JP2001023640A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001023640A
JP2001023640A JP11195858A JP19585899A JP2001023640A JP 2001023640 A JP2001023640 A JP 2001023640A JP 11195858 A JP11195858 A JP 11195858A JP 19585899 A JP19585899 A JP 19585899A JP 2001023640 A JP2001023640 A JP 2001023640A
Authority
JP
Japan
Prior art keywords
composite oxide
component
lithium
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11195858A
Other languages
Japanese (ja)
Other versions
JP4519220B2 (en
Inventor
Manabu Kazuhara
学 数原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP19585899A priority Critical patent/JP4519220B2/en
Publication of JP2001023640A publication Critical patent/JP2001023640A/en
Application granted granted Critical
Publication of JP4519220B2 publication Critical patent/JP4519220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow the use in a broad voltage range, to enhance battery capacity under a high current density and to improve charge/discharge cycle durability by including a lithium transition metal composite oxide having a specific composition as a main component in a positive electrode active material. SOLUTION: A lithium transition metal composite oxide has a lamellar rock salt monoclinic structure and contains a composite oxide expressed by the formula LixMnyM1-yO2, a composite oxide expressed by the formula LixCo1-h-iNihQiO2 and one or more kinds of components selected from a composite oxide expressed by the formula LixCo1-jQjO2, where Q and (x) are independently selected among each of the formulas; M is one or more kinds of elements selected from Al, Fe, Co, Ni and Cr; Q is one or more kinds of elements selected from Al, Fe, Mn, Ti, Ca And Mg; 0<x<=q1.1; 0.5<=y<=1; 0.6<=h<=1.0; 0<=i<=0.10; 0<=1-h-i; and 0<=j<=0.05.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規なリチウム二
次電池及びそれに使用されるリチウム遷移金属複合酸化
物を主成分とする正極活物質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel lithium secondary battery and a positive electrode active material mainly composed of a lithium transition metal composite oxide used therein.

【0002】[0002]

【従来の技術】近年、機器のポータブル化、コードレス
化が進むにつれ、小型、軽量でかつ高エネルギー密度を
有するリチウム二次電池に対する期待が高まっている。
リチウム二次電池用の正極活物質には、LiCoO2
LiNiO2、LiMn24、LiMnO2などの、リチ
ウムと遷移金属の複合酸化物が知られている。その中で
最近では特に、安全性が高く、かつ安価な材料として、
リチウムとマンガンの複合酸化物の研究が盛んである。
これらを正極活物質として用いて、負極活物質としてリ
チウムを吸蔵、放出することができる炭素材料等を用い
た、高電圧、高エネルギー密度のリチウム二次電池の開
発が進められている。
2. Description of the Related Art In recent years, with the progress of portable and cordless devices, expectations for a lithium secondary battery which is small, lightweight and has a high energy density are increasing.
LiCoO 2 , a positive electrode active material for a lithium secondary battery,
Composite oxides of lithium and a transition metal such as LiNiO 2 , LiMn 2 O 4 , and LiMnO 2 are known. Among them, recently, especially as a highly safe and inexpensive material,
Research on complex oxides of lithium and manganese is active.
The development of a high-voltage, high-energy-density lithium secondary battery using these as a positive electrode active material and a carbon material or the like capable of occluding and releasing lithium as a negative electrode active material is being promoted.

【0003】一般に、リチウム二次電池に用いられる正
極活物質は、主活物質であるリチウムにコバルト、ニッ
ケル、マンガンをはじめとする遷移金属を固溶させた複
合酸化物からなる。その用いられる遷移金属の種類によ
って、電池容量、可逆性、作動電圧、安全性などの電極
特性が異なる。
In general, a positive electrode active material used in a lithium secondary battery is a composite oxide in which a transition metal such as cobalt, nickel, and manganese is dissolved in lithium as a main active material. Electrode characteristics such as battery capacity, reversibility, operating voltage, and safety vary depending on the type of transition metal used.

【0004】例えば、LiCoO2、LiNi0.8Co
0.22のように、リチウムにコバルトやニッケルを固溶
させた岩塩層状複合酸化物を正極活物質に用いたリチウ
ム二次電池は、それぞれ140〜160mAh/g及び
190〜210mAh/gと比較的高い電池容量を達成
できるとともに、2.5〜4.3Vの高い電圧領域で良
好な可逆性を示す。しかし、充電時において、正極活物
質と電解液溶媒との反応により、高温下で電池が発熱し
易い問題がある。また、原料となるコバルトやニッケル
が高価なためコストが高い、2.5〜3.5Vの電圧領
域での電池容量が低い、等の問題もある。
For example, LiCoO 2 , LiNi 0.8 Co
Lithium secondary batteries using a rock-salt layered composite oxide in which cobalt or nickel is dissolved in lithium, such as 0.2 O 2 , as a positive electrode active material are relatively 140 to 160 mAh / g and 190 to 210 mAh / g, respectively. A high battery capacity can be achieved, and good reversibility is exhibited in a high voltage range of 2.5 to 4.3 V. However, during charging, there is a problem that the battery easily generates heat at a high temperature due to a reaction between the positive electrode active material and the electrolyte solution solvent. There are also problems such as high cost due to the high cost of cobalt or nickel as a raw material, and low battery capacity in a voltage range of 2.5 to 3.5 V.

【0005】一方、比較的安価なマンガンを原料とする
LiMn24からなるスピネル型複合酸化物を正極活物
質に用いたリチウム二次電池は、充電時の正極活物質と
電解液溶媒との反応による発熱は比較的しにくいもの
の、電池容量が上述のコバルト系およびニッケル系活物
質に比べて100〜120mAh/gと低い。また、充
放電サイクル耐久性が乏しく、3V未満の低い電圧領域
では急速に劣化が生じる。
On the other hand, a lithium secondary battery using a spinel-type composite oxide made of LiMn 2 O 4 made of relatively inexpensive manganese as a positive electrode active material has a problem in that the positive electrode active material and the electrolyte solvent during charging are mixed. Although the heat generation due to the reaction is relatively difficult, the battery capacity is as low as 100 to 120 mAh / g as compared with the above-mentioned cobalt-based and nickel-based active materials. In addition, the charge / discharge cycle durability is poor, and deterioration occurs rapidly in a low voltage region of less than 3V.

【0006】また、LiMn24からなるスピネル型複
合酸化物を正極活物質に用いたリチウム二次電池は、
3.0〜3.5Vの電圧領域での電池容量が低い。同じ
く安価なマンガンを原料とするβ−NaMnO2型構造
からなる斜方晶LiMnO2からなる複合酸化物を正極
活物質に用いたリチウム二次電池は、LiMn24に比
べて2V前後の低い電圧領域まで作動できるので高い電
池容量が期待できるが、充放電耐久性が乏しい。
Further, a lithium secondary battery using a spinel-type composite oxide made of LiMn 2 O 4 as a positive electrode active material,
Battery capacity in a voltage range of 3.0 to 3.5 V is low. Similarly, a lithium secondary battery using a composite oxide made of orthorhombic LiMnO 2 having a β-NaMnO 2 type structure using inexpensive manganese as a raw material is about 2 V lower than LiMn 2 O 4. Since it can operate up to the voltage range, a high battery capacity can be expected, but the charge / discharge durability is poor.

【0007】LiMnO2としては、β−NaMnO2
構造からなる斜方晶LiMnO2と、α−NaMnO2
構造からなる層状岩塩型構造の単斜晶LiMnO2 が知
られている。どちらのLiMnO2も、充電時の正極活
物質と電解液溶媒との反応による発熱は比較的しにく
い。しかし、斜方晶LiMnO2は、充放電の繰り返し
により徐々に別の結晶相(スピネル相)に転移していく
ため、充放電サイクル耐久性が乏しい。
[0007] As the LiMnO 2, beta-NaMnO the orthorhombic LiMnO 2 consisting of 2 -type structure, alpha-NaMnO monoclinic LiMnO 2 of layered rock-salt structure consisting of 2 type structure are known. Either LiMnO 2 is relatively unlikely to generate heat due to the reaction between the positive electrode active material and the electrolyte solution solvent during charging. However, orthorhombic LiMnO 2 gradually transitions to another crystal phase (spinel phase) due to repetition of charge / discharge, and therefore has poor charge / discharge cycle durability.

【0008】一方、LiMnO2にFe、Ni、Co、
CrまたはAlを添加した正極活物質が特開平10−1
34812号公報に開示されている。しかし、該公報に
開示されたLiMnMO2は、そのX線回折結果がJC
PDSの35−749と類似していることから判るよう
に、いずれも斜方晶LiMnO2構造を有しており、充
放電サイクルの耐久性は不十分なものであった。
[0008] On the other hand, Fe to LiMnO 2, Ni, Co,
Japanese Patent Application Laid-Open No. 10-1
No. 34812. However, LiMnMO 2 disclosed in the publication has an X-ray diffraction result of JC
As can be seen from the similarity to PDS 35-749, all of them had an orthorhombic LiMnO 2 structure and had insufficient charge / discharge cycle durability.

【0009】層状岩塩型単斜晶構造のLiMnO2は、
通常の固相反応法で合成したα−NaMnO2をLiイ
オンを含む非水溶媒中で300℃以下の温度でイオン交
換に供することにより合成されている(A.R.Armstrong
and P.G.Bruce,NATURE,Vol.381,P499, 1996)。また、
アルカリ金属水酸化物の共存下のリチウム塩水溶液中で
マンガン酸化物を水熱処理することにより直接合成する
ことが見出されている(田淵ら、特開平11−2112
8号公報)。かかる方法で合成された層状岩塩型単斜晶
LiMnO2は、イオン交換法よりも工業的に製造し易
く好ましい。
LiMnO 2 having a layered rock salt type monoclinic structure is
It is synthesized by subjecting α-NaMnO 2 synthesized by an ordinary solid-phase reaction method to ion exchange at a temperature of 300 ° C. or lower in a non-aqueous solvent containing Li ions (ARArmstrong).
and PGBruce, NATURE, Vol.381, P499, 1996). Also,
It has been found that manganese oxides are directly synthesized by hydrothermal treatment in a lithium salt aqueous solution in the presence of an alkali metal hydroxide (Tabuchi et al., JP-A-11-2112).
No. 8). The layered rock salt type monoclinic LiMnO 2 synthesized by such a method is preferable because it can be industrially manufactured more easily than the ion exchange method.

【0010】しかしながら、水熱合成法で製造された層
状岩塩型単斜晶LiMnO2を正極活物質に用いた場
合、充放電サイクル耐久性は斜方晶LiMnO2に較べ
て改良されるものの、LiCoO2、LiNi0.8Co
0.22のように、リチウムにコバルトやニッケルを固溶
させた岩塩層状複合酸化物を正極活物質に用いたリチウ
ム二次電池より充放電サイクル耐久性がいまだ劣る問題
があった。更に層状岩塩型単斜晶LiMnO2を正極活
物質に用いた場合、LiCoO2、LiNi0.8Co0 .2
2のようにコバルトやニッケルを固溶させた層状岩塩
型複合酸化物を正極活物質に用いたリチウム二次電池よ
り大電流密度での電池容量発現性が劣る問題もある。
However, when the layered rock salt type monoclinic LiMnO 2 produced by the hydrothermal synthesis method is used as the positive electrode active material, the charge / discharge cycle durability is improved as compared with the orthorhombic LiMnO 2, but the LiCoO 2 is used. 2 , LiNi 0.8 Co
There is a problem that the charge / discharge cycle durability is still inferior to that of a lithium secondary battery using a rock salt layered composite oxide obtained by dissolving cobalt or nickel in lithium, such as 0.2 O 2 , as a positive electrode active material. If further using a layered rock-salt monoclinic LiMnO 2 as a positive electrode active material, LiCoO 2, LiNi 0.8 Co 0 .2
There is also a problem that the battery capacity development at a large current density is inferior to that of a lithium secondary battery using a layered rock salt type composite oxide in which cobalt or nickel is dissolved as in O 2 as a positive electrode active material.

【0011】これらの単独のリチウム遷移金属複合酸化
物を正極活物質として使用する替わりに、斜方晶系のL
iMnO2に、LiNiO2 、LiCoO2およびLiM
24からなる群より選択される少なくとも一種のリチ
ウム遷移金属複合酸化物を混合することが特開平9−1
80718号公報に提案されている。しかし、かかる混
合物を用いた電池は充放電サイクル耐久性が不足する問
題がある。また、特開平11−3698号公報にはLi
Mn24、LiNiO2およびLiCoO2の3種混合物
からなるリチウム二次電池が提案されている。かかるL
iMn24、LiNiO2およびLiCoO2の3種混合
物をもちいた電池は充放電電圧4.3〜3.0V範囲で
は単位重量当たりのLiMn24の放電容量が低いので
必然的に混合物も放電容量が低い。また、4.3〜2.
5Vの電圧領域で充放電を行うと充放電サイクルの進行
とともにLiMn24の劣化により急速に電池容量低下
が起きる。
Instead of using these single lithium transition metal composite oxides as the positive electrode active material, an orthorhombic L
LiMnO 2 , LiNiO 2 , LiCoO 2 and LiM
Japanese Patent Laid-Open No. 9-1 discloses a method of mixing at least one lithium transition metal composite oxide selected from the group consisting of n 2 O 4.
No. 80718 is proposed. However, a battery using such a mixture has a problem of insufficient charge / discharge cycle durability. Japanese Patent Application Laid-Open No. 11-3698 discloses Li
A lithium secondary battery comprising a mixture of three kinds of Mn 2 O 4 , LiNiO 2 and LiCoO 2 has been proposed. Such L
A battery using a mixture of three kinds of iMn 2 O 4 , LiNiO 2 and LiCoO 2 has a low discharge capacity of LiMn 2 O 4 per unit weight in a charge-discharge voltage range of 4.3 to 3.0 V. Low discharge capacity. In addition, 4.3-2.
When charging / discharging is performed in the voltage range of 5 V, the battery capacity is rapidly reduced due to the deterioration of LiMn 2 O 4 as the charge / discharge cycle progresses.

【0012】[0012]

【発明が解決しようとする課題】本発明は、広い電圧範
囲での使用を可能とし、高電流密度下での電池容量が高
く、充放電サイクル耐久性に優れ、高安全性、高エネル
ギー密度及び大電流放電特性の良いリチウム二次電池及
びそれに使用される正極活物質を提供することを目的と
する。
The present invention enables use in a wide voltage range, has a high battery capacity under a high current density, has excellent charge / discharge cycle durability, high safety, a high energy density and An object of the present invention is to provide a lithium secondary battery having good large-current discharge characteristics and a positive electrode active material used for the same.

【0013】[0013]

【課題を解決するための手段】本発明は、リチウム遷移
金属複合酸化物を主成分とする正極活物質層を備えたリ
チウム二次電池において、リチウム遷移金属複合酸化物
が、下記成分(B)および下記成分(C)から選ばれる
少なくとも一つの成分と、下記成分(A)とを含有する
ことを特徴とするリチウム二次電池にある。 (A)層状岩塩型単斜晶構造を有し、LixMny1-y
2で表される複合酸化物 (B)LixCo1-h-iNihi2で表される複合酸化
物。 (C)LixCo1-jj2で表される複合酸化物。
According to the present invention, there is provided a lithium secondary battery provided with a positive electrode active material layer comprising a lithium transition metal composite oxide as a main component, wherein the lithium transition metal composite oxide comprises the following component (B): And at least one component selected from the following component (C) and the following component (A). (A) having a layered rock-salt monoclinic structure, Li x Mn y M 1- y
Composite oxide represented by O 2 (B) A composite oxide represented by Li x Co 1-hi Ni h Q i O 2 . (C) A composite oxide represented by Li x Co 1-j Q j O 2 .

【0014】但し、式中の記号は下記の意味を示す。各
式間で、Q及びxは独立して選ばれる。 M:Al、F
e、Co、Ni及びCrから選ばれる1種以上の元素、
Q: Al、Fe、Mn、Ti,Ca及びMgから選ばれ
る1種以上の元素。
However, the symbols in the formula have the following meanings. Between each formula, Q and x are independently selected. M: Al, F
e, one or more elements selected from Co, Ni and Cr,
Q: One or more elements selected from Al, Fe, Mn, Ti, Ca and Mg.

【0015】0<x≦1.1、 0.5≦y≦1、
0.6≦h≦1.0、0≦i≦0.10、 0≦1−h
−i、 0≦j≦0.05。
0 <x ≦ 1.1, 0.5 ≦ y ≦ 1,
0.6 ≦ h ≦ 1.0, 0 ≦ i ≦ 0.10, 0 ≦ 1-h
−i, 0 ≦ j ≦ 0.05.

【0016】以下に、本発明について、更に詳細に説明
する。
Hereinafter, the present invention will be described in more detail.

【0017】[0017]

【発明の実施の形態】本発明において、リチウム遷移金
属複合酸化物の成分(A)である、LixMny1-y2
で表される複合酸化物は、結晶構造が層状岩塩型単斜晶
構造を有するものが使用されるが、斜方晶構造のものに
比べて、充放電サイクル耐久性が高い性質を有すること
が見出された。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, is a component of the lithium-transition metal composite oxide (A), Li x Mn y M 1-y O 2
The compound oxide represented by the formula has a crystal structure with a layered rock salt type monoclinic structure.However, compared to the orthorhombic structure, the composite oxide has a higher charge / discharge cycle durability. Was found.

【0018】成分(A)の複合酸化物における金属元
素、Mは、Al、Fe、Co、Ni及びCrから選ばれ
る1種以上の元素が使用される。なかでも、充放電サイ
クル耐久性に優れることからFe、Crが好ましい。ま
た、成分(A)の複合酸化物を表す上記の式において、
xは、0<x≦1.1であり、yは、1である。yが
0.5未満であると層状岩塩単斜晶構造を維持出来なく
なる。特に好ましくは、yは、0.65≦y≦0.99
が採用される。
As the metal element M in the composite oxide of the component (A), one or more elements selected from Al, Fe, Co, Ni and Cr are used. Among them, Fe and Cr are preferable because of excellent charge / discharge cycle durability. In the above formula representing the composite oxide of the component (A),
x is 0 <x ≦ 1.1, and y is 1. When y is less than 0.5, the layered rock salt monoclinic structure cannot be maintained. Particularly preferably, y is 0.65 ≦ y ≦ 0.99
Is adopted.

【0019】本発明において、リチウム遷移金属複合酸
化物中の成分(A)の含有量は、30〜80重量%であ
るのが好ましい。30重量%未満であるとリチウム電池
の安全性が乏しくなり、また、電圧領域3V未満での電
池容量が低下する。一方、80重量%を超えると、大電
流での放電容量が低下するので不適切である。特に好ま
しい成分(A)の含有量は、40〜70重量%である。
In the present invention, the content of the component (A) in the lithium transition metal composite oxide is preferably 30 to 80% by weight. If the content is less than 30% by weight, the safety of the lithium battery is poor, and the battery capacity in a voltage range of less than 3 V is reduced. On the other hand, if it exceeds 80% by weight, the discharge capacity at a large current is reduced, so that it is inappropriate. A particularly preferred content of the component (A) is 40 to 70% by weight.

【0020】本発明において、成分(B)の複合酸化物
は、LixCo1-h-iNihi2で表されるが、Qは、
Al、Fe、Mn、Ca及びMgから選ばれる1種以上
の元素であり、Qの存在により、充放電サイクル、耐久
性向上あるいは電池安全性が向上する。なかでも、Q
は、Mn、Alが好ましい。
[0020] In the present invention, the composite oxide of the component (B) is represented by Li x Co 1-hi Ni h Q i O 2, Q is
It is one or more elements selected from Al, Fe, Mn, Ca, and Mg. The presence of Q improves charge / discharge cycles, durability, or battery safety. Above all, Q
Is preferably Mn or Al.

【0021】成分(B)の式において、xは、0<x≦
1.1であり、hは、0.6≦h≦1.0である。成分
(B)におけるニッケルとコバルトの原子比は、上記h
とiを調整することにより、70:30〜85:15に
なるようにするのが好ましい。コバルトがこの量比より
多いと容量が低下するので好ましくない。コバルトがこ
の量比より少ないと充放電サイクル耐久性が乏しくなる
ので好ましくない。ニッケルとコバルトの原子比は8
0:20〜84:16であるのが特に好ましい。
In the formula of the component (B), x is 0 <x ≦
1.1 and h is 0.6 ≦ h ≦ 1.0. The atomic ratio of nickel to cobalt in component (B) is the above h
It is preferable to adjust 70 and i so that 70:30 to 85:15. If the amount of cobalt is larger than this ratio, the capacity is undesirably reduced. If the amount of cobalt is less than this ratio, the charge / discharge cycle durability becomes poor, which is not preferable. The atomic ratio of nickel to cobalt is 8
It is particularly preferred that the ratio be from 0:20 to 84:16.

【0022】成分(B)の上記式における、iは、0≦
i≦0.10であり、充放電サイクル、耐久性向上ある
いは電池安全性が向上する。特に、iは、ニッケルとコ
バルトとの合計量に対して0.1〜5%程度固溶するよ
うに、0.001≦i≦ 0.05であるのが好まし
い。
In the above formula of the component (B), i is 0 ≦
i ≦ 0.10, and the charge / discharge cycle, durability, and battery safety are improved. In particular, i preferably satisfies 0.001 ≦ i ≦ 0.05 so as to form a solid solution of about 0.1 to 5% with respect to the total amount of nickel and cobalt.

【0023】本発明において、成分(C)の複合酸化物
は、LixCo1-jj2で表されるが、Qは、 Al、
Fe、Mn、Ca及びMgから選ばれる1種以上の元素
であり、成分(B)のQとは、独立して選択される。Q
の存在により、充放電サイクル、耐久性向上あるいは電
池安全性が向上する。なかでも、Qは、Ti、Caが好
ましい。
In the present invention, the composite oxide of the component (C) is represented by Li x Co 1-j Q j O 2 , where Q is Al,
It is one or more elements selected from Fe, Mn, Ca and Mg, and is independently selected from Q of the component (B). Q
, The charge / discharge cycle, durability, and battery safety are improved. Among them, Q is preferably Ti or Ca.

【0024】成分(C)の上記式における、xは、0<
x≦1.1であり、jは、0≦j≦0.05である。特
に、jは、QがコバルトとQの合量に対して原子比で
0.1〜3%程度固溶するように、0.001≦j≦
0.03であるのが好ましい。
In the above formula of the component (C), x is 0 <
x ≦ 1.1, and j is 0 ≦ j ≦ 0.05. In particular, j is 0.001 ≦ j ≦ such that Q forms a solid solution of about 0.1 to 3% in atomic ratio with respect to the total amount of cobalt and Q.
It is preferably 0.03.

【0025】本発明において、リチウム遷移金属複合酸
化物中の成分(B)の含有量は、20〜70重量%であ
るのが好ましい。20重量%未満であるとリチウム二次
電池の容量が低下したり、大電流充放電特性が低下する
ので好ましくない。成分(B)の含有量は、30〜60
重量%であるのが特に好ましい。また、リチウム遷移金
属複合酸化物中の成分(C)の含有量は、20〜70重
量%であるのが好ましい。20重量%未満であるとリチ
ウム二次電池の容量が低下したり、大電流充放電特性が
低下するので好ましくない。成分(C)の含有量は、3
0〜60重量%以上であるのが特に好ましい。そして、
リチウム遷移金属複合酸化物中に成分(B)と成分
(C)とを含有する場合は、両成分の合計の含有量が、
好ましくは、20〜70重量%、特には30〜60重量
%であるのが適切である。
In the present invention, the content of the component (B) in the lithium transition metal composite oxide is preferably from 20 to 70% by weight. If the content is less than 20% by weight, the capacity of the lithium secondary battery is reduced, and the large current charge / discharge characteristics are undesirably reduced. The content of the component (B) is from 30 to 60.
It is particularly preferred that the amount is by weight. The content of the component (C) in the lithium transition metal composite oxide is preferably from 20 to 70% by weight. If the content is less than 20% by weight, the capacity of the lithium secondary battery is reduced, and the large current charge / discharge characteristics are undesirably reduced. The content of the component (C) is 3
It is particularly preferred that the content is 0 to 60% by weight or more. And
When the component (B) and the component (C) are contained in the lithium transition metal composite oxide, the total content of both components is
Preferably, it is suitably from 20 to 70% by weight, especially from 30 to 60% by weight.

【0026】本発明において、リチウム二次電池の好ま
しい代表例として、以下の(1)及び(2)のものがあ
げられる。なお、本発明で使用される、上記成分
(A)、成分(B)及び成分(C)は、それぞれに該当
する複合酸化物の1種又は2種以上が使用される。
In the present invention, preferable representative examples of the lithium secondary battery include the following (1) and (2). The component (A), the component (B) and the component (C) used in the present invention are each one or more of the corresponding composite oxides.

【0027】(1)リチウム遷移金属複合酸化物を主成
分とする正極活物質層を備えたリチウム二次電池におい
て、リチウム遷移金属複合酸化物が、30〜80重量%
の成分(A)と、20〜70重量%の成分(B)との混
合物を含有するリチウム二次電池。なかでも、成分
(B)の、LixCo1-h-iNihi2において、0.
7≦h≦0.9、0≦i≦0.10、特には、0.75
≦h≦0.85、0.001≦i≦0.05を満足する
リチウム二次電池。
(1) In a lithium secondary battery provided with a positive electrode active material layer mainly composed of a lithium transition metal composite oxide, the lithium transition metal composite oxide contains 30 to 80% by weight.
A secondary battery comprising a mixture of the component (A) of the formula (I) and 20 to 70% by weight of the component (B). Among them, the component (B), in Li x Co 1-hi Ni h Q i O 2, 0.
7 ≦ h ≦ 0.9, 0 ≦ i ≦ 0.10, especially 0.75
A lithium secondary battery satisfying ≦ h ≦ 0.85 and 0.001 ≦ i ≦ 0.05.

【0028】(2)リチウム遷移金属複合酸化物を主成
分とする正極活物質層を備えたリチウム二次電池におい
て、30〜80重量%の下記成分(A)と、20〜70
重量%の下記成分(C)との混合物を含有するリチウム
二次電池。
(2) In a lithium secondary battery provided with a positive electrode active material layer containing a lithium transition metal composite oxide as a main component, 30 to 80% by weight of the following component (A) and 20 to 70% by weight:
A lithium secondary battery containing a mixture with the following component (C) by weight.

【0029】本発明において、上記リチウム遷移金属複
合酸化物を主成分とする正極活物質を使用する正極は、
好ましくは、次のようにして製造される。即ち、上記複
合酸化物の混合物の粉末に、アセチレンブラック、黒
鉛、ケッチェンブラック等のカーボン系導電材、結合材
及び結合材の溶媒または分散媒とを混合することにより
正極合剤が形成される。
In the present invention, the positive electrode using the positive electrode active material containing the lithium transition metal composite oxide as a main component is as follows:
Preferably, it is manufactured as follows. That is, a positive electrode mixture is formed by mixing a powder of the composite oxide mixture with a carbon-based conductive material such as acetylene black, graphite, and Ketjen black, a binder, and a solvent or a dispersion medium of the binder. .

【0030】上記の正極合剤は、スラリーまたは混練物
とし、アルミニウム箔、ステンレス箔等の正極集電体に
塗布又は担持し、プレス圧延して正極活物質層を正極集
電体上に形成する。結合材には、ポリフッ化ビニリデ
ン、ポリテトラフルオロエチレン、ポリアミド、カルボ
キシメチルセルロース、アクリル樹脂等が用いられる。
The above-mentioned positive electrode mixture is formed into a slurry or a kneaded material, which is applied or carried on a positive electrode current collector such as an aluminum foil or a stainless steel foil, and is press-rolled to form a positive electrode active material layer on the positive electrode current collector. . As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is used.

【0031】本発明において、正極活物質層の空隙率は
27〜37%であることが好ましい。空隙率が27%未
満であると電解液が含浸しにくくなる結果、電池の内部
抵抗が高くなるので好ましくない。37%を超えると正
極活物質層の体積が増加し単位体積あたりの充放電容量
が低下するので好ましくない。空隙率は30〜35%が
特に好ましい。正極活物質層の空隙率は、正極活物質層
を正極集電体上に形成した正極電極体をプレス圧延する
際のプレス条件、あるいはスラリーまたは混練物を形成
する際の溶媒または分散媒の含量により制御される。な
お、本発明で正極の空隙率は、見かけの密度と真密度か
ら求めた。
In the present invention, the porosity of the positive electrode active material layer is preferably from 27 to 37%. If the porosity is less than 27%, it becomes difficult to impregnate the electrolytic solution, and the internal resistance of the battery increases, which is not preferable. If it exceeds 37%, the volume of the positive electrode active material layer increases, and the charge / discharge capacity per unit volume decreases, which is not preferable. The porosity is particularly preferably 30 to 35%. The porosity of the positive electrode active material layer is determined by pressing conditions when press rolling the positive electrode body in which the positive electrode active material layer is formed on the positive electrode current collector, or the content of a solvent or a dispersion medium when forming a slurry or a kneaded material. Is controlled by In the present invention, the porosity of the positive electrode was determined from the apparent density and the true density.

【0032】本発明に用いる成分(A)の複合酸化物
は、マンガン化合物とリチウム化合物と金属元素Mを含
む化合物から固相法により500〜1000℃焼成する
などの既知方法により合成される。なかでも、リチウム
元素およびリチウム元素以外のアルカリ金属水酸化物を
含有する水溶液中でマンガン化合物と金属元素Mを含む
化合物とを、好ましくは130〜300℃にて、水熱処
理することにより製造されたものであるのが適切であ
る。
The composite oxide of component (A) used in the present invention is synthesized from a compound containing a manganese compound, a lithium compound and a metal element M by a known method such as baking at 500 to 1000 ° C. by a solid phase method. Among them, a manganese compound and a compound containing a metal element M in an aqueous solution containing a lithium element and an alkali metal hydroxide other than the lithium element, preferably, are produced by hydrothermal treatment at 130 to 300 ° C. It is appropriate.

【0033】上記水熱処理方法のうちでも、リチウム元
素に加え高濃度の水酸化カリウムあるいは水酸化ナトリ
ウムを含有する強塩基性水溶液中に、マンガン化合物と
金属元素Mを含む化合物マンガンと金属元素、Mの共沈
水酸化物、共沈酸化物または共沈オキシ水酸化物などの
共沈物の少なくともいずれかを130〜300℃にて水
熱処理することにより製造されるのが特に好ましい。
Among the above hydrothermal treatment methods, a compound containing a manganese compound and a metal element M in a strongly basic aqueous solution containing a high concentration of potassium hydroxide or sodium hydroxide in addition to the lithium element, manganese and a metal element, M It is particularly preferable to manufacture by subjecting at least one of the coprecipitated hydroxide, coprecipitated oxide and coprecipitated oxyhydroxide to a hydrothermal treatment at 130 to 300 ° C.

【0034】上記におけるマンガン原料としては、Mn
23、MnO、MnO2などの酸化物、これら酸化物の
水和物、オキシ水酸化物などが例示される。マンガン原
料としては、3価のマンガンの化合物がより好ましい。
これらのマンガン原料は、単独で使用してもよく、2種
以上を併用しても良い。
As the manganese raw material in the above, Mn is used.
Examples thereof include oxides such as 2 O 3 , MnO, and MnO 2 , hydrates of these oxides, and oxyhydroxides. As the manganese raw material, a trivalent manganese compound is more preferable.
These manganese raw materials may be used alone or in combination of two or more.

【0035】上記の金属元素Mの原料化合物としては、
単体金属、水酸化物、酸化物、オキシ水酸化物、塩化
物、硝酸塩等が使用される。これらの原料は、単独で使
用してもよく、2種以上を併用しても良い。
As the raw material compound of the metal element M,
Simple metals, hydroxides, oxides, oxyhydroxides, chlorides, nitrates and the like are used. These raw materials may be used alone or in combination of two or more.

【0036】本発明のリチウム二次電池において、電解
質溶液の溶媒としては、炭酸エステルが好ましい。炭酸
エステルは環状、鎖状いずれも使用できる。環状炭酸エ
ステルとしてはプロピレンカーボネート、エチレンカー
ボネート(以下ECという)等が例示される。鎖状炭酸
エステルとしてはジメチルカーボネート、ジエチルカー
ボネート(以下DECという)、エチルメチルカーボネ
ート、メチルプロピルカーボネート、メチルイソプロピ
ルカーボネート等が例示される。
In the lithium secondary battery of the present invention, the solvent for the electrolyte solution is preferably a carbonate ester. Carbonate can be used either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (hereinafter referred to as EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (hereinafter referred to as DEC), ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.

【0037】本発明では上記炭酸エステルを単独で又は
2種以上を混合して使用でき、他の溶媒と混合して使用
してもよい。また、負極活物質の材料によっては、鎖状
炭酸エステルと環状炭酸エステルを併用すると、放電特
性、サイクル耐久性、充放電効率が改良できる場合があ
る。
In the present invention, the above-mentioned carbonates can be used alone or in combination of two or more, and may be used by mixing with other solvents. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonate and a cyclic carbonate may improve the discharge characteristics, cycle durability, and charge / discharge efficiency.

【0038】また、本発明では、上記有機溶媒にフッ化
ビニリデン−ヘキサフルオロプロピレン共重合体(例え
ば、カイナー:アトケム社商品名)、特開平10−29
4131号公報に開示されたフッ化ビニリデン−パーフ
ルオロ(プロピルビニルエーテル)共重合体を添加し、
下記の溶質を加えることによりゲルポリマー電解質も使
用することができる。
In the present invention, a vinylidene fluoride-hexafluoropropylene copolymer (for example, Kynar: trade name of Atochem Co.) may be used as the organic solvent.
No. 4131, vinylidene fluoride-perfluoro (propyl vinyl ether) copolymer was added,
Gel polymer electrolytes can also be used by adding the following solutes:

【0039】本発明における電解質溶液を構成する溶質
としては、ClO4 -、CF3SO3 -、BF4 -、PF6 -
AsF6 -、SbF6 -、CF3CO2 -、(CF3SO22
-等をアニオンとするリチウム塩のいずれか1種以上を
使用することが好ましい。上記の電解質溶液またはポリ
マー電解質は、リチウム塩からなる電解質を前記溶媒ま
たは溶媒含有ポリマーに0.2〜2.0mol/リット
ルの濃度で添加するのが好ましい。この範囲を逸脱する
と、イオン伝導度が低下し、電解質溶液又はポリマー電
解質の電気伝導度が低下する。より好ましくは0.5〜
1.5mol/リットルが選定される。セパレータに
は、多孔質ポリエチレン、多孔質ポリプロピレンフィル
ムが好ましく使用される。
The solutes constituting the electrolyte solution according to the present invention include ClO 4 , CF 3 SO 3 , BF 4 , PF 6 ,
AsF 6 , SbF 6 , CF 3 CO 2 , (CF 3 SO 2 ) 2 N
- it is preferable to use any one or more of lithium salt having an anion the like. In the above-mentioned electrolyte solution or polymer electrolyte, it is preferable that an electrolyte composed of a lithium salt is added to the solvent or the solvent-containing polymer at a concentration of 0.2 to 2.0 mol / L. Outside this range, the ionic conductivity decreases, and the electrical conductivity of the electrolyte solution or polymer electrolyte decreases. More preferably 0.5 to
1.5 mol / l is selected. For the separator, a porous polyethylene or a porous polypropylene film is preferably used.

【0040】本発明で使用される負極活物質は、リチウ
ムイオンを吸蔵、放出可能な材料である。これらの負極
活物質を形成する材料は特に限定されないが、リチウム
金属、リチウム合金、炭素材料、周期表14、15族の
金属を主体とした酸化物、炭素化合物、炭化ケイ素化合
物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物
等がれる。上記炭素材料としては、種々の熱分解条件で
有機物を熱分解したものや人造黒鉛、天然黒鉛、土状黒
鉛、膨張黒鉛、鱗片状黒鉛等が使用できる。また、酸化
物としては、酸化スズを主体とする化合物が使用でき
る。負極集電体としては、銅箔、ニッケル箔等が用いら
れる。
The negative electrode active material used in the present invention is a material capable of inserting and extracting lithium ions. The material forming these negative electrode active materials is not particularly limited, but lithium metal, a lithium alloy, a carbon material, an oxide mainly containing a metal of Group 14, 15 of the periodic table, a carbon compound, a silicon carbide compound, a silicon oxide compound, Examples include titanium sulfide and boron carbide compounds. As the carbon material, those obtained by thermally decomposing organic substances under various thermal decomposition conditions, artificial graphite, natural graphite, earth graphite, expanded graphite, flaky graphite and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil, or the like is used.

【0041】本発明で使用される負極は、その活物質が
炭素材料である場合は、有機溶媒と混練してスラリーと
し、該スラリーを金属箔集電体に塗布、乾燥、プレスし
て得ることが好ましい。本発明のリチウム二次電池の形
状には特に制約はない。シート状(いわゆるフィルム
状)、折り畳み状、巻回型有底円筒形、ボタン形等が用
途に応じて選択される。
When the active material is a carbon material, the negative electrode used in the present invention is obtained by kneading with an organic solvent to form a slurry, applying the slurry to a metal foil current collector, drying and pressing. Is preferred. The shape of the lithium secondary battery of the present invention is not particularly limited. A sheet shape (a so-called film shape), a folded shape, a rolled bottomed cylindrical shape, a button shape, and the like are selected according to the application.

【0042】[0042]

【実施例】以下に実施例により本発明を更に具体的に説
明するが、本発明はこれらの実施例に限定されない。な
お、例11〜14は、比較例である。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples. Examples 11 to 14 are comparative examples.

【0043】[例1]硝酸マンガンと硝酸アルミニウム
(モル比0.85:0.15)混合水溶液に水酸化アン
モニウム水溶液を加えて共沈させ、150℃で加熱、乾
燥により、マンガン−アルミニウム共沈水酸化物(マン
ガン:アルミニウム原子比=0.85:0.15)を得
た。
Example 1 An aqueous solution of ammonium hydroxide was added to a mixed aqueous solution of manganese nitrate and aluminum nitrate (molar ratio: 0.85: 0.15) to cause coprecipitation, and then heated and dried at 150 ° C. to form a manganese-aluminum coprecipitated water. An oxide (manganese: aluminum atomic ratio = 0.85: 0.15) was obtained.

【0044】水酸化カリウム41重量%と水酸化リチウ
ム0.45重量%を含むアルカリ水溶液にマンガン−ア
ルミニウム共沈水酸化物粉末を添加し、撹拌した。オー
トクレーブ内を窒素ガスで置換した後、225℃で10
時間水熱処理した。反応終了後オートクレーブを冷却し
た後内容物を取り出し内容物スラリーを濾過し、エタノ
ールで洗浄して水酸化リチウム、水酸化カリウム等を除
去し、乾燥して粉末を取得した。
A manganese-aluminum coprecipitated hydroxide powder was added to an aqueous alkali solution containing 41% by weight of potassium hydroxide and 0.45% by weight of lithium hydroxide, followed by stirring. After the inside of the autoclave was replaced with nitrogen gas, 10 g at 225 ° C.
Hydrothermal treatment for hours. After the reaction was completed, the autoclave was cooled and then the contents were taken out. The contents slurry was filtered, washed with ethanol to remove lithium hydroxide, potassium hydroxide and the like, and dried to obtain a powder.

【0045】該粉末のCuKαによるX線回折分析の結
果、2θが18度、37度、39度、45度、62度、
65度、67度に回折ピークが認められ、これらは層状
岩塩型単斜晶構造を有するLiMnO2であることが判
った。粉末の元素分析によりLiMn0.85Al0.152
であることが判った。
As a result of X-ray diffraction analysis of the powder by CuKα, 2θ was 18 °, 37 °, 39 °, 45 °, 62 °,
Diffraction peaks were observed at 65 ° and 67 °, indicating that these were LiMnO 2 having a layered rock salt type monoclinic structure. Elemental analysis of the powder indicated LiMn 0.85 Al 0.15 O 2
It turned out to be.

【0046】一方、ニッケルとコバルトの割合がモル比
で82:18になるようにNiCl 2・6H2OとCoC
2 ・6H2Oとを炭酸ガスを飽和した純水に溶解せし
め、この溶液にNaHCO3水溶液を加え、生成した沈
殿物を水洗後窒素ガス中140℃で乾燥することにより
ニッケル−コバルト(原子比82:18)の共沈炭酸塩
を得た。この炭酸塩を炭酸リチウムと混合し910℃で
5時間焼成することによりLiNi0.82Co0.182
得た。
On the other hand, the molar ratio of nickel and cobalt is
82:18 with NiCl Two・ 6HTwoO and CoC
lTwo ・ 6HTwoO and dissolved in pure water saturated with carbon dioxide
NaHCOThreeAn aqueous solution was added and the resulting precipitate
After washing the residue in water and drying at 140 ° C in nitrogen gas,
Nickel-cobalt (82:18 atomic ratio) coprecipitated carbonate
I got This carbonate is mixed with lithium carbonate at 910 ° C
LiNi is fired for 5 hours.0.82Co0.18OTwoTo
Obtained.

【0047】上記で得られた、LiMn0.85Al0.15
2 とLiNi0.82Co0.182を重量比で50:50の
割合で混合し、この混合物粉末とアセチレンブラックと
ポリフッ化ビニリデンとを83/10/7の重量比でN
−メチルピロリドン加えつつボールミル混合し、スラリ
ーとした。このスラリーを厚さ20μmのアルミニウム
箔正極集電体上に塗布し、150℃にて乾燥してN−メ
チルピロリドンを除去した。しかる後にロールプレス圧
延をして正極体を得た。
The LiMn 0.85 Al 0.15 O obtained above was obtained.
2 and LiNi 0.82 Co 0.18 O 2 are mixed at a weight ratio of 50:50, and this mixed powder, acetylene black and polyvinylidene fluoride are mixed at a weight ratio of 83/10/7 in N 2.
-Ball mill mixing with addition of methylpyrrolidone to form a slurry. This slurry was applied on a 20 μm-thick aluminum foil positive electrode current collector, and dried at 150 ° C. to remove N-methylpyrrolidone. Thereafter, roll press rolling was performed to obtain a positive electrode body.

【0048】セパレータには厚さ25μmの多孔質ポリ
プロピレンを用い、厚さ500μmの金属リチウム箔を
負極に用い負極集電体にニッケル箔を使用し、電解液に
は、1MのLiPF6/EC+DEC(1:1)を用い
てステンレス製簡易密閉セル(以下、電池という)をア
ルゴングローブボックス内で組立た。なお、1MのLi
PF6/EC+DEC(1:1)とは、容量比1:1の
ECとDECとを含む溶媒に1MのLiPF6を溶質と
する電解質溶液を意味する。
A porous polypropylene having a thickness of 25 μm was used for the separator, a metal lithium foil having a thickness of 500 μm was used for the negative electrode, a nickel foil was used for the negative electrode current collector, and 1 M LiPF 6 / EC + DEC (for the electrolyte) was used. 1: 1), a simple closed cell made of stainless steel (hereinafter referred to as a battery) was assembled in an argon glove box. In addition, 1M Li
PF 6 / EC + DEC (1: 1) means an electrolyte solution containing 1 M LiPF 6 as a solute in a solvent containing EC and DEC at a volume ratio of 1: 1.

【0049】上記電池の正極面積1cm2につき1mA
の電流密度で4.3Vまで充電し、定電流2mA/cm
2にて2.0Vまで放電して高電流密度かつ広い電圧領
域で充放電サイクル試験を20回行い、3回充放電後の
放電容量と20回充放電後の放電容量との比率から維持
率を求めた。
1 mA per 1 cm 2 of positive electrode area of the above battery
At a current density of 4.3 V and a constant current of 2 mA / cm
The battery was discharged to 2.0 V at 2 , and a charge / discharge cycle test was performed 20 times at a high current density and a wide voltage range. I asked.

【0050】また、電池安全性評価のため、4.3V充
電後のセルを解体し、正極を電解液溶媒と共に密閉容器
に入れて試料となし、示差走査熱量測定装置を用い、昇
温せしめた時の発熱開始温度を求めた。結果を表1に示
す。
For battery safety evaluation, the cell after 4.3 V charge was disassembled, and the positive electrode was placed in a closed container together with an electrolyte solvent to form a sample, and the temperature was raised using a differential scanning calorimeter. The exothermic onset temperature at that time was determined. Table 1 shows the results.

【0051】[例2]硝酸アルミニウムの替わりに硝酸
コバルトを使用したほかは例1と同様にマンガンコバル
ト共沈水酸化物を合成し、ついで例1と同様にリチウム
−マンガン−コバルト複合酸化物を合成した。X線回折
分析により、生成した粉末は例1と同様に層状岩塩型単
斜晶構造を有するLiMnO2であることが判った。粉
末の元素分析によりLiMn0.85Co0.152であるこ
とが判った。
Example 2 A manganese-cobalt coprecipitated hydroxide was synthesized in the same manner as in Example 1 except that cobalt nitrate was used instead of aluminum nitrate, and then a lithium-manganese-cobalt composite oxide was synthesized as in Example 1. did. X-ray diffraction analysis revealed that the produced powder was LiMnO 2 having a layered rock salt type monoclinic structure as in Example 1. Elemental analysis of the powder indicated LiMn 0.85 Co 0.15 O 2 .

【0052】例1において、LiMn0.85Al0.152
の替わりにLiMn0.85Co0.152 を用い、LiNi
0.82Co0.182と重量比で50:50の割合で混合し
た他は例1と同様にして、正極体および電池を作製し、
特性を評価した。結果を表1に示す。
In Example 1, LiMn0.85Al0.15OTwo
Instead of LiMn0.85Co0.15OTwo Using LiNi
0.82Co0.18OTwoAnd 50:50 by weight.
Otherwise, in the same manner as in Example 1, a positive electrode body and a battery were fabricated,
The properties were evaluated. Table 1 shows the results.

【0053】[例3]硝酸アルミニウムの替わりに硝酸
ニッケルを使用したほかは例1と同様にマンガン−ニッ
ケル共沈水酸化物を合成し、ついで例1と同様にして、
リチウム−マンガン−ニッケル複合酸化物を合成した。
X線回折分析により生成した粉末は、例1と同様に層状
岩塩型単斜晶構造を有するLiMnO2であることが判
った。粉末の元素分析によりLiMn0.85Ni0.152
であることが判った。
Example 3 A manganese-nickel coprecipitated hydroxide was synthesized in the same manner as in Example 1 except that nickel nitrate was used instead of aluminum nitrate.
A lithium-manganese-nickel composite oxide was synthesized.
The powder produced by X-ray diffraction analysis was found to be LiMnO 2 having a layered rock salt type monoclinic structure as in Example 1. Elemental analysis of the powder revealed LiMn 0.85 Ni 0.15 O 2
It turned out to be.

【0054】例1において、LiMn0.85Al0.152
の替わりにLiMn0.85Ni0.152を用い、LiNi
0.82Co0.182と重量比で50:50の割合で混合し
た他は例1と同様にして、正極体および電池を作製し、
特性を評価した。結果を表1に示す。
In Example 1, LiMn 0.85 Al 0.15 O 2
Using LiMn 0.85 Ni 0.15 O 2 instead of LiNi
A positive electrode body and a battery were prepared in the same manner as in Example 1 except that the mixture was mixed with 0.82 Co 0.18 O 2 at a weight ratio of 50:50.
The properties were evaluated. Table 1 shows the results.

【0055】[例4]硝酸アルミニウムの替わりに硝酸
鉄を使用したほかは例1と同様にマンガン−鉄共沈水酸
化物を合成し、例1と同様にリチウム−マンガン−アル
ミニウム複合酸化物を合成した。X線回折分析により生
成した粉末は例1と同様に層状岩塩型単斜晶構造を有す
るLiMnO2であることが判った。粉末の元素分析に
よりLiMn0.85Fe0.152であることが判った。
Example 4 A manganese-iron coprecipitated hydroxide was synthesized in the same manner as in Example 1 except that iron nitrate was used instead of aluminum nitrate, and a lithium-manganese-aluminum composite oxide was synthesized in the same manner as in Example 1. did. The powder produced by X-ray diffraction analysis was found to be LiMnO 2 having a layered rock salt type monoclinic structure as in Example 1. Elemental analysis of the powder indicated LiMn 0.85 Fe 0.15 O 2 .

【0056】例1において、LiMn0.85Al0.152
の替わりにLiMn0.85Fe0.152 を用い、LiNi
0.82Co0.182と重量比で50:50の割合で混合し
た他は例1と同様にして、正極体および電池を作製し、
特性を評価した。結果を表1に示す。
In Example 1, LiMn0.85Al0.15OTwo
Instead of LiMn0.85Fe0.15OTwo Using LiNi
0.82Co0.18OTwoAnd 50:50 by weight.
Otherwise, in the same manner as in Example 1, a positive electrode body and a battery were fabricated,
The properties were evaluated. Table 1 shows the results.

【0057】[例5]硝酸アルミニウムの替わりに硝酸
クロムを使用したほかは例1と同様にマンガン−クロム
共沈水酸化物を合成した。X線回折分析により、生成し
た粉末は例1と同様に単斜晶を有する層状岩塩型LiM
nO2構造であることが判った。粉末の元素分析により
LiMn0.85Cr0.152であることが判った。
Example 5 A manganese-chromium coprecipitated hydroxide was synthesized in the same manner as in Example 1 except that chromium nitrate was used instead of aluminum nitrate. According to the X-ray diffraction analysis, the powder produced was a layered rock salt type LiM having a monoclinic crystal as in Example 1.
It turned out that it was an nO 2 structure. Elemental analysis of the powder indicated LiMn 0.85 Cr 0.15 O 2 .

【0058】例1において、LiMn0.85Al0.152
の替わりにLiMn0.85Cr0.152を用い、LiNi
0.82Co0.182と重量比で50:50の割合で混合し
た他は例1と同様にして、正極体および電池を作製し、
特性を評価した。結果を表1に示す。
In Example 1, LiMn 0.85 Al 0.15 O 2
LiMn 0.85 Cr 0.15 O 2 instead of LiNi
A positive electrode body and a battery were prepared in the same manner as in Example 1 except that the mixture was mixed with 0.82 Co 0.18 O 2 at a weight ratio of 50:50.
The properties were evaluated. Table 1 shows the results.

【0059】[例6]硝酸アルミニウムを使用しなかっ
たほかは例1と同様にマンガン水酸化物を合成し、例1
と同様にリチウム−マンガン複合酸化物を合成した。X
線回折分析により生成した粉末は例1と同様に単斜晶を
有する層状岩塩型LiMnO2構造であることが判っ
た。粉末の元素分析によりLiMnO2であることが判
った。
Example 6 A manganese hydroxide was synthesized in the same manner as in Example 1 except that aluminum nitrate was not used.
In the same manner as in the above, a lithium-manganese composite oxide was synthesized. X
The powder produced by the line diffraction analysis was found to have a layered rock salt type LiMnO 2 structure having a monoclinic crystal as in Example 1. Elemental analysis of the powder indicated LiMnO 2 .

【0060】例1において、LiMn0.85Al0.152
の替わりにLiMnO2を用い、LiNi0.82Co0.18
2と重量比で50:50の割合で混合した他は例1と
同様にして、正極体および電池を作製し特性を評価し
た。結果を表1に示す。
In Example 1, LiMn 0.85 Al 0.15 O 2
Instead of LiMnO 2 , LiNi 0.82 Co 0.18
A positive electrode body and a battery were prepared and the characteristics were evaluated in the same manner as in Example 1 except that O 2 was mixed at a weight ratio of 50:50. Table 1 shows the results.

【0061】[例7]炭酸リチウムLi2CO3粉末と酸
化コバルトCo34粉末を乾式混合し、900℃にて1
0時間大気中で焼成することによりLiCoO2を得
た。
[0061] [Example 7] and lithium carbonate Li 2 CO 3 powder cobalt oxide Co 3 O 4 powder were dry mixed, 1 at 900 ° C.
LiCoO 2 was obtained by firing in the air for 0 hours.

【0062】例1で作製したLiMn0.85Al0.152
と上記LiCoO2を、重量比で50:50の割合で混
合した他は例1と同様にして、正極体および電池を作製
し、特性を評価した。結果を表1に示す。
The LiMn 0.85 Al 0.15 O 2 prepared in Example 1
A positive electrode body and a battery were prepared and the characteristics were evaluated in the same manner as in Example 1 except that the above and LiCoO 2 were mixed at a weight ratio of 50:50. Table 1 shows the results.

【0063】[例8]LiMn0.85Al0.152とLi
Ni0.82Co0.182を重量比で40:60の割合で混
合した他は例1と同様にして、正極体および電池を作製
し、特性を評価した。結果を表1に示す。
Example 8 LiMn 0.85 Al 0.15 O 2 and Li
A positive electrode body and a battery were fabricated and characteristics were evaluated in the same manner as in Example 1 except that Ni 0.82 Co 0.18 O 2 was mixed at a weight ratio of 40:60. Table 1 shows the results.

【0064】[例9]LiMn0.85Al0.152とLi
Ni0.82Co0.182を重量比で60:40の割合で混
合した他は例1と同様にして、正極体および電池を作製
し、特性を評価した。結果を表1に示す。
Example 9 LiMn 0.85 Al 0.15 O 2 and Li
A positive electrode body and a battery were prepared and the characteristics were evaluated in the same manner as in Example 1 except that Ni 0.82 Co 0.18 O 2 was mixed at a weight ratio of 60:40. Table 1 shows the results.

【0065】[例10]LiMn0.85Al0.152とL
iNi0.82Co0.182を重量比で75:25の割合で
混合した他は例1と同様にして、正極体および電池を作
製し、特性を評価した。結果を表1に示す。
Example 10 LiMn 0.85 Al 0.15 O 2 and L
A positive electrode body and a battery were prepared and the characteristics were evaluated in the same manner as in Example 1, except that iNi 0.82 Co 0.18 O 2 was mixed at a weight ratio of 75:25. Table 1 shows the results.

【0066】[例11]比較のため、LiNi0.82Co
0.182のみを使用し、LiMn0.85Al0.152を混合
しなかった他は例1と同様にして、正極体および電池を
作製し、特性を評価した。結果を表1に示す。
Example 11 For comparison, LiNi 0.82 Co
A positive electrode body and a battery were prepared and the characteristics were evaluated in the same manner as in Example 1, except that only 0.18 O 2 was used and LiMn 0.85 Al 0.15 O 2 was not mixed. Table 1 shows the results.

【0067】[例12]比較のため、LiMn0.85Al
0.152のみを使用し、LiNi0.82Co0.182を混合
しなかった他は例1と同様にして、正極体および電池を
作製し特性を評価した。結果を表1に示す。
Example 12 For comparison, LiMn 0.85 Al
A positive electrode body and a battery were prepared and the characteristics were evaluated in the same manner as in Example 1 except that only 0.15 O 2 was used and LiNi 0.82 Co 0.18 O 2 was not mixed. Table 1 shows the results.

【0068】[例13]比較のため、LiCoO2のみ
を使用し、LiMn0.85Al0.152を混合しなかった
他は例7と同様にして、正極体および電池を作製し特性
を評価した。結果を表1に示す。
Example 13 For comparison, a cathode body and a battery were prepared and evaluated in the same manner as in Example 7, except that only LiCoO 2 was used and LiMn 0.85 Al 0.15 O 2 was not mixed. Table 1 shows the results.

【0069】[例14]比較のため、LiMnO2のみ
を使用し、LiCoO2を混合しなかったほかは例6と
同様に正極体および電池を作製し特性を評価した。結果
を表1に示す。
Example 14 For comparison, a positive electrode body and a battery were prepared and evaluated in the same manner as in Example 6, except that only LiMnO 2 was used and LiCoO 2 was not mixed. Table 1 shows the results.

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【発明の効果】本発明では、広い電圧範囲での使用が可
能であり、高電流密度での容量が大きいと共に、発熱温
度が低いため安全性が高く、充放電サイクル耐久性が良
好なリチウム二次電池及びその為の正極活物質を得るこ
とができる。
According to the present invention, a lithium battery which can be used in a wide voltage range, has a large capacity at a high current density, has a low heat generation temperature, has high safety, and has good charge / discharge cycle durability. A secondary battery and a positive electrode active material therefor can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA02 AA04 BB05 BC06 BD00 BD04 5H014 AA02 EE10 HH01 HH02 5H029 AJ03 AJ05 AK03 AL02 AL04 AL06 AL12 AM00 AM03 AM05 AM07 AM16 BJ02 BJ03 BJ04 BJ14 BJ15 HJ01 HJ02 HJ09 ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 5H003 AA02 AA04 BB05 BC06 BD00 BD04 5H014 AA02 EE10 HH01 HH02 5H029 AJ03 AJ05 AK03 AL02 AL04 AL06 AL12 AM00 AM03 AM05 AM07 AM16 BJ02 BJ03 BJ04 BJ14 BJ15 HJ01 HJ

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】リチウム遷移金属複合酸化物を主成分とす
る正極活物質層を備えたリチウム二次電池において、リ
チウム遷移金属複合酸化物が、下記成分(B)および下
記成分(C)から選ばれる少なくとも一つの成分と、下
記成分(A)とを含有することを特徴とするリチウム二
次電池。 (A)層状岩塩型単斜晶構造を有し、LixMny1-y
2で表される複合酸化物。 (B)LixCo1-h-iNihi2で表される複合酸化
物。 (C)LixCo1-jj2で表される複合酸化物。但
し、式中の記号は下記の意味を示す。各式間で、Q及び
xは独立して選ばれる。M:Al、Fe、Co、Ni及
びCrから選ばれる1種以上の元素、Q: Al、Fe、
Mn、Ti、Ca及びMgから選ばれる1種以上の元
素。 0<x≦1.1、 0.5≦y≦1、 0.6≦h≦
1.0、0≦i≦0.10、 0≦1−h−i、 0≦
j≦0.05。
1. A lithium secondary battery provided with a positive electrode active material layer containing a lithium transition metal composite oxide as a main component, wherein the lithium transition metal composite oxide is selected from the following component (B) and the following component (C): A lithium secondary battery comprising at least one component and the following component (A). (A) having a layered rock-salt monoclinic structure, Li x Mn y M 1- y
A composite oxide represented by O 2 . (B) A composite oxide represented by Li x Co 1-hi Ni h Q i O 2 . (C) A composite oxide represented by Li x Co 1-j Q j O 2 . However, the symbols in the formula have the following meanings. Between each formula, Q and x are independently selected. M: one or more elements selected from Al, Fe, Co, Ni and Cr, Q: Al, Fe,
One or more elements selected from Mn, Ti, Ca and Mg. 0 <x ≦ 1.1, 0.5 ≦ y ≦ 1, 0.6 ≦ h ≦
1.0, 0 ≦ i ≦ 0.10, 0 ≦ 1-hi, 0 ≦
j ≦ 0.05.
【請求項2】リチウム遷移金属複合酸化物が、30〜8
0重量%の成分(A)と、20〜70重量%の成分
(B)とからなる請求項1記載のリチウム二次電池。
2. The lithium transition metal composite oxide according to claim 1, wherein
The lithium secondary battery according to claim 1, comprising 0% by weight of the component (A) and 20 to 70% by weight of the component (B).
【請求項3】成分(B)が、LixCo1-h-iNihi
2において、0.7≦h≦0.9、0≦i≦0.05で
ある複合酸化物である請求項1又は2記載のリチウム二
次電池。
Wherein component (B), Li x Co 1-hi Ni h Q i O
3. The lithium secondary battery according to claim 1, which is a composite oxide in which 0.7 ≦ h ≦ 0.9 and 0 ≦ i ≦ 0.05.
【請求項4】リチウム遷移金属複合酸化物が、30〜8
0重量%の成分(A)と、20〜70重量%の成分
(C)とからなる請求項1記載のリチウム二次電池。
4. The method according to claim 1, wherein the lithium transition metal composite oxide is 30 to 8%.
2. The lithium secondary battery according to claim 1, comprising 0% by weight of the component (A) and 20 to 70% by weight of the component (C).
【請求項5】成分(A)の複合酸化物が、リチウム元素
およびリチウム元素以外のアルカリ金属水酸化物を含有
する水溶液中で、マンガン化合物と金属元素Mを含む化
合物との130〜300℃における水熱処理により製造
されたものである請求項1〜4のいずれかに記載のリチ
ウム二次電池。
5. The composite oxide of component (A) is prepared by mixing a manganese compound and a compound containing a metal element M at 130 to 300 ° C. in an aqueous solution containing a lithium element and an alkali metal hydroxide other than the lithium element. The lithium secondary battery according to any one of claims 1 to 4, which is manufactured by hydrothermal treatment.
【請求項6】リチウム遷移金属複合酸化物を主成分とす
る正極が、27〜37%の空隙率を有する請求項1〜5
のいずれかに記載のリチウム二次電池。
6. A positive electrode comprising a lithium transition metal composite oxide as a main component has a porosity of 27 to 37%.
The lithium secondary battery according to any one of the above.
【請求項7】下記成分(B)および下記成分(C)から
選ばれる少なくとも一つの成分と、下記成分(A)とを
含有するリチウム遷移金属複合酸化物を主成分とするこ
とを特徴とするリチウム二次電池用の正極活物質。 (A)層状岩塩型単斜晶構造を有し、LixMny1-y
2で表される複合酸化物。 (B)LixCo1-h-iNihi2で表される複合酸化
物。 (C)LixCo1-jj2で表される複合酸化物。但
し、式中の記号は下記の意味を示す。各式間で、Q及び
xは独立して選ばれる。M:Al、Fe、Co、Ni及
びCrから選ばれる1種以上の元素、Q: Al、Fe、
Mn,Ti,Ca及びMgから選ばれる1種以上の元
素。 0<x≦1.1、 0.5≦y≦1、 0.6≦h≦
1.0、0≦i≦0.10、 0≦1−h−i、 0≦
j≦0.05。
7. A lithium transition metal composite oxide containing at least one component selected from the following components (B) and (C) and the following component (A): Positive electrode active material for lithium secondary batteries. (A) having a layered rock-salt monoclinic structure, Li x Mn y M 1- y
A composite oxide represented by O 2 . (B) A composite oxide represented by Li x Co 1-hi Ni h Q i O 2 . (C) A composite oxide represented by Li x Co 1-j Q j O 2 . However, the symbols in the formula have the following meanings. Between each formula, Q and x are independently selected. M: one or more elements selected from Al, Fe, Co, Ni and Cr, Q: Al, Fe,
One or more elements selected from Mn, Ti, Ca and Mg. 0 <x ≦ 1.1, 0.5 ≦ y ≦ 1, 0.6 ≦ h ≦
1.0, 0 ≦ i ≦ 0.10, 0 ≦ 1-hi, 0 ≦
j ≦ 0.05.
JP19585899A 1999-07-09 1999-07-09 Lithium secondary battery Expired - Fee Related JP4519220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19585899A JP4519220B2 (en) 1999-07-09 1999-07-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19585899A JP4519220B2 (en) 1999-07-09 1999-07-09 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001023640A true JP2001023640A (en) 2001-01-26
JP4519220B2 JP4519220B2 (en) 2010-08-04

Family

ID=16348173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19585899A Expired - Fee Related JP4519220B2 (en) 1999-07-09 1999-07-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4519220B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122628A (en) * 1999-10-27 2001-05-08 Sakai Chem Ind Co Ltd Lithium-manganese multi-component oxide particulate composition, method for manufacturing the same and secondary battery
WO2002078105A1 (en) * 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP2002324543A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Lithium ion secondary battery and positive electrode active material for the same
JP2003002654A (en) * 2001-06-21 2003-01-08 Naoaki Kumagai Method for producing layered lithium manganese complex oxide and lithium secondary battery
WO2003009407A2 (en) * 2001-07-14 2003-01-30 The University Court Of The University Of St Andrews Managanese oxide material for electrochemical cells
EP1465271A1 (en) * 2002-01-08 2004-10-06 Sony Corporation Positive plate active material and nonaqueous electrolyte secondary cell using same
WO2007060906A1 (en) * 2005-11-24 2007-05-31 Nissan Motor Co., Ltd. Positive electrode active material particle for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
JP2007265731A (en) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd Lithium ion secondary battery
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP2012041257A (en) * 2010-07-20 2012-03-01 National Institute Of Advanced Industrial Science & Technology Lithium manganese-based compound oxide and method for manufacturing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2018181967A1 (en) * 2017-03-31 2018-10-04 東ソー株式会社 Manganese oxide, production method therefor, and lithium secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315860A (en) * 1995-05-23 1996-11-29 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH09245769A (en) * 1996-03-08 1997-09-19 Hitachi Maxell Ltd Wound lithium ion secondary battery
JPH1121128A (en) * 1997-07-03 1999-01-26 Agency Of Ind Science & Technol Production of laminar rock salt type lithium manganese oxide by mixed alkali hydrothermal method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315860A (en) * 1995-05-23 1996-11-29 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH09245769A (en) * 1996-03-08 1997-09-19 Hitachi Maxell Ltd Wound lithium ion secondary battery
JPH1121128A (en) * 1997-07-03 1999-01-26 Agency Of Ind Science & Technol Production of laminar rock salt type lithium manganese oxide by mixed alkali hydrothermal method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122628A (en) * 1999-10-27 2001-05-08 Sakai Chem Ind Co Ltd Lithium-manganese multi-component oxide particulate composition, method for manufacturing the same and secondary battery
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
WO2002078105A1 (en) * 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2002324543A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Lithium ion secondary battery and positive electrode active material for the same
JP2003002654A (en) * 2001-06-21 2003-01-08 Naoaki Kumagai Method for producing layered lithium manganese complex oxide and lithium secondary battery
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP4898088B2 (en) * 2001-07-14 2012-03-14 ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・セント・アンドリューズ Improvements in or related to electrochemical cells
JP2005520282A (en) * 2001-07-14 2005-07-07 ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・セント・アンドリューズ Improvements in or related to electrochemical cells
WO2003009407A2 (en) * 2001-07-14 2003-01-30 The University Court Of The University Of St Andrews Managanese oxide material for electrochemical cells
WO2003009407A3 (en) * 2001-07-14 2004-10-28 Univ St Andrews Managanese oxide material for electrochemical cells
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
EP1465271A4 (en) * 2002-01-08 2010-09-29 Sony Corp Positive plate active material and nonaqueous electrolyte secondary cell using same
EP1465271A1 (en) * 2002-01-08 2004-10-06 Sony Corporation Positive plate active material and nonaqueous electrolyte secondary cell using same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2007060906A1 (en) * 2005-11-24 2007-05-31 Nissan Motor Co., Ltd. Positive electrode active material particle for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
JP2007173210A (en) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this
JP2007265731A (en) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd Lithium ion secondary battery
JP2012041257A (en) * 2010-07-20 2012-03-01 National Institute Of Advanced Industrial Science & Technology Lithium manganese-based compound oxide and method for manufacturing the same
WO2018181967A1 (en) * 2017-03-31 2018-10-04 東ソー株式会社 Manganese oxide, production method therefor, and lithium secondary battery
JPWO2018181967A1 (en) * 2017-03-31 2020-03-05 東ソー株式会社 Manganese oxide, method for producing the same, and lithium secondary battery

Also Published As

Publication number Publication date
JP4519220B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4092064B2 (en) Lithium secondary battery
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP4217710B2 (en) Method for producing lithium-nickel-cobalt-manganese-containing composite oxide
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP4512590B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4691228B2 (en) Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery
JP4833058B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR100601064B1 (en) Process for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2002358962A (en) Non-aqueous secondary battery
WO2005028371A1 (en) Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
JPWO2005124898A1 (en) Positive electrode active material powder for lithium secondary battery
JP2000133262A (en) Nonaqueous electrolyte secondary battery
JPWO2006085588A1 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP2002100356A (en) Lithium secondary battery
JP4519220B2 (en) Lithium secondary battery
JP4318270B2 (en) Method for manufacturing lithium secondary battery
JP4082855B2 (en) Lithium secondary battery
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2003002661A (en) Method for producing lithium cobalt composite oxide
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2002358961A (en) Non-aqueous electrolyte secondary battery
JPH0878006A (en) Lithium secondary battery
JP4199506B2 (en) Method for producing positive electrode active material for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees