JP2001019473A - Sealing material for display tube - Google Patents

Sealing material for display tube

Info

Publication number
JP2001019473A
JP2001019473A JP11183362A JP18336299A JP2001019473A JP 2001019473 A JP2001019473 A JP 2001019473A JP 11183362 A JP11183362 A JP 11183362A JP 18336299 A JP18336299 A JP 18336299A JP 2001019473 A JP2001019473 A JP 2001019473A
Authority
JP
Japan
Prior art keywords
glass
sealing material
sno
sample
acid component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11183362A
Other languages
Japanese (ja)
Inventor
Taketami Kikutani
武民 菊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP11183362A priority Critical patent/JP2001019473A/en
Publication of JP2001019473A publication Critical patent/JP2001019473A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Abstract

PROBLEM TO BE SOLVED: To suppress the volatilization of a boric acid component and a phosphoric acid component in firing and to prevent the generation of bubbles by incorporating a PbO-B2O3, P2O5-SnO or P2O5-SnO-B2O3 glass powder and specifying water content. SOLUTION: This sealing material contains a glass powder containing B2O3 and/or P2O5 and capable of sealing at a low temperature, e.g. a PbO-B2O3, P2O5-SnO or P2O5-SnO-B2O3 glass powder and has <=100 ppm, preferably about <=50 ppm water content. The glass powder having a low water content is obtained by bubbling oxygen or an inert gas such as nitrogen in the melting of glass. Thus, the evaporation of water in firing is reduced, so that the volatilization of a boric acid component and a phosphoric acid component are reduced, the generation of bubbles from the sealing material is prevented and an adverse effect on the electron emission part of a display tube is eliminated. The sealing material is applicable to the sealing of a cathode-ray tube, a plasma display, and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、陰極線管(CR
T)、プラズマディスプレイ(PDP)、蛍光表示管
(VFD)、電界放射型ディスプレイ(FED)等の封
着に用いられる表示管用封着材料に関するものである。
The present invention relates to a cathode ray tube (CR)
T), a sealing material for a display tube used for sealing a plasma display (PDP), a fluorescent display tube (VFD), a field emission display (FED), and the like.

【0002】[0002]

【従来の技術】陰極線管、プラズマディスプレイ、蛍光
表示管、電界放射型ディスプレイ等の封着には、封着温
度が430〜500℃、熱膨張係数が70〜100×1
-7/℃程度の特性を有する材料が使用されている。
2. Description of the Related Art For sealing a cathode ray tube, a plasma display, a fluorescent display tube, a field emission display and the like, a sealing temperature is 430 to 500 ° C. and a thermal expansion coefficient is 70 to 100 × 1.
A material having a characteristic of about 0 −7 / ° C. is used.

【0003】従来、この種の封着材料には、低温度で封
着可能なPbO−B23系ガラスを主成分とする封着材
料が広く用いられている。また最近では環境問題の観点
から、鉛を含まない封着材料が求められており、P25
−SnO系ガラスやP25−SnO−B23系ガラスを
用いた封着材料が提案されている。
Conventionally, in this type of sealing material, the sealing material mainly composed of sealing possible PbO-B 2 O 3 -based glass at low temperatures has been widely used. Also from the viewpoint of environmental problems in recent years, and the sealing material is obtained which does not contain lead, P 2 O 5
Sealing material using -SnO-based glass or P 2 O 5 -SnO-B 2 O 3 based glass has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の封着材料は、焼成時にホウ酸成分やリン酸成分
が揮発し易く、これによって材料から気泡が発生した
り、表示管の電子放出部分に悪影響を及ぼす、といった
問題を生じることがある。
However, in the above-mentioned conventional sealing material, the boric acid component and the phosphoric acid component are liable to volatilize at the time of firing, so that bubbles are generated from the material, and the electron emission portion of the display tube is generated. May adversely affect the system.

【0005】本発明の目的は、焼成時にホウ酸成分やリ
ン酸成分が揮発しにくい表示管用封着材料を提供するこ
とである。
An object of the present invention is to provide a display tube sealing material in which a boric acid component and a phosphoric acid component hardly volatilize during firing.

【0006】[0006]

【課題を解決するための手段】本発明者は種々の検討を
行った結果、材料中に含まれる水分が多いとホウ酸成分
やリン酸成分の揮発量が多くなることを見いだし、本発
明として提案するものである。
As a result of various studies, the present inventor has found that if the amount of water contained in the material is large, the volatilization amount of the boric acid component and the phosphoric acid component increases, and the present invention provides It is a suggestion.

【0007】即ち、本発明の表示管用封着材料は、ガラ
ス粉末を含む表示管用封着材料であって、水分含有率が
100ppm以下であることを特徴とする。
That is, the sealing material for a display tube of the present invention is a sealing material for a display tube containing glass powder, and has a water content of 100 ppm or less.

【0008】[0008]

【発明の実施の形態】本発明の表示管用封着材料は、ガ
ラス粉末を主成分として含む。また熱膨張係数の調整、
機械的強度の向上、流動性の改善等の目的で種々の耐火
性フィラー粉末等を含有させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The sealing material for a display tube of the present invention contains glass powder as a main component. Adjustment of thermal expansion coefficient,
Various refractory filler powders and the like can be contained for the purpose of improving mechanical strength, improving fluidity, and the like.

【0009】さらに本発明の封着材料は、水分含有率が
100ppm以下であることを特徴とする。焼成時に水
分が揮発すると、これに伴ってガラス中のホウ酸成分や
リン酸成分も揮発するが、水分含有率が100ppm以
下であれば、水分の揮発量が減少するため、ホウ酸成分
やリン酸成分が揮発し難くなる。
Further, the sealing material of the present invention is characterized in that the water content is 100 ppm or less. When the water evaporates during firing, the boric acid component and the phosphoric acid component in the glass are also volatilized. However, when the water content is 100 ppm or less, the volatilization amount of the water decreases. The acid component is less likely to evaporate.

【0010】詳述すると、同じ水分含有率でも、焼成時
に揮発し易い成分と揮発し難い成分がある。また水分の
大半はガラス粉末中に含まれているため、その揮発量は
ガラスの組成系によっても左右される。本発明者の研究
によれば、一般に封着材料に使用されるガラス成分の中
で、最も揮発し易いのはホウ酸成分であり、次いでリン
酸成分である。またP25系ガラスはPbO系ガラスに
比べ、ガラスのネットワークが脆弱であるため、揮発量
が多くなる傾向にある。以下に、表示管の封着に使用さ
れるガラスのうち、主な組成系であるPbO−B23
ガラス、P25−SnO系ガラス、P25−SnO−B
23系ガラスについて説明する。
More specifically, even with the same water content, there are components that are easily volatilized during firing and components that are hardly volatilized. Further, since most of the water is contained in the glass powder, the volatilization amount depends on the composition system of the glass. According to the study of the present inventors, among the glass components generally used for the sealing material, the borate component is the most volatile, and then the phosphoric acid component. In addition, P 2 O 5 -based glass has a more fragile network than PbO-based glass, and thus tends to increase the amount of volatilization. The following, among glass used for sealing the display tube, PbO-B 2 O 3 based glass is the main composition system, P 2 O 5 -SnO-based glass, P 2 O 5 -SnO-B
The 2 O 3 glass will be described.

【0011】PbOを主成分とするPbO−B23系ガ
ラスを用いる場合、ガラスのネットワークが堅牢である
ため、水分含有率が100ppm以下(好ましくは50
ppm以下)であればホウ酸成分の揮発は顕著に現れ
ず、問題を引き起こすおそれはない。なおこの系のガラ
スの好適な例としては、例えばmol%でPbO 60
〜90%、B23 5〜25%、SiO2 0〜5%、
ZnO 0〜10%、Al23 0〜10%の組成を有
するガラスが挙げられる。
When a PbO—B 2 O 3 -based glass containing PbO as a main component is used, since the glass network is robust, the water content is 100 ppm or less (preferably 50 ppm).
(ppm or less), the volatilization of the boric acid component does not appear remarkably, and there is no possibility of causing a problem. As a preferable example of the glass of this system, for example, PbO 60
~90%, B 2 O 3 5~25 %, SiO 2 0~5%,
0% ZnO, include glass having a composition of Al 2 O 3 0~10%.

【0012】P25−SnO系ガラスを用いる場合、B
23を含まないためにホウ酸成分の揮発を考慮する必要
はない。しかしこの系のガラスは、PbOを主成分とす
るガラスほどガラスのネットワークが堅牢ではないた
め、リン酸成分が揮発するおそれがある。このためこの
系では水分含有率を100ppm以下(好ましくは50
ppm以下)に制限することが好ましい。なおこの系の
ガラスの好適な例としては、モル%でP25 25〜5
0%、SnO 30〜75%、ZnO 0〜20%、L
2O 0〜10%、Al23 0〜10%、SiO2
0〜10%の組成を有するガラスが挙げられる。
When a P 2 O 5 —SnO-based glass is used, B
Since it does not contain 2 O 3 , there is no need to consider the volatilization of the boric acid component. However, in this type of glass, since the glass network is not as robust as glass containing PbO as a main component, the phosphoric acid component may be volatilized. Therefore, in this system, the water content is 100 ppm or less (preferably 50 ppm).
ppm or less). A preferred example of this type of glass is P 2 O 5
0%, SnO 30-75%, ZnO 0-20%, L
i 2 O 0-10%, Al 2 O 3 0-10%, SiO 2
Glass having a composition of 0 to 10% is exemplified.

【0013】P25−SnO−B23系ガラスの場合、
揮発し易いホウ酸成分を含み、しかもガラスのネットワ
ークが脆弱であるため、容易にホウ酸成分やリン酸成分
が揮発する。特にP25の含有率が5モル%以上のとき
は、リン酸原料より持ちこまれる水分が多くなってホウ
酸の揮発が問題となる。またB23含有率が3モル%以
上のときも、揮発するホウ酸成分が多くなって表示管の
電子放出部分に悪影響を及ぼし易くなる。それゆえこの
系のガラスにおいては、P25の含有率が5モル%以
上、或いはB23の含有率が3%以上である場合に水分
量を厳密に制御することが極めて重要となる。この場
合、水分含有率を50ppm以下(好ましくは20pp
m以下)に制御することが望ましい。なおこの系のガラ
スの好適な例としては、モル%でP25 15〜35
%、SnO 30〜65%、B23 15〜25%、Z
nO 0〜15%、Li2O 0〜10%、Al23
0〜10%、SiO2 0〜5%の組成を有するガラス
が挙げられる。
In the case of P 2 O 5 —SnO—B 2 O 3 glass,
A boric acid component and a phosphoric acid component are easily volatilized because they contain a boric acid component that is easily volatilized and the glass network is fragile. In particular, when the content of P 2 O 5 is 5 mol% or more, more water is brought in than the phosphoric acid raw material, and the volatilization of boric acid becomes a problem. Also, when the B 2 O 3 content is 3 mol% or more, a large amount of boric acid is volatilized, which tends to adversely affect the electron emission portion of the display tube. Therefore, in the glass of this system, when the content of P 2 O 5 is 5 mol% or more, or when the content of B 2 O 3 is 3% or more, it is extremely important to strictly control the water content. Become. In this case, the water content is 50 ppm or less (preferably 20 pp).
m or less). Preferable examples of the glass of this type include P 2 O 5 15 to 35 in mol%.
%, SnO 30~65%, B 2 O 3 15~25%, Z
nO 0 to 15%, Li 2 O 0 to 10%, Al 2 O 3
0-10%, and a glass having a composition of SiO 2 0 to 5%.

【0014】なお本発明において使用するガラス粉末
は、上記組成系に限られるものではなく、例えばAg2
O−AgI−B23系ガラス等を使用することもでき
る。
[0014] Note that the glass powder used in the present invention is not limited to the above composition system, for example, Ag 2
The O-AgI-B 2 O 3 based glass or the like can be used.

【0015】次に、封着材料中の水分含有率を減少させ
る方法を述べる。
Next, a method for reducing the water content in the sealing material will be described.

【0016】封着材料中に含まれる水分は、大半がガラ
ス粉末から持ち込まれる。このため水分含有率を減少さ
せるにはガラスの水分含有率を下げればよい。その方法
としては、ホウ酸原料として吸着水の少ない無水ホウ
酸を使用したり、リン酸原料として正リン酸の代わりに
リン酸化合物を使用する等、水分の少ないガラス原料を
選択する、ガラス原料を乾燥させる等の方法によりガ
ラス原料から水分を除去する、ガラス溶融時に酸素や
不活性ガスでバブリングを行う、ガラス溶融を真空中
で行う等の方法があり、これらの方法を適宜選択して所
望の水分含有率を得ることができる。
Most of the water contained in the sealing material comes from glass powder. Therefore, the moisture content can be reduced by decreasing the moisture content of the glass. As a method, a glass raw material having a low moisture content is selected, such as using boric anhydride with little adsorbed water as a boric acid raw material, or using a phosphoric acid compound instead of orthophosphoric acid as a phosphoric acid raw material. To remove water from the glass raw material by a method such as drying, bubbling with oxygen or an inert gas at the time of glass melting, and performing glass melting in a vacuum. Can be obtained.

【0017】これらの中で最も効果的な方法は、ガラス
溶融時に酸素や不活性ガスでバブリングを行う方法であ
る。溶融時のバブリングは、ガラス原料のセグリゲイシ
ョンを防止するために月間数トン以上の大型窯で広く適
用されているが、本発明では水分をごく微量になるまで
除去することを目的とするものであり、500ml程度
のルツボで溶融を行う少量の生産から適用できる。なお
酸素バブリングは、ガラス原料が酸化されやすいP25
−SnO系ガラスやP25−SnO−B23系ガラス等
には適用できない。このような場合は、酸素ガスの代わ
りに窒素ガスなどの不活性ガスを使用すればよい。また
何れのガスも純度が99%以上で水分を含まないものを
使用することが望ましいが、一般工業用に使用されてい
るものでも十分その効果は得られる。
The most effective method among these methods is a method of bubbling with oxygen or an inert gas at the time of melting glass. Bubbling at the time of melting is widely applied in large kilns of several tons or more per month to prevent segregation of glass raw materials.However, the present invention aims to remove water to a very small amount. , And can be applied from small-scale production in which melting is performed in a crucible of about 500 ml. Note that oxygen bubbling is performed in P 2 O 5 where glass raw materials are easily oxidized.
The -SnO-based glass and P 2 O 5 -SnO-B 2 O 3 based glass or the like can not be applied. In such a case, an inert gas such as a nitrogen gas may be used instead of the oxygen gas. It is desirable to use a gas having a purity of 99% or more and not containing water, but any gas used for general industry can sufficiently obtain the effect.

【0018】なお本発明において、封着材料の水分含有
率は、熱重量−質量同時分析法(TG−MS法)を用い
て測定することができる。この分析法は、熱重量分析計
に質量分析計を直結し、加熱時の測定試料の重量変化と
同時に試料から発生するガスの濃度変化を温度の関数と
して追跡しながら測定する方法である。この方法は、温
度制御に優れ、発生水分等の分析が広い温度範囲で測定
可能であり、封着材料の焼成条件に合わせたデータを得
ることができる。従って実際の工業生産レベルに即した
正確な微量水分の測定に適している。なおガラス中の水
分は赤外線吸光度で測定することも可能であるが、この
方法は組成成分が異なると水分量の正確な比較ができな
いという欠点がある。
In the present invention, the moisture content of the sealing material can be measured by a simultaneous thermogravimetric / mass spectrometric method (TG-MS method). This analysis method is a method in which a mass spectrometer is directly connected to a thermogravimetric analyzer, and a change in the weight of a measurement sample during heating and a change in the concentration of gas generated from the sample are tracked as a function of temperature while measuring. This method is excellent in temperature control, can analyze the generated moisture and the like in a wide temperature range, and can obtain data according to the firing conditions of the sealing material. Therefore, it is suitable for accurate measurement of trace moisture according to the actual industrial production level. The moisture in the glass can be measured by infrared absorbance, but this method has a disadvantage that accurate comparison of the amount of moisture cannot be made if the composition is different.

【0019】低融点の封着材料の水分含有率をTG−M
S法で測定するに当たっては、キャリヤーガスとしてヘ
リウムを用い、例えば温度を室温から500℃まで上昇
させ、500℃の一定温度で1時間保持する。この加熱
過程で発生する水分を測定し、その総量から含有水分率
を求めることができる。これは500℃で1時間保持す
ると、通常は発生するガスが完全に無くなるため、材料
中の水分が全て放出されたと考られるためである。なお
昇温スケジュールは、材料に合わせて適宜変更すればよ
い。この方法により得られる水分の発生速度曲線(模式
図)を図1に示す。なお結晶性ガラスを用いた封着材料
の場合には、結晶が析出する温度以下で水分含有率の測
定を行うことが好ましい。最も現実的には、封着を行う
実際の温度条件に適合した条件で測定を行うのが望まし
い。
The moisture content of the low melting point sealing material was determined by TG-M
In the measurement by the S method, helium is used as a carrier gas, for example, the temperature is increased from room temperature to 500 ° C., and the temperature is maintained at a constant temperature of 500 ° C. for 1 hour. The moisture generated during this heating process is measured, and the moisture content can be determined from the total amount. This is because, when held at 500 ° C. for 1 hour, normally generated gas completely disappears, and it is considered that all the moisture in the material is released. Note that the heating schedule may be appropriately changed according to the material. FIG. 1 shows a moisture generation rate curve (schematic diagram) obtained by this method. In the case of a sealing material using crystalline glass, it is preferable to measure the water content at or below the temperature at which crystals precipitate. Most realistically, it is desirable to perform the measurement under conditions that match the actual temperature conditions at which the sealing is performed.

【0020】[0020]

【実施例】以下、実施例に基づいて本発明を詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments.

【0021】(実施例1)表1は、P2O5−SnO−
B2O3系ガラスからなるガラス粉末を用いた本発明の
実施例(試料No.1〜3)及び従来例(試料No.
4)である。
Example 1 Table 1 shows that P2O5-SnO-
Examples of the present invention (sample Nos. 1 to 3) and a conventional example (sample No. 1) using a glass powder composed of B2O3-based glass.
4).

【0022】[0022]

【表1】 [Table 1]

【0023】各試料は次のようにして調製した。まず表
の組成を有するように原料を調合し、空気中で850℃
で1〜2時間溶融した。試料No.1〜3については溶
融中に溶融ガラスの中にパイプを挿入して窒素によるバ
ブリングを行った。次いで溶融ガラスを水冷ローラー間
に通して薄板状に成形し、ボールミルにて粉砕後、目開
き105μmの篩を通過させて、平均粒径約10μmの
ガラス粉末を得た。さらにガラス粉末77体積%、酸化
錫粉末23体積%の割合で両者を混合して試料を作製し
た。
Each sample was prepared as follows. First, the raw materials were prepared so as to have the composition shown in the table, and then 850 ° C in air.
For 1-2 hours. Sample No. For Nos. 1 to 3, a pipe was inserted into the molten glass during melting, and bubbling with nitrogen was performed. Next, the molten glass was formed into a thin plate by passing it between water-cooled rollers, pulverized by a ball mill, and then passed through a sieve having an opening of 105 μm to obtain a glass powder having an average particle size of about 10 μm. Further, a sample was prepared by mixing both at a ratio of 77% by volume of glass powder and 23% by volume of tin oxide powder.

【0024】この試料について、ガラス転移点、熱膨張
係数、流動性、及びTG−MS法による水分含有率を評
価した。
With respect to this sample, the glass transition point, the coefficient of thermal expansion, the fluidity, and the water content by the TG-MS method were evaluated.

【0025】次に、内部に蛍光体、リード配線、グリッ
ド、フィラメント、アノード電極などを装着した上、フ
ロントガラスと絶縁層を有するガラス基板とを試料によ
り封着して蛍光表示管を作製した。
Next, a phosphor, a lead wire, a grid, a filament, an anode electrode, etc. were mounted inside, and a glass substrate having an insulating layer and a windshield were sealed with a sample to produce a fluorescent display tube.

【0026】続いて材料中の水分が蛍光表示管の特性に
及ぼす影響を比較する為に、実際にこの蛍光表示管を点
灯させて、その輝度を評価した。なお輝度は、試料N
o.1を100としたときの相対値で表した。
Subsequently, in order to compare the influence of moisture in the material on the characteristics of the fluorescent display tube, the fluorescent display tube was actually turned on and its luminance was evaluated. Note that the luminance was
o. It was expressed as a relative value when 1 was taken as 100.

【0027】その結果、本発明の実施例であるNo.1
〜3の各試料は、ガラス転移点が331〜335℃、3
0〜250℃における熱膨張係数が70〜73×10-7
/℃であり、流動径が23.3〜24.1mmと流動性
が優れていた。また10分バブリングした試料No.3
の水分含有率が48ppmで輝度が75、30分バブリ
ングした試料No.2が25ppmで輝度が89、2時
間バブリングした試料No.1が4ppmで輝度が10
0であり、封着材料中の水分含有率と表示管の輝度との
相関関係が明確になった。即ち、含水率が低下するに従
って表示管の輝度が上昇していった。これは、先に述べ
た様に含水率の低下と共にホウ酸成分の揮発が減少し、
表示管の電子放出部分に及ぼす影響が少なくなったため
である。
As a result, in the embodiment of the present invention, No. 1
Each of the samples Nos. 1 to 3 has a glass transition point of 331 to 335 ° C.,
The coefficient of thermal expansion at 0 to 250 ° C. is 70 to 73 × 10 −7.
/ ° C, and the fluidity was excellent, with a fluid diameter of 23.3 to 24.1 mm. In addition, for sample No. Three
Sample No. 2 having a water content of 48 ppm and a brightness of 75 for 30 minutes. Sample No. 2 which was bubbled for 2 hours at a luminance of 89 at 25 ppm for 2 hours. 1 is 4 ppm and brightness is 10
0, indicating a clear correlation between the moisture content in the sealing material and the brightness of the display tube. That is, the luminance of the display tube increased as the water content decreased. This is because the volatilization of the boric acid component decreases with the decrease in the water content as described above,
This is because the influence on the electron emission portion of the display tube has been reduced.

【0028】一方、比較のために作製した従来例(試料
No.4)は、ガラス転移点、熱膨張係数、及び流動性
はNo.1〜3の試料と同等の特性を有していたが、水
分含有率が137ppmであり、輝度が7と著しく劣っ
ていた。これは、ガラスのネットワーク構造が脆弱で、
しかもB23を多量に含むガラス粉末を使用しているた
め、輝度に対する水分の影響が非常に大きいことを示し
ている。
On the other hand, in the conventional example (sample No. 4) manufactured for comparison, the glass transition point, the coefficient of thermal expansion, and the fluidity were the same as those of No. 4. The samples had characteristics equivalent to those of the samples Nos. 1 to 3, but had a water content of 137 ppm and a luminance of 7 which was extremely poor. This is because the glass network structure is weak,
Moreover, since the glass powder containing a large amount of B 2 O 3 is used, the effect of moisture on luminance is very large.

【0029】なおガラス転移点は示差熱分析(DTA)
により、また熱膨張係数は押棒式熱膨張測定装置により
求めた。流動性は次のようにして評価した。まず材料の
密度分に相当する重量の試料粉末を金型により外径20
mmのボタン状にプレスした。次にこのボタンを窓板ガ
ラスの上に乗せ、空気中、表の焼成温度まで10℃/分
の速度で昇温して10分間保持した後、ボタンの直径を
測定した値を示した。TG−MS法による水分含有率の
測定は、キャリヤーガスとしてヘリウムを用い、温度を
室温から500℃まで上昇させ、500℃の一定温度で
1時間保持することにより行った。なお試料には、流動
性評価に使用したボタンフロー試験焼成体の粉砕物を使
用した。
The glass transition point is determined by differential thermal analysis (DTA).
And the coefficient of thermal expansion was determined by a push rod type thermal expansion measuring device. The fluidity was evaluated as follows. First, a sample powder having a weight corresponding to the density of the material is applied to a mold having an outer diameter of 20 mm.
mm. Next, the button was placed on a window glass, heated to a firing temperature shown in the table at a rate of 10 ° C./min, held for 10 minutes, and measured for the diameter of the button. The moisture content was measured by the TG-MS method by using helium as a carrier gas, increasing the temperature from room temperature to 500 ° C., and maintaining the temperature at a constant temperature of 500 ° C. for 1 hour. In addition, the pulverized material of the button flow test fired body used for the fluidity evaluation was used as the sample.

【0030】(実施例2)表2は、P2O5−SnO系
ガラスからなるガラス粉末を用いた本発明の実施例(試
料No.5)及び従来例(試料No.6)を示してい
る。
(Example 2) Table 2 shows an example (sample No. 5) and a conventional example (sample No. 6) of the present invention using a glass powder composed of P2O5-SnO-based glass.

【0031】[0031]

【表2】 [Table 2]

【0032】各試料は次のようにして調製した。まず表
の組成を有するように原料を調合し、空気中で900℃
で1〜2時間溶融した。試料No.5については溶融中
に溶融ガラスの中にパイプを挿入して窒素によるバブリ
ングを行った。次いで実施例1と同様にしてガラス粉末
を得た。さらにガラス粉末75体積%、コーディエライ
ト粉末25体積%の割合で両者を混合して試料を作製し
た。
Each sample was prepared as follows. First, the raw materials were prepared to have the composition shown in the table,
For 1-2 hours. Sample No. For No. 5, a pipe was inserted into the molten glass during the melting, and bubbling with nitrogen was performed. Next, a glass powder was obtained in the same manner as in Example 1. Further, both were mixed at a ratio of 75 vol% of glass powder and 25 vol% of cordierite powder to prepare a sample.

【0033】この試料について、実施例1と同様にし
て、ガラス転移点、熱膨張係数、流動性、及び水分含有
率を評価した。また同様にして蛍光表示管を作製し、輝
度を評価した。なお輝度は、試料No.1を100とし
たときの相対値で表した。
With respect to this sample, the glass transition point, the coefficient of thermal expansion, the fluidity, and the water content were evaluated in the same manner as in Example 1. A fluorescent display tube was produced in the same manner, and the luminance was evaluated. Note that the luminance was measured for Sample No. It was expressed as a relative value when 1 was taken as 100.

【0034】その結果、本発明の実施例であるNo.5
の試料は、ガラス転移点が295℃、30〜250℃に
おける熱膨張係数が78×10-7/℃であり、流動径が
24.5mmと流動性が優れていた。また水分含有率が
33ppmと低く、輝度が111と高かった。
As a result, in the embodiment of the present invention, No. 5
The sample No. had a glass transition point of 295 ° C., a coefficient of thermal expansion at 30 to 250 ° C. of 78 × 10 −7 / ° C., and a flow diameter of 24.5 mm, which was excellent in flowability. The water content was as low as 33 ppm, and the luminance was as high as 111.

【0035】一方、比較のために作製した従来例(試料
No.6)は、ガラス転移点、熱膨張係数、及び流動性
についてはNo.5の試料と同等の特性を有していた。
しかしながら、水分含有率が124ppmで輝度が44
であり、P2O5−SnO−B2O3系ガラスを用いた
材料ほど顕著ではないものの、輝度に対する水分の影響
が大きかった。
On the other hand, in the conventional example (sample No. 6) prepared for comparison, the glass transition point, the coefficient of thermal expansion, and the fluidity were the same. The sample had the same characteristics as the sample No. 5.
However, a water content of 124 ppm and a brightness of 44
Although it was not as remarkable as a material using a P2O5-SnO-B2O3-based glass, the effect of moisture on luminance was large.

【0036】(実施例3)表3は、PbO−B23系ガ
ラスからなるガラス粉末を用いた本発明の実施例(試料
No.7)及び従来例(試料No.8)を示している。
Example 3 Table 3 shows Examples (Sample No. 7) and Conventional Examples (Sample No. 8) of the present invention using a glass powder composed of PbO—B 2 O 3 glass. I have.

【0037】[0037]

【表3】 [Table 3]

【0038】各試料は次のようにして調製した。まず表
の組成を有するように原料を調合し、空気中で950℃
で1〜2時間溶融した。試料No.7については溶融中
に溶融ガラスの中にパイプを挿入して酸素によるバブリ
ングを行った。次いで実施例1と同様にしてガラス粉末
を得た。さらにガラス粉末75体積%、チタン酸鉛粉末
25体積%の割合で両者を混合して試料を作製した。
Each sample was prepared as follows. First, the raw materials were prepared so as to have the composition shown in the table, and then 950 ° C in air.
For 1-2 hours. Sample No. For No. 7, bubbling with oxygen was performed by inserting a pipe into the molten glass during melting. Next, a glass powder was obtained in the same manner as in Example 1. Further, both were mixed at a ratio of 75% by volume of glass powder and 25% by volume of lead titanate powder to prepare a sample.

【0039】この試料について、実施例1と同様にし
て、ガラス転移点、熱膨張係数、流動性、及び水分含有
率を評価した。また同様にして蛍光表示管を作製し、輝
度を評価した。なお輝度は、試料No.1を100とし
たときの相対値で表した。
This sample was evaluated for glass transition point, thermal expansion coefficient, fluidity, and water content in the same manner as in Example 1. A fluorescent display tube was produced in the same manner, and the luminance was evaluated. Note that the luminance was measured for Sample No. It was expressed as a relative value when 1 was taken as 100.

【0040】その結果、本発明の実施例であるNo.7
の試料は、ガラス転移点が306℃、30〜250℃に
おける熱膨張係数が72×10-7/℃であり、流動径が
22.0mmと流動性が優れていた。また水分含有率が
44ppmと低く、輝度が107と高かった。
As a result, in the embodiment of the present invention, No. 7
The sample had a glass transition point of 306 ° C., a coefficient of thermal expansion at 30 to 250 ° C. of 72 × 10 −7 / ° C., and a flow diameter of 22.0 mm, which was excellent in flowability. Further, the water content was as low as 44 ppm and the luminance was as high as 107.

【0041】一方、比較のために作製した従来例(試料
No.8)は、ガラス転移点、熱膨張係数、及び流動性
についてはNo.7の試料と同等の特性を有していた。
しかしながら、水分含有率が121ppmで輝度が67
であり、P2O5−SnO−B2O3系ガラスやP2O
5−SnO系ガラスを用いた材料ほどではないものの、
水分による輝度への影響が認められた。
On the other hand, in the conventional example (sample No. 8) prepared for comparison, the glass transition point, the coefficient of thermal expansion, and the fluidity were the same. 7 had characteristics equivalent to those of the sample.
However, with a moisture content of 121 ppm and a luminance of 67
And P2O5-SnO-B2O3-based glass or P2O
Although not as good as the material using 5-SnO-based glass,
The effect of moisture on luminance was observed.

【0042】(実施例4)表4は、種々の組成を有する
ガラス粉末を用いた本発明の実施例(試料No.9〜1
2)である。
Example 4 Table 4 shows examples (Examples 9 to 1) of the present invention using glass powders having various compositions.
2).

【0043】[0043]

【表4】 [Table 4]

【0044】各試料は次のようにして調製した。まず表
の組成を有するように原料を調合し、空気中で750〜
900℃で1〜2時間溶融した。このとき溶融中に溶融
ガラスの中にパイプを挿入して酸素又は窒素によるバブ
リングを行った。次いで実施例1と同様にしてガラス粉
末を得た。さらにガラス粉末75体積%、コーディエラ
イト粉末25体積%の割合で両者を混合して試料を作製
した。
Each sample was prepared as follows. First, the raw materials are prepared so as to have the composition shown in the table.
Melted at 900 ° C for 1-2 hours. At this time, a pipe was inserted into the molten glass during melting to perform bubbling with oxygen or nitrogen. Next, a glass powder was obtained in the same manner as in Example 1. Further, both were mixed at a ratio of 75 vol% of glass powder and 25 vol% of cordierite powder to prepare a sample.

【0045】この試料について、実施例1と同様にし
て、ガラス転移点、熱膨張係数、流動性、及び水分含有
率を評価した。また同様にして蛍光表示管を作製し、輝
度を評価した。なお輝度は、試料No.1を100とし
たときの相対値で表した。
With respect to this sample, the glass transition point, the coefficient of thermal expansion, the fluidity, and the water content were evaluated in the same manner as in Example 1. A fluorescent display tube was produced in the same manner, and the luminance was evaluated. Note that the luminance was measured for Sample No. It was expressed as a relative value when 1 was taken as 100.

【0046】その結果、ガラス転移点が230〜360
℃、30〜250℃における熱膨張係数が69〜80×
10-7/℃であり、流動径が21.9〜26.0mmで
あった。また水分含有率が4〜9ppmと低く、輝度が
95〜107と高かった。
As a result, the glass transition point was 230-360.
° C, thermal expansion coefficient at 30-250 ° C is 69-80 ×
10 −7 / ° C., and the flow diameter was 21.9 to 26.0 mm. The water content was as low as 4 to 9 ppm, and the luminance was as high as 95 to 107.

【0047】[0047]

【発明の効果】以上説明したように、本発明の表示管用
封着材料は、焼成時にホウ酸成分やリン酸成分の揮発が
殆どないため、材料から気泡が発生したり、表示管の電
子放出部分に悪影響を及ぼすことがない。それゆえ陰極
線管、プラズマディスプレイ、蛍光表示管、電界放射型
ディスプレイ、或いはオーロラビジョン等の表示管の封
着材料として好適である。
As described above, since the sealing material for a display tube of the present invention hardly volatilizes a boric acid component or a phosphoric acid component during firing, bubbles are generated from the material, and electron emission of the display tube is caused. No adverse effects on parts. Therefore, it is suitable as a sealing material for a display tube such as a cathode ray tube, a plasma display, a fluorescent display tube, a field emission display, and an aurora vision.

【図面の簡単な説明】[Brief description of the drawings]

【図1】TG−MS法によって測定した水分の発生速度
曲線を示すグラフである。
FIG. 1 is a graph showing a generation rate curve of water measured by a TG-MS method.

【符号の説明】[Explanation of symbols]

1 温度スケジュール 2 水分の発生速度曲線 1 Temperature schedule 2 Moisture generation rate curve

フロントページの続き Fターム(参考) 4G062 AA08 AA09 AA15 BB04 BB09 CC10 DA01 DA02 DA03 DB01 DB02 DB03 DC03 DC04 DD04 DD05 DE01 DE02 DE03 DE04 DF06 DF07 EA01 EA02 EA03 EA10 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FB01 FC01 FD01 FE05 FE06 FE07 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH04 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM10 MM12 MM25 NN30 NN32 PP01 PP05 PP09 5C032 BB03 5C036 EE19 EG06 EH11 Continued on the front page F-term (reference) 4G062 AA08 AA09 AA15 BB04 BB09 CC10 DA01 DA02 DA03 DB01 DB02 DB03 DC03 DC04 DD04 DD05 DE01 DE02 DE03 DE04 DF06 DF07 EA01 EA02 EA03 EA10 EB01 EC01 ED01 EE01 FE01 FE01 FE01 FE01 FE01 FE01 FE01 FE01 FE01 FE01 FE01 FE01 FE01 FE01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH04 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM10 PP12 MM10 PP12 MM10 PP10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス粉末を含む表示管用封着材料であ
って、水分含有率が100ppm以下であることを特徴
とする表示管用封着材料。
1. A sealing material for a display tube containing glass powder, wherein the sealing material for a display tube has a water content of 100 ppm or less.
【請求項2】 ガラス粉末が、B23及び/又はP25
を含有するガラスからなることを特徴とする請求項1の
表示管用封着材料。
2. The method according to claim 1, wherein the glass powder is B 2 O 3 and / or P 2 O 5.
The sealing material for a display tube according to claim 1, wherein the sealing material is made of glass containing:
【請求項3】 ガラス粉末が、PbO−B23系ガラ
ス、P25−SnO系ガラス、又はP25−SnO−B
23系ガラスからなることを特徴とする請求項1又は2
の表示管用封着材料。
3. The glass powder is PbO—B 2 O 3 based glass, P 2 O 5 —SnO based glass, or P 2 O 5 —SnO—B.
3. The method according to claim 1, wherein the glass is made of 2 O 3 glass.
Sealing material for display tubes.
【請求項4】 陰極線管、プラズマディスプレイ、蛍光
表示管、又は電界放射型ディスプレイの封着に用いられ
ることを特徴とする請求項1〜3の表示管用封着材料。
4. The sealing material for a display tube according to claim 1, which is used for sealing a cathode ray tube, a plasma display, a fluorescent display tube, or a field emission display.
JP11183362A 1999-06-29 1999-06-29 Sealing material for display tube Pending JP2001019473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11183362A JP2001019473A (en) 1999-06-29 1999-06-29 Sealing material for display tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11183362A JP2001019473A (en) 1999-06-29 1999-06-29 Sealing material for display tube

Publications (1)

Publication Number Publication Date
JP2001019473A true JP2001019473A (en) 2001-01-23

Family

ID=16134444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11183362A Pending JP2001019473A (en) 1999-06-29 1999-06-29 Sealing material for display tube

Country Status (1)

Country Link
JP (1) JP2001019473A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068198A (en) * 2001-08-28 2003-03-07 Matsushita Electric Ind Co Ltd Display device
JP2003146691A (en) * 2001-11-15 2003-05-21 Asahi Techno Glass Corp Low melting point glass, and production method therefor
KR100886176B1 (en) 2007-10-04 2009-02-27 금호전기주식회사 Fluorescent lamp with animproved phosphor ultrafine particel
US7960903B2 (en) 2005-03-02 2011-06-14 Samsung Sdi Co., Ltd. Electron emission source, its method of fabrication, and an electron emission device using the electron emission source
WO2011158805A1 (en) * 2010-06-14 2011-12-22 旭硝子株式会社 Sealing material paste, and process for production of electronic device using same
CN106277796A (en) * 2008-10-20 2017-01-04 康宁股份有限公司 The method forming frit based on dry glass
WO2017183687A1 (en) * 2016-04-21 2017-10-26 日本山村硝子株式会社 Lead-free low-melting-point composition, sealing material, conductive material, and electronic component

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068198A (en) * 2001-08-28 2003-03-07 Matsushita Electric Ind Co Ltd Display device
JP2003146691A (en) * 2001-11-15 2003-05-21 Asahi Techno Glass Corp Low melting point glass, and production method therefor
US7960903B2 (en) 2005-03-02 2011-06-14 Samsung Sdi Co., Ltd. Electron emission source, its method of fabrication, and an electron emission device using the electron emission source
KR100886176B1 (en) 2007-10-04 2009-02-27 금호전기주식회사 Fluorescent lamp with animproved phosphor ultrafine particel
CN106277796A (en) * 2008-10-20 2017-01-04 康宁股份有限公司 The method forming frit based on dry glass
CN102939270A (en) * 2010-06-14 2013-02-20 旭硝子株式会社 Sealing material paste, and process for production of electronic device using same
JP5716743B2 (en) * 2010-06-14 2015-05-13 旭硝子株式会社 SEALING PASTE AND ELECTRONIC DEVICE MANUFACTURING METHOD USING THE SAME
US9085483B2 (en) 2010-06-14 2015-07-21 Asahi Glass Company, Limited Sealing material paste and process for producing electronic device employing the same
CN102939270B (en) * 2010-06-14 2015-11-25 旭硝子株式会社 Sealing material is stuck with paste and is used its manufacture method of electron device
WO2011158805A1 (en) * 2010-06-14 2011-12-22 旭硝子株式会社 Sealing material paste, and process for production of electronic device using same
WO2017183687A1 (en) * 2016-04-21 2017-10-26 日本山村硝子株式会社 Lead-free low-melting-point composition, sealing material, conductive material, and electronic component
CN109071322A (en) * 2016-04-21 2018-12-21 日本山村硝子株式会社 Unlead low-smelting point composition, sealing material, conductive material and electronic component
JPWO2017183687A1 (en) * 2016-04-21 2019-02-21 日本山村硝子株式会社 Lead-free low melting point composition, encapsulant, conductive material and electronic component
CN109071322B (en) * 2016-04-21 2021-04-30 日本山村硝子株式会社 Lead-free low-melting-point composition, sealing material, conductive material, and electronic component

Similar Documents

Publication Publication Date Title
KR101621997B1 (en) Method for forming a dry glass-based frit
US6355586B1 (en) Low melting point glass and glass ceramic composition
CN101186433A (en) Display apparatus
KR100674782B1 (en) Sealing material for sealing enclosure of vacuum fluorescent display, method of the sealing material and vacuum fluorescent display with enclosure sealed by the sealing material
CN101113073B (en) Leadless low-melting glass powder for seal with metal or alloy and preparation method thereof
JP4557314B2 (en) Sealing composition and sealing low melting point glass
JP3339647B2 (en) Lead-free low melting glass and sealing glass composition
JP2001019473A (en) Sealing material for display tube
JP4092936B2 (en) Tin phosphate glass and composite materials
US8440111B2 (en) Lead-free conductive paste composition
JP4941880B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP2001199740A (en) Lead-free glass and composition for sealing
JP2004307329A (en) Insulating material for display tube
JP2000264676A (en) Low melting point glass
JP3981857B2 (en) Display materials
US6163106A (en) Color cathode ray tube and water resistant glass frit
JP2001180972A (en) Lead free glass with low melting point
JP2001151532A (en) Low-melting glass for covering electrode and plasma display device
JP5219238B2 (en) Glass paste composition
JP2007223897A (en) Low-melting glass for sealing
CN101157517A (en) Low-melting glass and preparation and application thereof
JP4765179B2 (en) Glass paste
KR100760501B1 (en) Low-melting method of the pbo-free glass frits with metallic oxides for the parts of display units
JP2001019472A (en) Sealing material
JP2008247659A (en) Glass paste composition