路(3b)との流路を選択できる三方切換弁(2d)からなる流路構成を特徴とする固相抽出装置。Pure water used for sample water (1a) and washing in solid phase extraction equipment used in concentration treatment means for chemical analysis of harmful components contained in environmental water such as seawater, lake water, river water and foods, etc. A multichannel switching valve (2a) capable of sequentially selecting a plurality of reagents (1c) for conditioning water (1b) and solid phase extraction column (4), and a flow path (3a) from the multichannel switching valve (2a) A three-way switching valve (2b) capable of selecting the flow path (3b) from the eluent (1d), a solid phase extraction column (4) connected to the flow path (3c) from the three-way switching valve (2b), A flow path (3d) from the lower part of the phase extraction column (4), a flow path (3e) to the concentrated liquid recovery container (1e), a four-way switching valve (2e) capable of suction and discharge, and two plungers (5a) To the double plunger pump (5) A three-way switching valve (2c) for switching the path (3f), a three-way joint (6) disposed between the three-way switching valve (2c) and the double plunger pump (5), and one end of the three-way joint (6) A coil tube (7) for storing a certain amount of the eluent (1d) , a flow path between the coil tube (7) and the eluent (1d), and a flow path between the coil tube (7) and the flow path (3b). A solid-phase extraction device characterized by a flow path structure comprising a three-way selector valve (2d) capable of selecting the two. 前記請求項1の固相抽出装置において、溶離液(1d)を三方切換弁(2d)、コイルチューブ(7)、三方ジョイント(6)を経由してダブルプランジャポンプ(5)の吸引動作によってコイルチューブ(7)内に充填した後、ダブルプランジャポンプ(5)の吸引動作を吐出動作に切換え、三方ジョイント(6)、コイルチューブ(7)、三方切換弁(2d)、流路(3b)、三方切換弁(2b)、固相抽出カラム(4)、三方切換弁(2c)および濃縮液を回収する流路(3e)を経由して一定量の濃縮液を回収する制御手段(14)を特徴とする固相抽出装置。In the solid phase extraction apparatus according to claim 1, the eluent (1d) is coiled by a suction operation of a double plunger pump (5) through a three-way switching valve (2d), a coil tube (7), and a three-way joint (6). After filling the tube (7), the suction operation of the double plunger pump (5) is switched to the discharge operation, the three-way joint (6), the coil tube (7), the three-way switching valve (2d), the flow path (3b), Control means (14) for recovering a certain amount of concentrate via a three-way selector valve (2b), a solid phase extraction column (4), a three-way selector valve (2c), and a flow path (3e) for recovering the concentrate. A solid-phase extraction device. 前記請求項2の固相抽出装置において、コイルチューブ(7)の内径が1〜5mmで、コイルチューブ(7)の長さがダブルブランジャポンプ(5)の1回の吸引動作で吸い込む体積以上となる長さであることを特徴とする固相抽出装置。 3. The solid-phase extraction apparatus according to claim 2 , wherein the inner diameter of the coil tube (7) is 1 to 5 mm and the length of the coil tube (7) is greater than or equal to the volume sucked by one suction operation of the double-blanger pump (5). solid phase extraction device, characterized in that to become long. 前記請求項1の固相抽出装置において、ダブルプランジャポンプ(5)の二つのプランジャ(5a)は各々独立したモータ(11)によって駆動されていることを特徴とする固相抽出装置。  2. The solid phase extraction apparatus according to claim 1, wherein the two plungers (5a) of the double plunger pump (5) are driven by independent motors (11). 前記請求項2の固相抽出装置において、多チャンネル切換弁(2a)、三方切換弁(2b)、固相抽出カラム(4)、三方切換弁(2c)、4方切換弁(2e)および送液用ダブルプランジャポンプ(5)を経由してコンデショニング試薬(1c)の送液、試料水(1a)の固相抽出カラム(4)の送液、洗浄水(1b)の送液を行った後、コイルチューブ(7)内に充填した溶離液(1d)による固相抽出カラム(4)への送液によって濃縮液回収容器(1e)への濃縮液の回収に至る一連の送液を自動的に行うことができる制御手段(14)を備える固相抽出装置。The solid phase extraction apparatus according to claim 2 , wherein the multi-channel switching valve (2a), the three-way switching valve (2b), the solid-phase extraction column (4), the three-way switching valve (2c), the four-way switching valve (2e) and the feed Liquid feeding of the conditioning reagent (1c), liquid feeding of the solid phase extraction column (4) of the sample water (1a) and liquid of the washing water (1b) were performed via the liquid double plunger pump (5). After that, a series of liquid feeding is automatically performed until the concentrated liquid is recovered to the concentrated liquid recovery container (1e) by the liquid feeding to the solid phase extraction column (4) by the eluent (1d) filled in the coil tube (7). A solid phase extraction apparatus comprising a control means (14) that can be performed automatically.
JP2010022861A 2010-02-04 2010-02-04 Solid phase extraction device Expired - Fee Related JP5333941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022861A JP5333941B2 (en) 2010-02-04 2010-02-04 Solid phase extraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022861A JP5333941B2 (en) 2010-02-04 2010-02-04 Solid phase extraction device

Publications (2)

Publication Number Publication Date
JP2011158450A JP2011158450A (en) 2011-08-18
JP5333941B2 true JP5333941B2 (en) 2013-11-06

Family

ID=44590514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022861A Expired - Fee Related JP5333941B2 (en) 2010-02-04 2010-02-04 Solid phase extraction device

Country Status (1)

Country Link
JP (1) JP5333941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218739A (en) * 2021-06-04 2021-08-06 北京优兴科仪科技开发有限公司 Solid phase extraction instrument

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572100A (en) * 2017-03-07 2018-09-25 中国科学院寒区旱区环境与工程研究所 A kind of multichannel positive pressure solid-phase micro-extracting device
CN113252429A (en) * 2021-05-11 2021-08-13 吴志洪 Automatic extraction device and process method for sewage drugs
CN113521804B (en) * 2021-07-15 2022-05-20 绍兴市食品药品检验研究院 Food detects with full-automatic solid-phase extraction device of high flux of preventing blockking up
CN114441253A (en) * 2021-11-29 2022-05-06 中国辐射防护研究院 Separation and purification system for nuclide automatic solid-phase extraction
JP2024027294A (en) * 2022-08-17 2024-03-01 オルガノ株式会社 Impurity acquisition system, quality inspection system and liquid manufacturing supply system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317573A (en) * 1993-05-07 1994-11-15 Sumitomo Heavy Ind Ltd Liquid radioactive chemical injection device
JPH07275601A (en) * 1994-04-08 1995-10-24 Hitachi Ltd Automatic solid-phase extracting apparatus with solid-phase extraction column reproducing function
JP3481705B2 (en) * 1994-12-12 2003-12-22 株式会社モリテックス Automatic solid-phase extraction device
JPH11125624A (en) * 1997-10-23 1999-05-11 Hitachi Ltd Liquid chromatograph
JP2004093194A (en) * 2002-08-29 2004-03-25 Ngk Insulators Ltd Column treatment apparatus
JP2006292392A (en) * 2005-04-06 2006-10-26 Hitachi High-Technologies Corp Liquid sending system
JP4988382B2 (en) * 2007-02-28 2012-08-01 ジーエルサイエンス株式会社 Solid phase extraction device for sample solution
JP5055108B2 (en) * 2007-12-26 2012-10-24 オルガノ株式会社 Automatic solid phase pretreatment apparatus and solid phase pretreatment method for sample water
JP5042918B2 (en) * 2008-05-23 2012-10-03 株式会社日立ハイテクノロジーズ Method and apparatus for analyzing polychlorinated biphenyls in insulating oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218739A (en) * 2021-06-04 2021-08-06 北京优兴科仪科技开发有限公司 Solid phase extraction instrument

Also Published As

Publication number Publication date
JP2011158450A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5333941B2 (en) Solid phase extraction device
CN105891391B (en) A kind of automatic sampling apparatus
JP5736457B2 (en) Solid phase extraction device
US9643104B2 (en) Liquid chromatography device, liquid chromatography analysis process, and non-transitory computer-readable medium for liquid chromotography analysis
EP2669673B1 (en) Bubble reduction device, chromotography device, bubble reduction method, and bubble reduction program
JP2011141120A (en) Liquid chromatography device and liquid chromatography
US10156551B2 (en) Sampling systems and methods of using the same
JP5772886B2 (en) Analysis equipment
US9759696B2 (en) Channel bubble reduction device, channel bubble reduction method, and chromatography device
JP2005507993A (en) Method and apparatus for automated analysis of fluid-based processing systems
JP5643340B2 (en) Automatic analyzer with low-pressure in-line filter action
US5739422A (en) Multicycle loop injection for trace analysis by ion chromatography apparatus and method
MX2012001531A (en) Method of preparation of samples for analysis and cartridge therefor.
EP2669674A1 (en) Liquid chromatography apparatus, liquid chromatography analysis method, and liquid chromatography analysis program
JP4720305B2 (en) Autosampler
JPH03205559A (en) Chromatographic analysis of biosample and liquid chromatograph device
JP5039456B2 (en) Liquid chromatograph analyzer
Anthemidis et al. Integrated lab-on-a-valve platform incorporating a sorbent microcolumn and membraneless gas-liquid separation for cold vapor generation-atomic fluorescence spectrometric assays
CN214503073U (en) On-site rapid enrichment, purification and blow-drying device for target pollutants in water environment
JP2001133445A (en) Liquid chromatograph
CN219272215U (en) Multichannel magnetic solid phase extraction equipment
CN219758166U (en) Online enrichment treatment system
CN113049668A (en) Dynamic separation process research and analysis system and method
JPH08152426A (en) Liquid chromatographic device
JPH0961415A (en) Metal component analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees