JP2001006680A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JP2001006680A
JP2001006680A JP17221199A JP17221199A JP2001006680A JP 2001006680 A JP2001006680 A JP 2001006680A JP 17221199 A JP17221199 A JP 17221199A JP 17221199 A JP17221199 A JP 17221199A JP 2001006680 A JP2001006680 A JP 2001006680A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
battery
viscosity
cps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17221199A
Other languages
Japanese (ja)
Inventor
Natsuki Toyoda
夏樹 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP17221199A priority Critical patent/JP2001006680A/en
Publication of JP2001006680A publication Critical patent/JP2001006680A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-pollution zinc alkaline battery using non- amalgamated zinc alloy powder in a gel-form zinc negative electrode equipped with an enhanced easy-to-fill property of negative electrode, anti-shock characteristic of battery, and discharging performance. SOLUTION: An agent to turn into gel contained in a gel-form zinc negative electrode 4 of a zinc alkaline battery is prepared from bridged polyacrylate whose 0.5-wt.% water solution dispersed viscosity at 25 deg.C is 10,000-20,000 cPs and particle sizes range chiefly between 100-500 μm and chain-form polyacrylic acids or its salt whose 0.5-wt.% water solution dispersed viscosity at 25 deg.C is 3,000-12,000 cPs and particle sizes range chiefly below 100 μm. This allows heightening of the lubricating performance while a necessary viscosity for the anti-shock property of the battery is well maintained, and anti-shock property and the working easiness can be enhanced compatibly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は亜鉛アルカリ電池に
関し、詳しくは無汞化亜鉛合金粉末を用いたゲル状亜鉛
負極を備えた亜鉛アルカリ電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc-alkaline battery, and more particularly, to a zinc-alkaline battery provided with a gelled zinc negative electrode using a non-melted zinc alloy powder.

【0002】[0002]

【従来の技術】従来、亜鉛アルカリ電池の負極活物質と
しては、亜鉛の腐食によるガス発生の抑制および電気特
性の向上を目的として、汞化亜鉛合金粉末が用いられて
いたが、近年、使用済み電池による環境汚染が問題視さ
れるようになってきたことから低公害化が社会的な要望
となり、亜鉛合金粉末を無汞化(無水銀)にするための
亜鉛合金組成や防食剤(インヒビター)等の研究が進め
られ、ついに実用上ガス発生に問題のない無水銀アルカ
リ電池用ゲル状亜鉛負極が開発されるに至っている。
2. Description of the Related Art Conventionally, as a negative electrode active material for a zinc alkaline battery, a zinc alloy powder of mercurized zinc alloy has been used for the purpose of suppressing gas generation due to corrosion of zinc and improving electric characteristics. Environmental pollution caused by batteries has become a problem, and low pollution has become a social demand. Zinc alloy compositions and anticorrosives (inhibitors) to eliminate zinc alloy powder from mercury-free (mercury-free) Research has been progressed, and finally a gelled zinc negative electrode for a mercury-free alkaline battery having practically no problem in gas generation has been developed.

【0003】ところで、無汞化亜鉛合金粉末を単に用い
た電池は、汞化亜鉛合金粉末を用いた電池より耐衝撃性
が弱いことがわかった。そこで、ゲル化剤の形状や粒度
の見直し、あるいはゲル化剤の増量により、ゲル状亜鉛
負極の粘度を上げて耐衝撃性を向上させる方策が採られ
てきた。
[0003] By the way, it was found that a battery using only a non-melonized zinc alloy powder had lower impact resistance than a battery using a non-melted zinc alloy powder. Therefore, measures have been taken to improve the impact resistance by increasing the viscosity of the gelled zinc negative electrode by reviewing the shape and particle size of the gelling agent or increasing the amount of the gelling agent.

【0004】ところが、電池の耐衝撃性を改善するため
にゲル状亜鉛負極の粘度を上げると、ゲル状亜鉛負極を
電池に充填する際に充填装置の器壁との摩擦が大きくな
り、滑らかにゲル状亜鉛負極が流れないので、安定した
充填作業が行われにくくなる。そのため、フッ素系界面
活性剤をゲル状亜鉛負極に添加して充填作業を容易にす
ることが行われている。
However, when the viscosity of the gelled zinc negative electrode is increased in order to improve the impact resistance of the battery, the friction between the gelled zinc negative electrode and the wall of the filling device when filling the battery with the gelled zinc negative electrode increases, and the gelled zinc negative electrode becomes smoother. Since the gelled zinc negative electrode does not flow, it is difficult to perform a stable filling operation. Therefore, it has been practiced to add a fluorine-based surfactant to a gelled zinc negative electrode to facilitate the filling operation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うにフッ素系界面活性剤を添加すると、これが電池の内
部抵抗として作用してしまうため、放電持続時間が短く
なるという問題が生ずることがわかった。
However, it has been found that the addition of such a fluorine-containing surfactant acts as an internal resistance of the battery, thus causing a problem of shortening the discharge duration.

【0006】本発明は、上記状況に鑑みてなされたもの
で、その目的は、ゲル状亜鉛負極に無汞化亜鉛合金粉末
を用いた低公害の亜鉛アルカリ電池において、ゲル状亜
鉛負極の電池内への充填を容易にさせるとともに、耐衝
撃性を良好に保持して安全性を高め、かつ放電性能を高
めることにある。
The present invention has been made in view of the above circumstances, and has as its object to provide a low-pollution zinc-alkali battery using a non-melting zinc alloy powder for the gelled zinc negative electrode. The present invention is to facilitate the filling of the resin, improve the safety by maintaining good impact resistance, and enhance the discharge performance.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、無汞
化亜鉛合金粉末、ゲル化剤およびアルカリ電解液を含む
ゲル状亜鉛負極を有する亜鉛アルカリ電池において、前
記ゲル化剤として25℃における0.5重量%水溶液分
散粘度が10,000〜20,000cpsで、かつそ
の粒径が100〜500μmを主としたものである架橋
ポリアクリル酸塩と、25℃における0.5重量%水溶
液分散粘度が3,000〜12,000cpsで、かつ
その粒径が100μm以下を主とした鎖状ポリアクリル
酸またはその塩類とを併用したことを特徴とする。
That is, the present invention relates to a zinc-alkaline battery having a gelled zinc negative electrode containing a non-melonized zinc alloy powder, a gelling agent and an alkaline electrolyte. A crosslinked polyacrylate having a 0.5% by weight aqueous dispersion viscosity of 10,000 to 20,000 cps and a particle size of mainly 100 to 500 μm, and a 0.5% by weight aqueous dispersion dispersion viscosity at 25 ° C. Is used in combination with a linear polyacrylic acid or a salt thereof having a particle size of 3,000 to 12,000 cps and a particle diameter of 100 μm or less.

【0008】本発明では上記の如き2種のゲル化剤を併
用してゲル状亜鉛負極を作成したことにより、ゲル状亜
鉛負極の粘度を電池の耐衝撃性を保持できる程度に高め
ても、潤滑性があってゲル状亜鉛負極の電池内への充填
が容易となり、その結果電池の耐衝撃性および放電性能
のいずれにも優れ、かつ作業性も改善された亜鉛アルカ
リ電池を提供することができる。なお、上記2種のゲル
化剤の使用量は、架橋ポリアクリル酸塩の添加濃度がア
ルカリ電解液に対して2.0〜3.5重量%、鎖状ポリ
アクリル酸またはその塩類の添加濃度がアルカリ電解液
に対して0.05〜0.5重量%の範囲が好ましい。
In the present invention, the gelled zinc negative electrode is prepared by using the above two kinds of gelling agents in combination, so that the viscosity of the gelled zinc negative electrode can be increased to such an extent that the impact resistance of the battery can be maintained. It is possible to provide a zinc-alkali battery having lubricating properties and facilitating the filling of the gelled zinc negative electrode into the battery. As a result, both the impact resistance and the discharge performance of the battery are excellent, and the workability is also improved. it can. The amount of the two gelling agents used is such that the concentration of the crosslinked polyacrylic acid salt is 2.0 to 3.5% by weight based on the alkaline electrolyte, and the concentration of the chain polyacrylic acid or salts thereof. Is preferably in the range of 0.05 to 0.5% by weight based on the alkaline electrolyte.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例および比較
例について詳細に説明する。まず、水酸化カリウム水溶
液と酸化亜鉛から構成される電解液100gに対してゲ
ル化剤Aおよびゲル化剤Bを添加し、さらに無汞化亜鉛
合金粉末を加えて300gのゲル状亜鉛負極を作成し
た。ゲル化剤Aは、25℃における0.5%水溶液分散
粘度が15,000cpsで、その粒径が100〜50
0μmを主とした平均粒径300μmである架橋ポリア
クリル酸塩であり、ゲル化剤Bは、25℃における0.
5%水溶液分散粘度が9,000cpsで、その粒径が
100μm以下で平均粒径10μmである鎖状ポリアク
リル酸である。また、これらのゲル化剤の添加量(電解
液量に対する重量%)は表1に示すとおりである。こう
して調製したゲル状亜鉛負極を用いて、図1に示すJI
S規格LR6形(単3形)アルカリ電池を組み立てた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention and comparative examples will be described in detail. First, a gelling agent A and a gelling agent B are added to 100 g of an electrolytic solution composed of an aqueous solution of potassium hydroxide and zinc oxide, and a non-melonized zinc alloy powder is further added to prepare a 300 g gelled zinc negative electrode. did. Gelling agent A has a 0.5% aqueous dispersion viscosity at 25 ° C. of 15,000 cps and a particle size of 100 to 50.
It is a crosslinked polyacrylate salt having an average particle diameter of 300 μm mainly composed of 0 μm.
It is a linear polyacrylic acid having a 5% aqueous dispersion viscosity of 9,000 cps, a particle size of 100 μm or less, and an average particle size of 10 μm. The amounts of these gelling agents (% by weight based on the amount of the electrolyte) are as shown in Table 1. Using the gelled zinc negative electrode thus prepared, JI shown in FIG.
An S standard LR6 (AA) alkaline battery was assembled.

【0010】図1において、1は正極端子を兼ねる有底
円筒形の金属缶であり、この金属缶1内には円筒状に加
圧成形した3個の正極合剤2が分割充填されている。正
極合剤2は二酸化マンガン粉末とカーボン粉末を混合
し、これを成形型を用いて所定の圧力で中空円筒状に加
圧成形したものである。また、正極合剤2の中空部には
アセタール化ポリビニルアルコール繊維の不織布からな
る有底円筒状のセパレータ3が配置されている。このセ
パレータを介して、前記方法で製造したゲル状亜鉛負極
4が充填されている。ゲル状亜鉛負極4内には真鍮製の
負極集電棒5が、その上端部をゲル状亜鉛負極4より突
出するように装着されている。負極集電棒5の突出部外
周面および金属缶1の上部内周面には二重環状のポリア
ミド樹脂からなる絶縁ガスケット6が配設されている。
また、絶縁ガスケット6の二重環状部の間にはリング状
の金属板7が配設され、かつ金属板7には負極端子を兼
ねる帽子形の金属封口板8が集電棒5の頭部に当接する
ように配設されている。そして、金属缶1の開口縁を内
方に屈曲させることによりガスケット6および金属封口
板8で金属缶1内を密封口している。以上のようにして
組み立てた各LR6形アルカリ電池について、作業性お
よび耐衝撃性を調べた。
In FIG. 1, reference numeral 1 denotes a bottomed cylindrical metal can also serving as a positive electrode terminal. In the metal can 1, three positive electrode materials 2 formed into a cylindrical shape by pressure are separately filled. . The positive electrode mixture 2 is obtained by mixing a manganese dioxide powder and a carbon powder and pressing the mixture into a hollow cylinder at a predetermined pressure using a molding die. In the hollow portion of the positive electrode mixture 2, a bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fiber is disposed. The gelled zinc negative electrode 4 produced by the above method is filled through the separator. In the gelled zinc negative electrode 4, a negative electrode current collector rod 5 made of brass is mounted so that its upper end protrudes from the gelled zinc negative electrode 4. An insulating gasket 6 made of a double annular polyamide resin is provided on the outer peripheral surface of the protruding portion of the negative electrode current collecting rod 5 and the upper inner peripheral surface of the metal can 1.
A ring-shaped metal plate 7 is disposed between the double annular portions of the insulating gasket 6, and a cap-shaped metal sealing plate 8 serving also as a negative electrode terminal is provided on the head of the current collecting rod 5. It is arranged to abut. The inside edge of the metal can 1 is sealed by the gasket 6 and the metal sealing plate 8 by bending the opening edge of the metal can 1 inward. The workability and impact resistance of each of the LR6 alkaline batteries assembled as described above were examined.

【0011】すなわち、上記の各ゲル状亜鉛負極を電池
に充填する際の、充填装置の器壁における流れの状態を
調べ、表1に示した。表1において、◎は非常に良好、
○は良好、△は可、×は不可を示す。また、−はゲル化
剤の配合量が少なく、亜鉛粒子の沈降分離が発生し、ゲ
ルとして成り立たなかったものを示している。
That is, the state of flow in the vessel wall of the filling device when each of the above-mentioned gelled zinc negative electrodes was filled in a battery was examined. In Table 1, ◎ is very good,
○ indicates good, Δ indicates acceptable, and × indicates unacceptable. In addition,-indicates that the amount of the gelling agent was small, sedimentation and separation of zinc particles occurred, and the gel did not work.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示されるように、ゲル化剤Aを単独
で使用した場合には、2.5%以上でゲル状になるが、
亜鉛粒子を保持する能力が強いのでゲルが高粘度にな
り、作業性を悪化させていることがわかる。これにゲル
化剤Bを加えると作業性が改善される。これは、鎖状ポ
リアクリル酸が溶解し、無汞化亜鉛合金粉末や架橋ポリ
アクリル酸塩表面に分布して潤滑剤としての役割を果た
すため、充填装置の器壁との摩擦を低減してゲル状亜鉛
負極の充填を容易にすることができるものと考えられ
る。
As shown in Table 1, when the gelling agent A is used alone, it becomes a gel at 2.5% or more.
It can be seen that the gel has a high viscosity because the ability to retain zinc particles is strong, and the workability is deteriorated. When the gelling agent B is added to this, workability is improved. This is because the chain polyacrylic acid dissolves and distributes on the surface of the non-melonized zinc alloy powder or cross-linked polyacrylate and acts as a lubricant, reducing friction with the wall of the filling device. It is considered that the filling of the gelled zinc negative electrode can be facilitated.

【0014】ただし、ゲル化剤Aとゲル化剤Bの合計が
4.0%を超えると、やはり高粘度のため作業性は悪化
する。またゲル化剤が多すぎる高粘度のゲルでは、放電
中に電解液の供給が不足気味になる傾向があり、特に重
負荷放電時にこれが顕著となって、持続時間を低下させ
るという問題もある。
However, if the total of the gelling agent A and the gelling agent B exceeds 4.0%, the workability also deteriorates due to the high viscosity. In addition, in the case of a gel having a high viscosity which contains too much gelling agent, the supply of the electrolytic solution tends to be insufficient during discharge, and this is particularly noticeable during heavy load discharge, and there is a problem that the duration is reduced.

【0015】次に耐衝撃性について調べた結果を示す。
耐衝撃性の試験は、放電負荷2Ωで放電している電池を
高さ2mから自由落下させて、その時の作動電圧の変化
量をオシロスコープで測定して行った。結果を表2に示
す(n=3の平均値)。表2中、◎は変化量100mV
以下、○は100〜200mV、△は200〜500m
V、×は500mV以上を示している。
Next, the results of an examination on the impact resistance are shown.
The impact resistance test was performed by freely dropping a battery discharged with a discharge load of 2Ω from a height of 2 m and measuring the amount of change in operating voltage at that time with an oscilloscope. The results are shown in Table 2 (average value of n = 3). In Table 2, ◎ indicates a change of 100 mV.
Below, ○ is 100-200 mV, Δ is 200-500 mV
V and x indicate 500 mV or more.

【0016】[0016]

【表2】 [Table 2]

【0017】表2に示されるように、ゲル化剤Aを単独
で使用した場合は電解液に対して2.5%以上、ゲル化
剤B併用の場合はゲル化剤Aを電解液に対して2.0%
以上、ゲル化剤Bを電解液に対して0.05%以上でな
いと、ゲル状電解液の粘度が低くなり、ゲル状電解液中
で亜鉛粒子が安定した状態を保つことができないため耐
衝撃性が劣ることがわかる。
As shown in Table 2, when the gelling agent A is used alone, the gelling agent A is used in an amount of 2.5% or more with respect to the electrolytic solution. 2.0%
As described above, if the amount of the gelling agent B is not more than 0.05% with respect to the electrolyte, the viscosity of the gel electrolyte becomes low and the zinc particles cannot maintain a stable state in the gel electrolyte. It turns out that the property is inferior.

【0018】ゲル化剤Bを単独で使用した場合は、添加
量を増やしても耐衝撃性が改善されない。これは、ゲル
化剤Aが電解液を吸収して膨張し、亜鉛粒子を固定する
ことによって耐衝撃性を改善するのに対して、ゲル化剤
Bは鎖状構造のため高粘度であっても亜鉛粒子を保持す
ることができないためであると考えられる。
When the gelling agent B is used alone, the impact resistance is not improved even if the amount added is increased. This is because the gelling agent A absorbs the electrolyte and expands, thereby improving the impact resistance by fixing the zinc particles, whereas the gelling agent B has a high viscosity due to the chain structure. This is considered to be because zinc particles cannot be retained.

【0019】なお、上記実施例ではゲル化剤Aとして、
25℃における0.5重量%水溶液分散粘度が15,0
00cpsの架橋ポリアクリル酸塩を使用したが、該水
溶液分散粘度が10,000〜20,000cpsの範
囲であれば同様の効果を奏することができる。この範囲
を逸脱するとゲル状電解液の粘度がこれより増加または
減少し、電池特性に悪影響を与える。例えば、0.5重
量%水溶液分散粘度が10,000cps未満だと、ゲ
ル状亜鉛負極は粘度が低すぎ、亜鉛粒子が沈降して分離
してしまう。また、0.5重量%水溶液分散粘度が2
0,000cps以上であると、ゲル状亜鉛負極が高粘
度すぎて放電性能を悪化させてしまう。
In the above embodiment, the gelling agent A is
The dispersion viscosity of a 0.5% by weight aqueous solution at 25 ° C. is 15.0
Although a crosslinked polyacrylate of 00 cps was used, the same effect can be obtained if the aqueous dispersion viscosity is in the range of 10,000 to 20,000 cps. When the viscosity is out of this range, the viscosity of the gel electrolyte increases or decreases, which adversely affects the battery characteristics. For example, if the 0.5% by weight aqueous dispersion viscosity is less than 10,000 cps, the viscosity of the gelled zinc negative electrode is too low, and the zinc particles settle and separate. Further, the dispersion viscosity of a 0.5% by weight aqueous solution is 2
If it is not less than 000 cps, the gelled zinc negative electrode is too high in viscosity and deteriorates the discharge performance.

【0020】またゲル化剤Bについては、上記実施例で
は25℃における0.5重量%水溶液分散粘度が9,0
00cpsの鎖状ポリアクリル酸を用いたが、該水溶液
分散粘度は3,000〜12,000cpsの範囲で同
様の効果を奏することができ、この範囲を逸脱するとや
はりゲル状電解液の粘度の増加または減少によって、上
記と同様の問題が生じ、ゲル状負極の分離や高粘度によ
る放電性能の悪化を招く。したがって、ゲル化剤の0.
5重量%水溶液分散粘度は、架橋ポリアクリル酸塩では
10,000〜20,000cps,鎖状ポリアクリル
酸またはその塩類の場合は3,000〜12,000c
psでなければならない。
As for the gelling agent B, the dispersion viscosity of a 0.5% by weight aqueous solution at 25 ° C. is 9.0,
Although a chain polyacrylic acid of 00 cps was used, the same effect can be obtained when the aqueous dispersion viscosity is in the range of 3,000 to 12,000 cps, and if it deviates from this range, the viscosity of the gel electrolyte also increases. Or, the decrease causes the same problem as described above, and causes deterioration of the discharge performance due to separation of the gelled negative electrode and high viscosity. Therefore, the 0.1% of the gelling agent.
The dispersion viscosity of the 5% by weight aqueous solution is 10,000 to 20,000 cps for the crosslinked polyacrylate, and 3,000 to 12,000 c for the linear polyacrylic acid or a salt thereof.
ps.

【0021】またゲル化剤の粒径は、架橋ポリアクリル
酸塩では100μm未満であると耐衝撃性が悪化し、5
00μm以上では充填量のバラツキが大きくなるので、
100〜500μmの粒径範囲がよい。一方鎖状ポリア
クリル酸またはその塩類の場合は、粒径が100μmを
超えても耐衝撃性がそれ程改善されず、むしろゲル状亜
鉛負極の密度が低下して作用物質としての亜鉛量が確保
できないので、その粒径範囲は100μm以下が好まし
い。
When the particle size of the gelling agent is less than 100 μm for the crosslinked polyacrylate, the impact resistance is deteriorated, and
If the thickness is more than 00 μm, the dispersion of the filling amount becomes large.
A particle size range of 100 to 500 μm is preferred. On the other hand, in the case of chain polyacrylic acid or a salt thereof, even if the particle size exceeds 100 μm, the impact resistance is not so much improved, but rather the density of the gelled zinc negative electrode decreases and the amount of zinc as an active substance cannot be secured. Therefore, the particle size range is preferably 100 μm or less.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
無汞化亜鉛合金粉末を使用したことにより電池の低公害
化を達成するとともに、無汞化亜鉛合金粉末の使用に伴
う作業性の悪化や耐衝撃性の劣化を改善し、放電性能を
向上させることができる。
As described above, according to the present invention,
The use of non-melonized zinc alloy powder achieves low pollution of the battery, and also improves the workability and impact resistance due to the use of non-melonized zinc alloy powder to improve the discharge performance. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるアルカリ電池の断面
図。
FIG. 1 is a sectional view of an alkaline battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…金属缶、2…正極合剤、3…セパレータ、4…ゲル
状亜鉛負極、5…負極集電棒、6…絶縁ガスケット、7
…リング状の金属板、8…金属封口板。
DESCRIPTION OF SYMBOLS 1 ... Metal can, 2 ... Positive electrode mixture, 3 ... Separator, 4 ... Gelled zinc negative electrode, 5 ... Negative electrode current collecting rod, 6 ... Insulating gasket, 7
... ring-shaped metal plate, 8 ... metal sealing plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無汞化亜鉛合金粉末、ゲル化剤およびア
ルカリ電解液を含むゲル状亜鉛負極を有する亜鉛アルカ
リ電池において、前記ゲル化剤として、25℃における
0.5重量%水溶液分散粘度が10,000〜20,0
00cpsで、かつその粒径が100〜500μmを主
としたものである架橋ポリアクリル酸塩と、25℃にお
ける0.5重量%水溶液分散粘度が3,000〜12,
000cpsで、かつその粒径が100μm以下を主と
した鎖状ポリアクリル酸またはその塩類とを併用したこ
とを特徴とする亜鉛アルカリ電池。
1. A zinc alkaline battery having a gelled zinc negative electrode containing a non-melonized zinc alloy powder, a gelling agent and an alkaline electrolyte, wherein the gelling agent has a 0.5% by weight aqueous dispersion dispersion viscosity at 25 ° C. 10,000-20,000
A crosslinked polyacrylate having a particle size of 100 cps and a particle size of 100 to 500 μm, and a 0.5% by weight aqueous solution dispersion viscosity at 25 ° C. of 3,000 to 12,
A zinc-alkaline battery comprising 000 cps and a chain polyacrylic acid or a salt thereof mainly having a particle size of 100 μm or less.
【請求項2】 架橋ポリアクリル酸塩の添加濃度がアル
カリ電解液に対して2.0〜3.5重量%、鎖状ポリア
クリル酸またはその塩類の添加濃度がアルカリ電解液に
対して0.05〜0.5重量%の範囲である請求項1記
載の亜鉛アルカリ電池。
2. The addition concentration of the cross-linked polyacrylic acid salt is 2.0 to 3.5% by weight based on the alkaline electrolyte, and the addition concentration of the linear polyacrylic acid or salts thereof is 0. 2. The zinc alkaline battery according to claim 1, wherein the content is in the range of 0.5 to 0.5% by weight.
JP17221199A 1999-06-18 1999-06-18 Zinc alkaline battery Pending JP2001006680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17221199A JP2001006680A (en) 1999-06-18 1999-06-18 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17221199A JP2001006680A (en) 1999-06-18 1999-06-18 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JP2001006680A true JP2001006680A (en) 2001-01-12

Family

ID=15937663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17221199A Pending JP2001006680A (en) 1999-06-18 1999-06-18 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JP2001006680A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259454A (en) * 2003-02-24 2004-09-16 Toshiba Battery Co Ltd Cylindrical alkaline battery
KR101418780B1 (en) 2012-01-26 2014-07-11 주식회사 엘지화학 Binder for Secondary Battery Providing Excellent Adhesion Strength and Rate Characteristics
CN105226233A (en) * 2015-10-21 2016-01-06 宁波倍特瑞能源科技有限公司 A kind of negative pole of alkaline dry battery and application thereof
CN105185971B (en) * 2015-10-21 2019-03-29 宁波倍特瑞能源科技有限公司 A kind of cathode of alkaline dry battery and its application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152677A (en) * 1981-03-16 1982-09-21 Hitachi Maxell Ltd Alkaline battery
JPH02216760A (en) * 1989-02-17 1990-08-29 Matsushita Electric Ind Co Ltd Zinc alkaline battery
JPH1083811A (en) * 1996-09-11 1998-03-31 Toshiba Battery Co Ltd Alkaline dry cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152677A (en) * 1981-03-16 1982-09-21 Hitachi Maxell Ltd Alkaline battery
JPH02216760A (en) * 1989-02-17 1990-08-29 Matsushita Electric Ind Co Ltd Zinc alkaline battery
JPH1083811A (en) * 1996-09-11 1998-03-31 Toshiba Battery Co Ltd Alkaline dry cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259454A (en) * 2003-02-24 2004-09-16 Toshiba Battery Co Ltd Cylindrical alkaline battery
JP4480945B2 (en) * 2003-02-24 2010-06-16 東芝電池株式会社 Cylindrical alkaline battery
KR101418780B1 (en) 2012-01-26 2014-07-11 주식회사 엘지화학 Binder for Secondary Battery Providing Excellent Adhesion Strength and Rate Characteristics
CN105226233A (en) * 2015-10-21 2016-01-06 宁波倍特瑞能源科技有限公司 A kind of negative pole of alkaline dry battery and application thereof
CN105185971B (en) * 2015-10-21 2019-03-29 宁波倍特瑞能源科技有限公司 A kind of cathode of alkaline dry battery and its application

Similar Documents

Publication Publication Date Title
JP5453243B2 (en) Alkaline chemical battery
KR100310810B1 (en) Additives for primary electrochemical cells having manganese dioxide cathodes
AU2016206976B2 (en) Alkaline cell with improved reliability and discharge performance
JP2009259706A (en) Aa alkaline battery
JP5172181B2 (en) Zinc alkaline battery
WO2012046363A1 (en) Alkaline primary battery
JPH0765817A (en) Alkaline battery
JP2003017077A (en) Sealed alkaline zinc primary battery
JP2007227011A (en) Alkaline cell
JP2001006680A (en) Zinc alkaline battery
JP4480945B2 (en) Cylindrical alkaline battery
JP2008041490A (en) Alkaline battery
JPH0765818A (en) Alkaline battery
JP2016173936A (en) Alkali battery
JP2007048623A (en) Alkaline dry cell
JPH1083812A (en) Zinc alkaline battery
JP2005038697A (en) Cylinder alkaline battery
JP4517314B2 (en) Zinc alkaline battery
JP4292431B2 (en) Cylindrical alkaline battery
JP2007220373A (en) Sealed alkaline zinc primary cell
JP3315530B2 (en) Alkaline battery
JP5541692B2 (en) Alkaline battery and positive electrode mixture for alkaline battery
JP2015141888A (en) alkaline battery
JPH07105941A (en) Zinc alkaline battery
JPH05151957A (en) Alkaline battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

RD02 Notification of acceptance of power of attorney

Effective date: 20081210

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A02 Decision of refusal

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A02