JP2004093194A - Column treatment apparatus - Google Patents

Column treatment apparatus Download PDF

Info

Publication number
JP2004093194A
JP2004093194A JP2002251261A JP2002251261A JP2004093194A JP 2004093194 A JP2004093194 A JP 2004093194A JP 2002251261 A JP2002251261 A JP 2002251261A JP 2002251261 A JP2002251261 A JP 2002251261A JP 2004093194 A JP2004093194 A JP 2004093194A
Authority
JP
Japan
Prior art keywords
column
sample water
feeding
discharge
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002251261A
Other languages
Japanese (ja)
Inventor
Hideki Takeuchi
竹内 英樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002251261A priority Critical patent/JP2004093194A/en
Publication of JP2004093194A publication Critical patent/JP2004093194A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To automate the connection of a supply route to an exhaust route by preventing a clogging and installing a specimen water feeding pump capable of accurately feeding specimen water. <P>SOLUTION: To arrest and extract trace harmful substances in the specimen water a containing SS, this column treatment apparatus comprises at least a feed route 21 feeding the specimen water a, pure water b as washing fluid, and methanol d as extract, a feeding route 22 feeding nitrogen gas c as heating gas, a discharge route 61 connected to discharge pumps p3, p4, and p5, and columns 5 detachably disposed thereon. A specimen water feeding means 4 constantly feeding the specimen water by using the depressurization and pressurization of gas by a syringe pump is disposed in the specimen water feed route 21. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、下水、工場排水、環境水などに含まれる微量有害成分を測定するための前処理としてそれら有害成分を捕捉・抽出する前処理装置の改良に関するもので、特に、現場におけるモニタリングに利用できる前処理装置に関する。
【0002】
【従来の技術】
従来、流入下水、初沈越流水、二次処理水、放流水などの下水、工場排水、道路排水など各種の排水や、河川水、湖沼水、地下水、海水など各種の環境水には、微量有害物質が含まれることが多い。これら有害物質には、環境ホルモン、ダイオキシン、PCB、PAHs(多環芳香族炭化水素)、農薬などがある。
【0003】
これらの有害物質を測定するには、SSなどの固形分や夾雑物を多く含む試料水から特定の有害物質を捕捉、抽出して濃縮する必要があり、その代表的な手法として、固相抽出法が用いられている。本件出願人は、2001−315478号特許出願として、このような目的に合った固相抽出法とそれに用いる固相充填剤を充填したカラムについて提案している。
【0004】
その概要を図5によって説明すると、固相抽出カラム1の中に、上層にSS捕捉材11、下層に固相充填剤12を充填し、その上方から、試料水ポンプ13、純水ポンプ14、メタノールポンプ15、温風パージ16などに連なる送給経路を接続し、下方には切替え弁1a、脱水ポンプ17、メインポンプ18、回収ポンプ19a(以下、濃縮・溶媒調整19b、検出器19cに接続されている)などに導かれる排出経路を接続している。
【0005】
そして、その有害物質の捕捉、抽出方法は、概ね次の通りである。先ず、試料水をこの固相抽出カラム1に導入し、測定対象物質のSS吸着分および溶解分をそれぞれ上層の前記SS捕捉材11と下層の固相充填剤12に捕捉する。次いで、純水またはメタノールなどで洗浄し、温風パージ16から温風を供給しながら脱水ポンプ17を作動しカラム1内を乾燥する。次いで、カラム1内にアセトン、メタノール、ジクロロメタンなど有機溶媒の抽出液を導入し捕捉されていた成分を抽出する。
【0006】
ところが、このようなカラム処理装置を自動化するに際して、次のような問題が生じた。それは、先ず第1に、SSを相当量含む試料水を送給するための試料水ポンプ13が目詰まりし易く安定して使用できない、送給液量を精度よく制御できないといった問題があった。第2に、試料水ポンプ13、純水ポンプ14、メタノールポンプ15、温風パージ16などの送給経路や、切替え弁1a、脱水ポンプ17、メインポンプ18、回収ポンプ19などの排出経路とカラム1との接続をその都度マニュアルで行う必要があった。
【0007】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものであり、目詰まりを防止し、精度よく試料水を送給できる試料水の送給ポンプを備え、前記供給経路と排出経路の接続を自動化可能としたカラム処理装置を提供する。
【0008】
【課題を解決するための手段】
上記の問題は、SSを含む試料水中の微量有害物質を捕捉、抽出するため、少なくとも試料水、洗浄液、加温ガスおよび抽出液を送給する送給経路と、排出ポンプなど排出経路と、それらに着脱自在に配設されるカラムを具備したカラム処理装置であって、前記送給経路に接続された送給ソケットと、排出経路に接続された排出ソケットを、前記カラムを移動可能な空間を介して上下に配置し、その空間には、前記カラムを装着して搬入搬出可能な搬送手段を配設するとともに、試料水送給経路には、気体の減圧加圧によって試料水を定量送給する試料水送給手段を配設したことを特徴とする本発明のカラム処理装置によって、解決することができる。
【0009】
そして、本発明は、前記試料水送給手段が、シリンジポンプの減圧により試料水をトラップに定量吸入し、加圧によりトラップから定量吐出するようにした形態に具体化でき、また、前記カラムの搬送手段が、ターンテーブル、巡回コンベヤ、または前進後退移動可能な架台である形態に好ましく具体化される。
【0010】
【発明の実施の形態】
次に、本発明のカラム処理装置に係る実施形態について、図1〜4を参照しながら説明する。
この実施形態のカラム処理装置は、SSを含む試料水a中の微量有害物質を捕捉、抽出するため、少なくとも試料水a、洗浄液として純水b、および抽出液メタノールdを送給する送給経路21と加温ガスとして窒素ガスcを送給する送給経路22、排出ポンプp3、p4、p5などに接続された排出経路61と、それらに着脱自在に配設されるカラム5を具備したカラム処理装置である。送給経路21は、試料水a、純水b、および抽出液メタノールdの送給経路を兼用しているがそれぞれを個別に設置してもよい。なお、ここでは、コンディショニング用メタノールeを送給するためのポンプp2と経路23も設けられているが、抽出液メタノールdを送給する送給経路21を兼用してもよい。
【0011】
次に、本発明を、試料水の送給手段に係る事項と、カラムの搬送手段に係る事項とに分けてその特徴を説明する。
(試料水送給手段)
先ず、本発明の特徴とするところは、試料水の送給経路21には、シリンジポンプなどにより気体の減圧加圧によって試料水を定量送給する試料水送給手段4を配設した点にあり、具体的には、図2に示すように、この試料水送給手段4は、シリンジポンプp1の減圧により試料水aをトラップ41に空気溜り41cを介して定量吸入(上流側の弁41aを開き、下流側の弁41bを閉じて)し、加圧によりトラップ41から定量吐出(弁41aを閉じ、弁41bを開いて)するよう、シリンジポンプp1とトラップ41とを組み合せている。
【0012】
このような試料水送給手段4によれば、空気溜り41cを介して試料水を吸入吐出できるので、ポンプが目詰まりしたり、ポンプによって試料水が汚れることがない。また、シリンジポンプを利用するので精度よく試料水を送給できる。さらに、シリンジポンプp1の吸引、吐出操作と、弁41a、41bの開閉操作をプログラムすれば、ポンプの運転を容易に自動化できる利点が得られる。
【0013】
(カラムの搬送手段)
次に、カラムの搬送手段について図3、4によって説明する。
この実施形態では、前記送給経路21、22、23などに接続された送給ソケット2と、排出経路61に接続された昇降可能な排出ソケット6を、前記カラム5を移動可能な空間を介して 上下に配置し、その空間には、前記カラム5を装着して搬入搬出可能な搬送手段3を配設した点に特徴がある。この搬送手段3としては、ターンテーブル、巡回コンベヤ、または前進後退移動可能な架台など適宜な搬送装置が利用される。
【0014】
そして、図3の位置にあるカラム5を搬送して、送給ソケット2の直下に搬入し、例えば光センサを用いて位置決めした状態で、下方にある排出ソケット6を上昇させ、その排出経路61に連通したソケット口62をカラム5の下部排出ノズル51に押し付けO−リングなどでシールしながら嵌着させて、排出経路61を液漏れさせずに接続できるよう設定されている。そして、前記送給ソケット2に設けられた前記送給経路21、22、23などの送給口21a、22a、23aから、直下に搬入されたカラム5に試料水aや加温窒素ガスcなどを送給することができる。前記送給ソケット2にはカラム5内を大気に開放する解放経路24が接続されている。その開放経路24には、経路を完全に塞がぬように液面センサを固定することもできる。
【0015】
この送給ソケット2は、カラム5の上面を覆うように配置されるのが好ましいが、カラム上面に密接させる必要はない。
かくして、以下に詳述する通り、カラム5に対して、有害成分の捕捉、抽出など所定の操作を行うことができる。そして、それら処理が終了すれば、排出ソケット6を下降させ、そのソケット口62をカラム5の下部排出ノズル51から離脱させて、排出経路61との接続を切ることができ、ついで搬送手段3を操作して、用済みのカラム5を搬出し、新しいカラム5を搬入することができる。
【0016】
ここで、図1、3、4を参照してカラム操作手順を説明する。
(1)カラムのセット:カラム5(固相充填剤を充填)をターンテーブルなど搬送手段3にセットする。
(2)カラムの搬入:送給、排出ソケット2、6の間にカラム5を移動させ、排出ソケット6を上昇、カラム5に接続する。
(3)カラムのコンディショニング:メタノールe、純水bをカラム5に送給し、排出経路61で排液fとしてポンプ吸引して取り出す。
【0017】
(4)目的物質の捕捉:前記試料水送給手段4により、試料水の所定量をカラム5に流し込み、目的物質をカラム5内に捕捉させ、残余を同時に排液fとしてポンプ吸引して取り出す。
(5)カラムの洗浄:純水bをカラム5に送給して内部を洗浄し、排液fとしてポンプ吸引して取り出す。
(6)カラムの脱水・乾燥:加温窒素ガスcをカラム5に送給し、同時に排出経路61でドレンhとしてポンプ吸引して内部を脱水、乾燥させる。
【0018】
(7)目的物質の抽出:抽出液メタノールdの所定量をカラム5に送給し、所定時間カラム内で滞留させ、目的物質を抽出する。その後、回収液gとして取出し、分析装置(図示せず)に送る。
(8)カラムの搬出:排出ソケット6を外し、用済みカラムを搬出し、新しいカラムを搬入する。以下、これらの操作を繰り返す。
【0019】
ここで試料水、およびその成分が配管等装置内に吸着、残留し、次の試料水へのコンタミネーションを防止するため、用済みカラムを搬出後、装置洗浄用カラム(何も充填されていない空のカラム)を搬入し、純水b、メタノールdなどで毎回、装置洗浄を行うのが好ましい。この装置洗浄後は、装置洗浄用カラムを搬出し、新しいカラムを搬入、以降の操作を行う。
【0020】
以上説明したカラムの搬送手段3、送給ソケット2、排出ソケット6の組合せによれば、前記した(1)カラムのセット〜(8)カラムの搬出の一連の有害物質捕捉、抽出操作とその繰り返し操作をプログラムして自動化できるという利点が得られる。
【0021】
また、本発明によれば、以下の好ましい技術的メリットが得られるのである。
(1)カラム5の内部を大気圧下に解放しているので、従来の密閉系の場合に送給経路と排出経路の両方をカラムに緊密に接続しなければならなかったのに比較して、排出経路1箇所を緊密に接続すればよいので、装置構成が極めて容易になり、大幅なコストダウンが可能となる。
(2)送給経路と排出経路の運転を低圧(大気圧下)で操作可能となるので、この点もコストダウンの要因となる。
【0022】
(3)カラム内の目詰まり対策が容易になる。従来の密閉系では高価な圧力センサが必要であったうえ、内圧アップによって液漏れのおそれがあるので、耐圧接続が必要になるなどコスト面で問題があったが、本発明では目詰まり時の液面上昇を液面センサで検知すればよく、機器の構成が簡便で済み、コスト面で特に有利である。
【0023】
(4)カラム内の滞留液量を自由に可変できる。カラム操作において、途中で液を無くし、その後必要量を貯留する必要がある。具体的には脱水・乾燥操作と抽出操作である。これにより水を混入させずに、かつ効率よく目的物質を抽出、回収することが可能になるというメリットがある。
【0024】
【発明の効果】
本発明のカラム処理装置は、以上説明したように構成されているので、試料水の送給ポンプは、目詰まりすることなく、精度よく試料水を送給でき、自動化も容易になる。また、カラムと供給経路と排出経路との接続が簡便なので、カラム処理装置全体の自動化も容易となる。
【0025】
さらに、カラムを大気圧下に解放したものとしているので、従来の密閉系に比較して装置全体が簡素化でき、コスト面で有利になるという優れた効果がある。よって本発明は、従来の問題点を解消した、現場でモニタリングに利用できるカラム処理装置として、実用的価値はきわめて大なるものがある。
【図面の簡単な説明】
【図1】本発明の実施形態を示す要部ブロック図。
【図2】試料水の送給ポンプを示す要部ブロック図。
【図3】カラムの搬入搬出を説明するため要部断面略図。
【図4】カラムの装着状態を説明するため要部断面略図。
【図5】カラム処理装置の構成ブロック図。
【符号の説明】
2 送給ソケット、21 送給経路、22 送給経路、23 送給経路、24 解放経路、3 搬送手段、4 試料水送給手段、41 トラップ、41a、41b 弁、41c 空気溜り、5 カラム、51 下部排出ノズル、6 排出ソケット、61 排出経路、62 ソケット口、a 試料水、b 純水、c 窒素ガス、d 抽出液メタノール、e コンディショニング用メタノール、p1 シリンジポンプ、p2 ポンプ、p3、p4、p5 排出ポンプ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement of a pretreatment device that captures and extracts harmful components as a pretreatment for measuring trace harmful components contained in sewage, industrial wastewater, environmental water, and the like, and is particularly used for on-site monitoring. It relates to a pretreatment device that can be used.
[0002]
[Prior art]
Conventionally, various types of wastewater such as inflow sewage, first sinking runoff water, secondary treated water, effluent, factory drainage, road drainage, and various environmental waters such as river water, lake water, groundwater, seawater, etc. Often contains harmful substances. These harmful substances include environmental hormones, dioxins, PCBs, PAHs (polycyclic aromatic hydrocarbons), pesticides and the like.
[0003]
In order to measure these harmful substances, it is necessary to capture, extract and concentrate specific harmful substances from sample water containing a large amount of solids and impurities such as SS. Method is used. The applicant of the present application has proposed a solid phase extraction method suitable for such a purpose and a column packed with a solid phase filler used for the purpose as a patent application of 2001-315478.
[0004]
The outline thereof will be described with reference to FIG. 5. In the solid-phase extraction column 1, the upper layer is filled with the SS capturing material 11, and the lower layer is filled with the solid-phase filler 12. From above, a sample water pump 13, a pure water pump 14, A supply path connected to a methanol pump 15, a hot air purge 16 and the like is connected, and a switching valve 1a, a dehydration pump 17, a main pump 18, and a recovery pump 19a (hereinafter, connected to a concentration / solvent adjustment 19b and a detector 19c) are connected below. Is connected).
[0005]
The method of capturing and extracting the harmful substances is generally as follows. First, sample water is introduced into the solid phase extraction column 1, and the SS adsorbed and dissolved components of the substance to be measured are captured by the upper SS capturing material 11 and the lower solid phase filler 12, respectively. Next, the column 1 is washed with pure water or methanol, and the dehydration pump 17 is operated while supplying hot air from the hot air purge 16 to dry the inside of the column 1. Next, an extract of an organic solvent such as acetone, methanol, or dichloromethane is introduced into the column 1 to extract the trapped components.
[0006]
However, when automating such a column processing apparatus, the following problems occurred. First, there is a problem that the sample water pump 13 for feeding the sample water containing a considerable amount of SS is easily clogged and cannot be used stably, and the amount of the supplied liquid cannot be accurately controlled. Second, a supply path such as a sample water pump 13, a pure water pump 14, a methanol pump 15, a hot air purge 16, a discharge path such as a switching valve 1a, a dehydration pump 17, a main pump 18, a recovery pump 19, and a column. Each time, it was necessary to manually establish a connection with 1.
[0007]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described problems, and has a sample water feed pump capable of preventing sample clogging and accurately feeding sample water, and connecting the supply path and the discharge path. To provide a column processing apparatus capable of automating the process.
[0008]
[Means for Solving the Problems]
In order to capture and extract trace harmful substances in sample water containing SS, the above problems are at least a feed route that feeds sample water, a washing solution, a warming gas and an extract, and a discharge route such as a discharge pump. A column processing apparatus having a column detachably disposed in a feeding socket connected to the feeding path and a discharging socket connected to a discharging path, a space in which the column can be moved. In the space, there is provided a transport means capable of loading and unloading the column, and the sample water supply path is supplied with a fixed amount of sample water by depressurizing and pressurizing gas. This problem can be solved by the column processing apparatus according to the present invention, in which a sample water supply unit is provided.
[0009]
And, the present invention can be embodied in a form in which the sample water supply means sucks a fixed amount of sample water into the trap by depressurization of the syringe pump, and discharges a fixed amount of the sample water from the trap by pressurization. The conveying means is preferably embodied in the form of a turntable, a traveling conveyor, or a gantry capable of moving forward and backward.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the column processing apparatus of the present invention will be described with reference to FIGS.
In order to capture and extract trace harmful substances in the sample water a containing SS, the column processing apparatus of this embodiment supplies at least the sample water a, pure water b as a washing liquid, and a methanol d extraction liquid. A column having a feed path 21 for feeding nitrogen gas c as a heating gas, a discharge path 61 connected to discharge pumps p3, p4, p5, and the like, and a column 5 detachably provided to these. Processing device. The feed path 21 also serves as a feed path for the sample water a, the pure water b, and the extract methanol d, but each may be individually installed. Although the pump p2 and the path 23 for supplying the conditioning methanol e are provided here, the supply path 21 for supplying the extract methanol d may also be used.
[0011]
Next, the features of the present invention will be described separately for items relating to a sample water supply unit and items relating to a column transport unit.
(Sample water supply means)
First, the feature of the present invention resides in that a sample water feeding means 4 for quantitatively feeding sample water by depressurizing and pressurizing gas with a syringe pump or the like is provided in the sample water feeding path 21. Specifically, as shown in FIG. 2, the sample water supply means 4 sucks a fixed amount of sample water a into the trap 41 by depressurizing the syringe pump p1 via the air reservoir 41c (the upstream valve 41a). Is opened, and the downstream side valve 41b is closed), and the syringe pump p1 and the trap 41 are combined so as to discharge a fixed amount from the trap 41 by pressurization (close the valve 41a and open the valve 41b).
[0012]
According to such a sample water feeding means 4, since the sample water can be sucked and discharged through the air reservoir 41c, the pump is not clogged and the sample water is not contaminated by the pump. In addition, since the syringe pump is used, the sample water can be accurately fed. Further, by programming the suction and discharge operations of the syringe pump p1 and the opening and closing operations of the valves 41a and 41b, there is an advantage that the operation of the pump can be easily automated.
[0013]
(Column transport means)
Next, the column transport means will be described with reference to FIGS.
In this embodiment, the feeding socket 2 connected to the feeding paths 21, 22, 23, etc., and the discharge socket 6, which can be moved up and down, connected to the discharging path 61 are connected via a space in which the column 5 can be moved. It is characterized in that the transport means 3 which can be loaded and unloaded by mounting the column 5 is provided in the space. As the transfer means 3, an appropriate transfer device such as a turntable, a traveling conveyor, or a gantry capable of moving forward and backward can be used.
[0014]
Then, the column 5 at the position shown in FIG. 3 is conveyed, loaded immediately below the feed socket 2, and, for example, positioned using an optical sensor, the lower discharge socket 6 is raised, and the discharge path 61 is provided. A socket port 62 communicating with the column 5 is pressed against the lower discharge nozzle 51 of the column 5 and fitted with sealing with an O-ring or the like so that the discharge path 61 can be connected without leaking liquid. Then, the sample water a and the heated nitrogen gas c are supplied to the column 5 carried immediately below from the supply ports 21a, 22a, and 23a of the supply paths 21, 22, and 23 provided in the supply socket 2. Can be sent. The feed socket 2 is connected to a release path 24 for opening the inside of the column 5 to the atmosphere. A liquid level sensor can be fixed to the open path 24 so as not to completely block the path.
[0015]
The feed socket 2 is preferably arranged so as to cover the upper surface of the column 5, but need not be close to the upper surface of the column.
Thus, as described in detail below, predetermined operations such as capturing and extracting harmful components can be performed on the column 5. When these processes are completed, the discharge socket 6 is lowered, the socket port 62 is detached from the lower discharge nozzle 51 of the column 5, and the connection with the discharge path 61 can be cut off. By operating, the used column 5 can be unloaded and a new column 5 can be loaded.
[0016]
Here, a column operation procedure will be described with reference to FIGS.
(1) Column setting: The column 5 (filled with a solid phase filler) is set on the transport means 3 such as a turntable.
(2) Loading of the column: The column 5 is moved between the supply and discharge sockets 2 and 6, and the discharge socket 6 is raised and connected to the column 5.
(3) Conditioning of the column: methanol e and pure water b are fed to the column 5 and discharged as a drainage f through a discharge path 61 by pump suction.
[0017]
(4) Capture of target substance: A predetermined amount of sample water is poured into the column 5 by the sample water supply means 4, the target substance is captured in the column 5, and the remainder is simultaneously pumped out as drainage f and taken out. .
(5) Washing of the column: Pure water b is supplied to the column 5 to wash the inside, and as a drainage f, it is taken out by pump suction.
(6) Dehydration and drying of the column: The heated nitrogen gas c is supplied to the column 5, and at the same time, the inside is dehydrated and dried by pump suction as the drain h in the discharge path 61.
[0018]
(7) Extraction of the target substance: A predetermined amount of the extract liquid methanol d is fed to the column 5 and retained in the column for a predetermined time to extract the target substance. Then, it is taken out as a recovery liquid g and sent to an analyzer (not shown).
(8) Unloading of the column: The discharge socket 6 is removed, the used column is unloaded, and a new column is loaded. Hereinafter, these operations are repeated.
[0019]
Here, in order to prevent the sample water and its components from adsorbing and remaining in the equipment such as pipes and contaminating the next sample water, after removing the used column, a column for cleaning the equipment (nothing is filled) (Empty column) is carried in, and the apparatus is preferably washed with pure water b, methanol d or the like every time. After the device cleaning, the column for device cleaning is carried out, a new column is carried in, and the subsequent operations are performed.
[0020]
According to the combination of the column conveying means 3, the supply socket 2, and the discharge socket 6 described above, a series of harmful substance capturing and extracting operations of the above (1) column setting to (8) column unloading and repetition thereof. The advantage is that the operation can be programmed and automated.
[0021]
Further, according to the present invention, the following preferable technical advantages can be obtained.
(1) Since the inside of the column 5 is released under the atmospheric pressure, both the feed path and the discharge path have to be tightly connected to the column in the case of the conventional closed system. It is only necessary to tightly connect one discharge path, so that the configuration of the apparatus becomes extremely easy and the cost can be significantly reduced.
(2) Since the operation of the supply path and the discharge path can be operated at a low pressure (under the atmospheric pressure), this also causes a cost reduction.
[0022]
(3) Countermeasures against clogging in the column are facilitated. In the conventional closed system, an expensive pressure sensor was required, and there was a risk of liquid leakage due to an increase in the internal pressure. The rise in the liquid level may be detected by a liquid level sensor, which simplifies the configuration of the device and is particularly advantageous in terms of cost.
[0023]
(4) The amount of liquid retained in the column can be freely varied. In the column operation, it is necessary to eliminate the liquid on the way and then store the required amount. Specifically, a dehydration / drying operation and an extraction operation are performed. This has the advantage that the target substance can be efficiently extracted and recovered without mixing water.
[0024]
【The invention's effect】
Since the column processing apparatus of the present invention is configured as described above, the sample water supply pump can accurately supply the sample water without clogging, and automation becomes easy. In addition, since the connection between the column, the supply path, and the discharge path is simple, automation of the entire column processing apparatus is also facilitated.
[0025]
Further, since the column is released under the atmospheric pressure, there is an excellent effect that the entire apparatus can be simplified as compared with the conventional closed system, and the cost becomes advantageous. Therefore, the present invention has a very large practical value as a column processing apparatus which can solve the conventional problems and can be used for on-site monitoring.
[Brief description of the drawings]
FIG. 1 is a main block diagram showing an embodiment of the present invention.
FIG. 2 is a main block diagram showing a sample water supply pump.
FIG. 3 is a schematic cross-sectional view of a main part for describing loading and unloading of a column.
FIG. 4 is a schematic cross-sectional view of a main part for describing a mounting state of a column.
FIG. 5 is a configuration block diagram of a column processing apparatus.
[Explanation of symbols]
2 feed socket, 21 feed route, 22 feed route, 23 feed route, 24 release route, 3 transport means, 4 sample water feed means, 41 trap, 41a, 41b valve, 41c air reservoir, 5 columns, 51 lower discharge nozzle, 6 discharge socket, 61 discharge path, 62 socket opening, a sample water, b pure water, c nitrogen gas, d extract methanol, e conditioning methanol, p1 syringe pump, p2 pump, p3, p4, p5 Discharge pump.

Claims (3)

SSを含む試料水中の微量有害物質を捕捉、抽出するため、少なくとも試料水、洗浄液、加温ガスおよび抽出液を送給する送給経路と、排出ポンプなど排出経路と、それらに着脱自在に配設されるカラムを具備したカラム処理装置であって、前記送給経路に接続された送給ソケットと、排出経路に接続された排出ソケットを、前記カラムを移動可能な空間を介して上下に配置し、その空間には、前記カラムを装着して搬入搬出可能な搬送手段を配設するとともに、試料水送給経路には、気体の減圧加圧によって試料水を定量送給する試料水送給手段を配設したことを特徴とするカラム処理装置。In order to capture and extract trace harmful substances in the sample water containing SS, at least a feed path for feeding the sample water, washing liquid, warming gas and extract, and a discharge path such as a discharge pump, are detachably provided to them. A column processing apparatus having a column provided, wherein a feed socket connected to the feed path and a discharge socket connected to a discharge path are arranged vertically via a space in which the column can be moved. The space is provided with transport means capable of loading and unloading the column, and the sample water supply path is provided with a sample water supply for quantitatively supplying sample water by decompression and pressurization of gas. A column processing apparatus, wherein means is provided. 前記試料水送給手段が、シリンジポンプの減圧により試料水をトラップに定量吸入し、加圧によりトラップから定量吐出するようにした請求項1に記載のカラム処理装置。2. The column processing apparatus according to claim 1, wherein the sample water supply means sucks a fixed amount of the sample water into the trap by reducing the pressure of the syringe pump and discharges the sample water from the trap by increasing the pressure. 前記カラムの搬送手段が、ターンテーブル、巡回コンベヤ、または前進後退移動可能な架台である請求項1または2に記載のカラム処理装置。3. The column processing apparatus according to claim 1, wherein the column transport unit is a turntable, a traveling conveyor, or a pedestal capable of moving forward and backward.
JP2002251261A 2002-08-29 2002-08-29 Column treatment apparatus Pending JP2004093194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251261A JP2004093194A (en) 2002-08-29 2002-08-29 Column treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251261A JP2004093194A (en) 2002-08-29 2002-08-29 Column treatment apparatus

Publications (1)

Publication Number Publication Date
JP2004093194A true JP2004093194A (en) 2004-03-25

Family

ID=32057895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251261A Pending JP2004093194A (en) 2002-08-29 2002-08-29 Column treatment apparatus

Country Status (1)

Country Link
JP (1) JP2004093194A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256412A (en) * 2007-04-02 2008-10-23 Gl Sciences Inc Sample solid phase load channel device
WO2010150842A1 (en) * 2009-06-25 2010-12-29 株式会社日立ハイテクノロジーズ Pretreatment device and mass spectroscope provided with same
JP2011158450A (en) * 2010-02-04 2011-08-18 Hiranuma Sangyo Kk Solid phase extraction device
WO2011108177A1 (en) * 2010-03-03 2011-09-09 株式会社 日立ハイテクノロジーズ Analysis device
JP4862948B2 (en) * 2007-10-02 2012-01-25 株式会社島津製作所 Preparative purification equipment
WO2014033798A1 (en) * 2012-09-03 2014-03-06 株式会社島津製作所 Liquid collection device and method thereof
JP2019138853A (en) * 2018-02-14 2019-08-22 日本光電工業株式会社 Aseptic sampling device and sampling method using the same
CN114878730A (en) * 2022-06-16 2022-08-09 陕西科技大学 Goat milk adulteration detection device and method integrating solid phase microextraction and in-situ mass spectrometry
WO2024038777A1 (en) * 2022-08-17 2024-02-22 オルガノ株式会社 Impurity acquisition system, quality inspection system, and liquid production/supply system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256412A (en) * 2007-04-02 2008-10-23 Gl Sciences Inc Sample solid phase load channel device
JP4862948B2 (en) * 2007-10-02 2012-01-25 株式会社島津製作所 Preparative purification equipment
JP5242787B2 (en) * 2009-06-25 2013-07-24 株式会社日立ハイテクノロジーズ Pretreatment device and mass spectrometer equipped with the same
WO2010150842A1 (en) * 2009-06-25 2010-12-29 株式会社日立ハイテクノロジーズ Pretreatment device and mass spectroscope provided with same
US9207152B2 (en) 2009-06-25 2015-12-08 Hitachi High-Technologies Corporation Pretreatment apparatus and mass analyzing apparatus equipped with the same
CN102460107A (en) * 2009-06-25 2012-05-16 株式会社日立高新技术 Pretreatment device and mass spectroscope provided with same
JP2011158450A (en) * 2010-02-04 2011-08-18 Hiranuma Sangyo Kk Solid phase extraction device
JP5396534B2 (en) * 2010-03-03 2014-01-22 株式会社日立ハイテクノロジーズ Analysis equipment
CN102762980A (en) * 2010-03-03 2012-10-31 株式会社日立高新技术 Analysis device
US9128070B2 (en) 2010-03-03 2015-09-08 Hitachi High-Technologies Corporation Analysis device
WO2011108177A1 (en) * 2010-03-03 2011-09-09 株式会社 日立ハイテクノロジーズ Analysis device
WO2014033798A1 (en) * 2012-09-03 2014-03-06 株式会社島津製作所 Liquid collection device and method thereof
JPWO2014033798A1 (en) * 2012-09-03 2016-08-08 株式会社島津製作所 Liquid collection apparatus and method
JP2019138853A (en) * 2018-02-14 2019-08-22 日本光電工業株式会社 Aseptic sampling device and sampling method using the same
US11318456B2 (en) 2018-02-14 2022-05-03 Nihon Kohden Corporation Aseptic sampling apparatus and sampling method using the same
JP7066130B2 (en) 2018-02-14 2022-05-13 日本光電工業株式会社 Aseptic sampling device and sampling method using it
CN114878730A (en) * 2022-06-16 2022-08-09 陕西科技大学 Goat milk adulteration detection device and method integrating solid phase microextraction and in-situ mass spectrometry
CN114878730B (en) * 2022-06-16 2023-08-15 陕西科技大学 Sheep milk adulteration detection device and method integrating solid-phase microextraction and in-situ mass spectrum
WO2024038777A1 (en) * 2022-08-17 2024-02-22 オルガノ株式会社 Impurity acquisition system, quality inspection system, and liquid production/supply system

Similar Documents

Publication Publication Date Title
US8673156B2 (en) Suspension liquid extraction apparatus and method
US5377705A (en) Precision cleaning system
JP2004093194A (en) Column treatment apparatus
GB2415488A (en) Dividing a gas flow for drying solid phase extraction samples
KR102477917B1 (en) Process liquid filtration apparatus, chemical supply apparatus and process liquid filtration method and storage medium
KR101924277B1 (en) Substrate treating apparatus and substrate treating method
JP2018192431A (en) Solid-liquid separator, and solid-liquid separation method for solid-liquid mixture
JP2014000559A (en) Turbid water treatment system and turbid water treatment method
IL229298A (en) Systems and methods for conditioning a filter assembly
KR100945081B1 (en) Dredging and dehydration device for sludge using ejector
KR102120493B1 (en) Substrate processing apparatus and O-ring Cleaning method of substrate processing apparatus
JP3539680B2 (en) Filtration method and apparatus for wastewater
JP2004340844A (en) Leak inspection device and control method of leak inspection device
US20090087566A1 (en) Substrate treating apparatus and substrate treating method
AU2015298468B2 (en) Subsea drying system
JP2008080249A (en) Soil cleaning method and soil cleaning apparatus
JP2009098064A (en) Automatic concentration apparatus
JP2007244929A (en) Polluted soil cleaning method using supercritical carbon dioxide (co2), polluted soil cleaning apparatus, and transportable polluted soil cleaning system equipped with the same
JP6023038B2 (en) Filter processing method, filter processing system, and computer-readable recording medium
KR102168831B1 (en) Filtering apparatus for automatically discharging waste liguid
CN110026426B (en) Organic contaminated site soil remediation method
JP4581054B2 (en) Solid content recovery system and solid content recovery method
KR100598914B1 (en) System and method for recycling chemical, and apparatus for treating a substrate using the system
KR100230524B1 (en) Liquid injecton apparatus
JPH06207765A (en) Cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612