JP2001004234A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2001004234A
JP2001004234A JP11173546A JP17354699A JP2001004234A JP 2001004234 A JP2001004234 A JP 2001004234A JP 11173546 A JP11173546 A JP 11173546A JP 17354699 A JP17354699 A JP 17354699A JP 2001004234 A JP2001004234 A JP 2001004234A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pressure
air conditioner
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11173546A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
広 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP11173546A priority Critical patent/JP2001004234A/en
Publication of JP2001004234A publication Critical patent/JP2001004234A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To alleviate a decrease in a cooling capability when a high-pressure rise is suppressed when cooled by an air conditioner. SOLUTION: In this air conditioner, a bypass pipeline 12 for bypassing a refrigerant from a high pressure side to a low pressure side is arranged to pass the vicinity of normal refrigerant piping 15 in an outdoor heat exchanger 2. When a high-pressure sensor 5 provided at a discharge side of a compressor 1 detects an excessive rise of a pressure, an electronic linear expansion valve 8 and a solenoid valve 9 are opened, the pipeline 12 becomes a communicating state, and a part of a liquid state refrigerant output from the exchanger 2 is bypassed to the low pressure side through the pipeline 12. Thus, an amount of the refrigerant passing an ordinary refrigerant pipeline is reduced, and a pressure rise of the high pressure side is suppressed. Since the bypassed refrigerant deprives the refrigerant of the ordinary refrigerant piping of the exchanger 2 of heat, the degree of supercooling of the refrigerant output from the exchanger 2 is enhanced. Thus, a decrease in a cooling capability due to a reduction in the amount of the circulating refrigerant is alleviated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒回路を用い、
四方弁の切換により冷房運転と暖房運転を切り換えられ
る空気調和機に関する。
[0001] The present invention relates to a refrigerant circuit,
The present invention relates to an air conditioner that can switch between a cooling operation and a heating operation by switching a four-way valve.

【0002】[0002]

【従来の技術】図5は、従来の空気調和機の冷媒回路を
示す図である。この空気調和機は、四方弁7の接続を切
り換えることにより、冷房運転と暖房運転を切り換えら
れる形式のものである。この空気調和機には、圧縮機1
の高圧出力側から、膨張弁3と室内熱交換器4との間の
配管に向かってバイパス管路13が設けられ、このバイ
パス管路13にはバイパス用電磁弁11が設けられてい
る。図に示す矢印は冷媒の流れの向きを示す。
2. Description of the Related Art FIG. 5 is a diagram showing a refrigerant circuit of a conventional air conditioner. This air conditioner is of a type that can switch between the cooling operation and the heating operation by switching the connection of the four-way valve 7. This air conditioner has a compressor 1
A bypass pipe 13 is provided from the high-pressure output side to a pipe between the expansion valve 3 and the indoor heat exchanger 4, and the bypass pipe 13 is provided with a bypass solenoid valve 11. The arrow shown in the figure indicates the direction of the flow of the refrigerant.

【0003】冷房運転時には、四方弁7が図5に示した
接続状態にあり、圧縮機1で圧縮された冷媒は室外熱交
換器2にて外気との熱交換により液化される。この冷媒
が膨張弁3で減圧され、室内熱交換器4で気化すること
により室内空気から熱を奪い、室内を冷房する。気化し
た冷媒は四方弁7を通って圧縮機1に至り、そこで圧縮
されて再び室外熱交換器2に至る。
During the cooling operation, the four-way valve 7 is in the connection state shown in FIG. 5, and the refrigerant compressed by the compressor 1 is liquefied in the outdoor heat exchanger 2 by heat exchange with the outside air. This refrigerant is decompressed by the expansion valve 3 and vaporized by the indoor heat exchanger 4, thereby removing heat from the indoor air and cooling the room. The vaporized refrigerant reaches the compressor 1 through the four-way valve 7, where it is compressed and again reaches the outdoor heat exchanger 2.

【0004】冷房運転時において、熱交換器4,2が汚
れたり、室外温度が上昇したりすると、冷媒回路の高圧
側、すなわち圧縮機1の出力から室外熱交換器2を経て
膨張弁3に至るまでの経路の圧力が上昇しすぎる場合が
ある。この従来装置では、圧縮機1の出力に設けた高圧
圧力センサ5により高圧側の圧力をモニタし、その圧力
が所定のしきい値を超えた場合に、バイパス用電磁弁1
1を開くことにより高圧側の冷媒の一部を低圧側、すな
わち膨張弁3の下流にバイパスし、高圧側の圧力の異常
上昇を抑制している。
During the cooling operation, when the heat exchangers 4 and 2 become dirty or the outdoor temperature rises, the refrigerant is supplied from the high pressure side of the refrigerant circuit, that is, the output of the compressor 1 to the expansion valve 3 via the outdoor heat exchanger 2. In some cases, the pressure in the path leading up to it may be too high. In this conventional apparatus, the high pressure side pressure is monitored by a high pressure sensor 5 provided at the output of the compressor 1, and when the pressure exceeds a predetermined threshold, the bypass solenoid valve 1 is monitored.
By opening 1, a part of the refrigerant on the high pressure side is bypassed to the low pressure side, that is, downstream of the expansion valve 3, and an abnormal rise in pressure on the high pressure side is suppressed.

【0005】また、この空気調和機は、暖房運転時には
四方弁7の接続が切り替わり、圧縮機1からの高圧出力
が室内熱交換器4で液化することにより、室内を暖房す
る。
[0005] In the air conditioner, the connection of the four-way valve 7 is switched during the heating operation, and the high-pressure output from the compressor 1 is liquefied in the indoor heat exchanger 4 to heat the room.

【0006】このような暖房運転時において、室外熱交
換器2に設けられた配管温度センサ6の検知温度が所定
値より下がり、室外熱交換器2に霜や氷がついたと判断
された場合には、四方弁7の接続を冷房運転時のパター
ンに切り換え、圧縮機1から出力される高温の冷媒を室
外熱交換器2に通すことにより、霜取りを行っていた。
In such a heating operation, if the temperature detected by the pipe temperature sensor 6 provided in the outdoor heat exchanger 2 falls below a predetermined value, and it is determined that frost or ice has adhered to the outdoor heat exchanger 2, Has performed defrosting by switching the connection of the four-way valve 7 to the pattern at the time of the cooling operation and passing the high-temperature refrigerant output from the compressor 1 through the outdoor heat exchanger 2.

【0007】[0007]

【発明が解決しようとする課題】上記従来の空気調和機
は、まず冷房運転時に高圧回路側の圧力が高くなりすぎ
た場合、高圧冷媒の一部を低圧側にバイパスしていたた
め、そのバイパス期間中は室外熱交換器2を通る冷媒の
量が少なくなって冷房能力が低下するという問題があ
る。
In the conventional air conditioner, when the pressure on the high pressure circuit side becomes too high during the cooling operation, a part of the high pressure refrigerant is bypassed to the low pressure side. Inside, there is a problem that the amount of the refrigerant passing through the outdoor heat exchanger 2 decreases and the cooling capacity decreases.

【0008】また、従来の空気調和機は、霜取り運転時
には、四方弁7を冷房運転時の接続に切り換えて冷房サ
イクルで運転されるので、霜取りが始まると、それまで
暖房していた室内に突然冷風が吹き出すという問題があ
った。
Further, in the conventional air conditioner, in the defrosting operation, the four-way valve 7 is switched to the connection for the cooling operation and is operated in the cooling cycle. There was a problem that cold wind blows out.

【0009】本発明は上記問題を解決するためになされ
たものであり、まず第1に、冷房運転時に、冷房能力の
低下を抑制しつつ、高圧回路側の圧力上昇を抑えること
ができる空気調和機を提供することを目的とする。第2
に、霜取り運転時に室内に冷風が吹き出さない空気調和
機を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems. First, during cooling operation, an air conditioner capable of suppressing a decrease in cooling capacity and suppressing an increase in pressure on the high-pressure circuit side. The purpose is to provide a machine. Second
Another object of the present invention is to provide an air conditioner that does not blow cold air into a room during a defrosting operation.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る空気調和機は、この構成では、高圧圧
力センサで高圧側の圧力が所定値を超えたことを検知し
た場合、バイパス流路の開閉弁を開いて高圧側の冷媒を
低圧側にバイパスする。このバイパス動作時、室外熱交
換器を出た液状冷媒は室外熱交換器内の冷媒流路の近傍
を通って低圧側に流れ込む。ここでいう近傍とは、室外
熱交換器の冷媒流路と熱交換が可能な範囲にあるという
意味である。このような構成により、バイパス時には、
室外熱交換器を通る冷媒が、バイパス流路を通る液状冷
媒とも熱交換を行うため、高圧冷媒の冷却が促進され、
室外熱交換器からは従来機構よりも過冷却度の高い冷媒
が出力されることになる。したがって、循環する冷媒の
量がバイパス動作によって減少したとしても、それによ
る冷房能力の低下は冷媒の過冷却度の向上により軽減さ
れる。
In order to achieve the above object, an air conditioner according to the present invention is configured such that, when a high pressure sensor detects that the pressure on the high pressure side exceeds a predetermined value, the air conditioner is bypassed. The high-pressure side refrigerant is bypassed to the low-pressure side by opening the on-off valve of the flow path. During this bypass operation, the liquid refrigerant that has exited the outdoor heat exchanger flows into the low pressure side through the vicinity of the refrigerant flow path in the outdoor heat exchanger. Here, the vicinity means that the heat exchanger is in a range in which heat can be exchanged with the refrigerant flow path of the outdoor heat exchanger. With such a configuration, at the time of bypass,
Since the refrigerant passing through the outdoor heat exchanger also performs heat exchange with the liquid refrigerant passing through the bypass flow path, cooling of the high-pressure refrigerant is promoted,
A refrigerant having a higher degree of supercooling than the conventional mechanism is output from the outdoor heat exchanger. Therefore, even if the amount of the circulating refrigerant is reduced by the bypass operation, the decrease in the cooling capacity due to the reduction is reduced by improving the degree of supercooling of the refrigerant.

【0011】この発明の好適な態様では、高圧圧力セン
サの圧力計測値が前記所定値を超えたときにその圧力計
測値に応じた弁開度で開動作する調節弁を、前記バイパ
ス流路における前記室外熱交換器と膨張機構との間の分
岐部分から前記室外熱交換器の冷媒流路の近傍部分まで
の間に設けた。
In a preferred aspect of the present invention, when the pressure measurement value of the high-pressure pressure sensor exceeds the predetermined value, the control valve that opens at a valve opening corresponding to the pressure measurement value is provided in the bypass passage. It was provided between a branch portion between the outdoor heat exchanger and the expansion mechanism and a portion near a refrigerant flow path of the outdoor heat exchanger.

【0012】この態様によれば、圧力が高くなればなる
ほどバイパス動作時のバイパス流路の冷媒流量を増大さ
せる。これにより、高圧圧力が高くなるのに応じてバイ
パスする冷媒の量を増やすことにより、圧力上昇を効率
的に抑えることができる。このとき、バイパスする冷媒
量が増えると、室外熱交換器における高圧冷媒の冷却作
用も高まるので、通常回路を流れる冷媒の量の減少に伴
う冷房能力の低下をある程度抑えることができる。
According to this aspect, the higher the pressure, the higher the refrigerant flow rate in the bypass flow path during the bypass operation. Thus, by increasing the amount of the refrigerant to be bypassed in accordance with the increase in the high pressure, the pressure increase can be suppressed efficiently. At this time, if the amount of refrigerant to be bypassed increases, the cooling action of the high-pressure refrigerant in the outdoor heat exchanger also increases, so that a decrease in cooling capacity due to a decrease in the amount of refrigerant flowing through the normal circuit can be suppressed to some extent.

【0013】また、本発明の好適な態様では、暖房運転
時に霜取り運転条件が満足された場合に前記開閉弁を開
く制御手段を更に設ける。
In a preferred aspect of the present invention, a control means for opening the on-off valve when the defrosting operation condition is satisfied during the heating operation is further provided.

【0014】この態様では、暖房運転時に霜取りを行う
場合、開閉弁を開いてバイパス流路を導通させ、圧縮機
を出た高温高圧冷媒を室内熱交換器の上流側から室外熱
交換器の下流側にバイパスさせる。このバイパス動作に
より、高温高圧の冷媒が室外熱交換器の冷媒流路近傍を
流れるため、室外熱交換器が暖められ、除霜が行われ
る。この態様では、冷媒回路が暖房運転の状態のまま霜
取りができるので、霜取り時に室内に冷風が吹き出すこ
とがない。しかもこの態様では、冷房運転時の高圧圧力
抑制と霜取り運転とを同一のバイパス流路により行える
ので、装置構成がシンプルになるという利点がある。
In this aspect, when defrosting is performed during the heating operation, the on-off valve is opened to make the bypass flow path conductive, and the high-temperature and high-pressure refrigerant that has exited the compressor flows from the upstream side of the indoor heat exchanger to the downstream side of the outdoor heat exchanger. To the side. By this bypass operation, the high-temperature and high-pressure refrigerant flows near the refrigerant flow path of the outdoor heat exchanger, so that the outdoor heat exchanger is warmed and defrosting is performed. In this aspect, defrosting can be performed while the refrigerant circuit is in the heating operation, so that no cool air is blown into the room during defrosting. In addition, in this mode, the high-pressure suppression and the defrosting operation during the cooling operation can be performed by the same bypass flow path, so that there is an advantage that the device configuration is simplified.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0016】図1は、本発明の実施形態の空気調和機の
冷房運転時の冷媒回路を示す。
FIG. 1 shows a refrigerant circuit during a cooling operation of an air conditioner according to an embodiment of the present invention.

【0017】図1に示すように、本実施形態の冷媒回路
は、圧縮機1から四方弁7、室外熱交換器2、膨張弁
3、室内熱交換器4をこの順に通り、更に四方弁7を介
して圧縮機1に戻る配管経路として構成されている。圧
縮機1の吐出口と四方弁7との間には高圧側回路の圧力
をモニタする高圧圧力センサ5が設けられている。ま
た、室外熱交換器2には、冷媒配管への着霜、着氷を検
知するために配管温度センサ6が設けられている。四方
弁7が図1に示した接続状態にあるとき、冷媒は、図中
実線矢印で示す向きに配管を流れる。このような冷媒循
環により、圧縮機1で圧縮された冷媒は室外熱交換器2
にて外気との熱交換により液化され、この液化冷媒が膨
張弁3で減圧され、更に室内熱交換器4で気化すること
により室内空気から熱を奪い、室内を冷房する。
As shown in FIG. 1, the refrigerant circuit of the present embodiment passes through the compressor 1 through the four-way valve 7, the outdoor heat exchanger 2, the expansion valve 3, and the indoor heat exchanger 4 in this order. And a piping path returning to the compressor 1 via the. Between the discharge port of the compressor 1 and the four-way valve 7, a high pressure sensor 5 for monitoring the pressure of the high pressure circuit is provided. The outdoor heat exchanger 2 is provided with a pipe temperature sensor 6 for detecting frost and icing on the refrigerant pipe. When the four-way valve 7 is in the connected state shown in FIG. 1, the refrigerant flows through the pipe in the direction shown by the solid arrow in the figure. Due to such refrigerant circulation, the refrigerant compressed by the compressor 1 is supplied to the outdoor heat exchanger 2.
The refrigerant is liquefied by heat exchange with the outside air, and the liquefied refrigerant is decompressed by the expansion valve 3 and further vaporized by the indoor heat exchanger 4 to remove heat from the indoor air and cool the room.

【0018】本実施形態では、室外熱交換器2と膨張弁
3との間の管路と、室内熱交換器4と四方弁7との間の
管路とを結ぶバイパス管路12を設け、そのバイパス管
路12の一部が、室外熱交換器2内の通常の冷媒配管1
5の近傍を通るようにした。このバイパス管路12は、
圧縮機1から室外熱交換器2を介して膨張弁3に至る高
圧側回路の圧力の異常上昇を抑制するために用いられ
る。バイパス管路12には、図示しない制御機構により
制御される電磁弁9が設けられており、この電磁弁9の
開閉によりバイパス管路12の導通、非導通が切り換え
られる。また、この電磁弁9を跨いでキャピラリーチュ
ーブ10が設けられており、電磁弁9が全閉したときの
バイパス管路12の液封発生を防止している。また、バ
イパス管路12の、室外熱交換器2側の分岐箇所から室
外熱交換器2内へ至るまでの経路に、電子式リニア膨張
弁(以下、LEVと呼ぶ)8を設けた。LEV8は、制
御機構からの制御信号のレベルによって弁開度が調節可
能な弁であり、バイパス管路12の流量調節のために用
いられる。
In the present embodiment, a bypass pipe 12 is provided for connecting a pipe between the outdoor heat exchanger 2 and the expansion valve 3 and a pipe between the indoor heat exchanger 4 and the four-way valve 7. A part of the bypass pipe 12 is connected to the normal refrigerant pipe 1 in the outdoor heat exchanger 2.
5 was passed. This bypass line 12
It is used to suppress an abnormal increase in pressure of the high-pressure side circuit from the compressor 1 to the expansion valve 3 via the outdoor heat exchanger 2. The bypass pipe 12 is provided with an electromagnetic valve 9 controlled by a control mechanism (not shown). The opening and closing of the electromagnetic valve 9 switches the conduction and non-conduction of the bypass pipe 12. Further, a capillary tube 10 is provided straddling the electromagnetic valve 9 to prevent the occurrence of liquid seal in the bypass conduit 12 when the electromagnetic valve 9 is fully closed. An electronic linear expansion valve (hereinafter, referred to as an LEV) 8 is provided in a path from the branch point on the outdoor heat exchanger 2 side of the bypass pipe 12 to the inside of the outdoor heat exchanger 2. The LEV 8 is a valve whose valve opening can be adjusted according to the level of a control signal from the control mechanism, and is used for adjusting the flow rate of the bypass pipe 12.

【0019】図2は、この冷房運転時における高圧圧力
抑制制御の流れを示すフローチャートである。図に示す
ように、本実施形態の空気調和機の制御機構は、高圧圧
力センサ5の圧力計測値を常時モニタし、その計測値が
圧力異常上昇の判断基準となる所定値を超えたか否かを
判定する(S10)。ここで、圧力計測値が所定値以下
と判定された場合は、高圧側回路の圧力が正常範囲にあ
るので、LEV8及び電磁弁9が閉状態に制御される
(S12)。この場合、冷媒は図1の実線矢印に沿って
通常の冷媒配管を流れ、バイパス管路12には流れな
い。
FIG. 2 is a flow chart showing the flow of the high pressure suppression control during the cooling operation. As shown in the figure, the control mechanism of the air conditioner of the present embodiment constantly monitors the pressure measurement value of the high-pressure pressure sensor 5 and determines whether or not the measurement value exceeds a predetermined value serving as a criterion for determining abnormal pressure rise. Is determined (S10). Here, when it is determined that the measured pressure value is equal to or less than the predetermined value, the pressure of the high-pressure side circuit is within the normal range, and the LEV 8 and the solenoid valve 9 are controlled to be closed (S12). In this case, the refrigerant flows through the normal refrigerant pipe along the solid line arrow in FIG.

【0020】これに対し、S10で高圧圧力センサ5の
圧力計測値が所定値以上と判定された場合は、LEV8
を開く(S14)とともに電磁弁9を開く(S16)。
これにより、バイパス管路12が導通状態となり、室外
熱交換器2から出力された液状冷媒の一部がバイパス管
路12を通って室内熱交換器4の下流側にバイパスされ
る(図1の破線矢印で示す流れ)。この結果冷媒の一部
がバイパス管路を流れ、通常の冷媒管路を通る冷媒の量
が少なくなり、高圧側回路の圧力上昇が緩和される。こ
の構成では、バイパスされる液状冷媒は、室外熱交換器
2の内部の管路部分12aで、通常の冷媒管路15内を
流れる冷媒と熱交換を行い、管路15内の冷媒をバイパ
ス動作前よりも強力に冷却する。これにより、室外熱交
換器2から出力される液状冷媒の過冷却度が高まる。し
たがって、バイパス動作により冷媒管路の冷媒循環量が
減るものの、室外熱交換器2の出力冷媒の過冷却度が高
まるため、冷房能力の低下が軽減される。
On the other hand, if it is determined in S10 that the pressure measurement value of the high pressure sensor 5 is equal to or greater than the predetermined value, the LEV8
Is opened (S14) and the solenoid valve 9 is opened (S16).
Thereby, the bypass pipe 12 becomes conductive, and a part of the liquid refrigerant output from the outdoor heat exchanger 2 is bypassed to the downstream side of the indoor heat exchanger 4 through the bypass pipe 12 (see FIG. 1). The flow indicated by the dashed arrow). As a result, a part of the refrigerant flows through the bypass pipe, the amount of the refrigerant passing through the normal refrigerant pipe decreases, and the pressure increase in the high-pressure side circuit is reduced. In this configuration, the bypassed liquid refrigerant exchanges heat with the refrigerant flowing in the normal refrigerant pipe 15 in the pipe section 12 a inside the outdoor heat exchanger 2, and bypasses the refrigerant in the pipe 15. Cool more than before. Thereby, the degree of supercooling of the liquid refrigerant output from the outdoor heat exchanger 2 increases. Therefore, although the amount of circulating refrigerant in the refrigerant pipe is reduced by the bypass operation, the degree of supercooling of the refrigerant output from the outdoor heat exchanger 2 is increased, so that a decrease in cooling capacity is reduced.

【0021】本実施形態では、S14のLEV8の開制
御において、LEV8の弁開度が圧力計測値の大きさに
基づき制御される。すなわち、制御機構には、LEV8
の適切な弁開度が高圧側回路の圧力値の関数として登録
されており、この関数に従って適切な弁開度が計算され
る。この関数は、高圧圧力値が大きくなるほど大きくな
る関数であり、例えば圧力値に比例する関数を用いるこ
ともできる。このような関数に応じてLEV8の開度を
調節することにより、高圧側の圧力が高くなるほどバイ
パスする冷媒の量を増やし、圧力上昇抑制効果を高める
ことができる。この場合、圧力計測値が大きくなると、
室外熱交換器2内の管路部分12aを流れる液状冷媒の
量が増え、通常の冷媒管路15を流れる高圧冷媒の冷却
作用が高まるので、冷媒回路を流れる冷媒の量の減少に
伴う冷房能力の低下を軽減することができる。
In the present embodiment, in the opening control of the LEV 8 in S14, the valve opening of the LEV 8 is controlled based on the magnitude of the pressure measurement value. That is, the control mechanism includes the LEV8
Is registered as a function of the pressure value of the high-pressure side circuit, and the appropriate valve opening is calculated according to this function. This function is a function that increases as the high pressure value increases. For example, a function proportional to the pressure value can be used. By adjusting the opening of the LEV 8 in accordance with such a function, the higher the pressure on the high pressure side, the greater the amount of refrigerant to be bypassed, and the greater the effect of suppressing pressure rise. In this case, if the pressure measurement increases,
Since the amount of the liquid refrigerant flowing through the pipe portion 12a in the outdoor heat exchanger 2 increases, and the cooling effect of the high-pressure refrigerant flowing through the normal refrigerant pipe 15 increases, the cooling capacity accompanying the decrease in the amount of the refrigerant flowing through the refrigerant circuit is reduced. Can be reduced.

【0022】以上説明したように、本実施形態によれ
ば、冷房運転時の高圧側回路の圧力上昇抑制を、冷房能
力の低下を従来よりも軽減しつつ実現することができ
る。
As described above, according to the present embodiment, it is possible to suppress the increase in the pressure of the high-pressure side circuit during the cooling operation while reducing the decrease in the cooling capacity as compared with the related art.

【0023】図3は、本実施形態の空気調和機の暖房運
転時の冷媒回路を示す図である。暖房運転時には、四方
弁7の接続が図3に示すように切り換えられる。これに
より圧縮機1から出力された高圧冷媒が室内熱交換器4
に供給され、室内熱交換器4での熱交換により室内が暖
房される。室内熱交換器4で凝縮された液状冷媒は、膨
張弁3で減圧され、室外熱交換器2で気化することによ
り外気より熱を奪い、圧縮機1に戻ってふたたび圧縮さ
れる。
FIG. 3 is a diagram showing a refrigerant circuit during a heating operation of the air conditioner of the present embodiment. During the heating operation, the connection of the four-way valve 7 is switched as shown in FIG. Thereby, the high-pressure refrigerant output from the compressor 1 is transferred to the indoor heat exchanger 4.
And the room is heated by heat exchange in the indoor heat exchanger 4. The liquid refrigerant condensed in the indoor heat exchanger 4 is decompressed by the expansion valve 3, vaporized in the outdoor heat exchanger 2, takes heat from the outside air, returns to the compressor 1, and is compressed again.

【0024】図4は、この暖房運転時における霜取り運
転制御の流れを示している。まず、本空気調和機の制御
機構は、配管温度センサ6の温度計測値を常時モニタ
し、その計測値が着霜・着氷の判断基準となる所定値を
超えたか否かを判定する(S20)。ここで、温度計測
値が所定値以下と判定された場合は、着霜・着氷は起こ
っていないと判断され、LEV8及び電磁弁9が閉状態
に制御される(S22)。この場合、冷媒は図3の実線
矢印に沿って通常の冷媒配管を流れ、バイパス管路12
には流れない。
FIG. 4 shows a flow of the defrosting operation control during the heating operation. First, the control mechanism of the present air conditioner constantly monitors the temperature measurement value of the pipe temperature sensor 6 and determines whether or not the measured value has exceeded a predetermined value serving as a criterion for frosting / icing (S20). ). Here, when it is determined that the measured temperature value is equal to or less than the predetermined value, it is determined that frost and icing have not occurred, and the LEV 8 and the solenoid valve 9 are controlled to be closed (S22). In this case, the refrigerant flows through the normal refrigerant pipe along the solid arrow in FIG.
Does not flow to

【0025】これに対し、S20で配管温度センサ6の
圧力計測値が所定値以上と判定された場合は、LEV8
を全開にする(S24)とともに電磁弁9を開く(S2
6)。これにより、バイパス管路12が導通状態とな
り、室内熱交換器4の上流の高温高圧の冷媒の一部がバ
イパス管路12を通って室外熱交換器2の上流側にバイ
パスされる(図3の破線矢印で示す流れ)。これによ
り、高温高圧の冷媒の一部が、室外熱交換器2の内部の
管路部分12aを通り、その結果室外熱交換器2が暖め
られ、霜取り効果が得られる。
On the other hand, if it is determined in S20 that the measured pressure value of the pipe temperature sensor 6 is equal to or greater than the predetermined value, the LEV8
Is fully opened (S24) and the solenoid valve 9 is opened (S2).
6). Thereby, the bypass pipe 12 becomes conductive, and a part of the high-temperature and high-pressure refrigerant upstream of the indoor heat exchanger 4 is bypassed to the upstream side of the outdoor heat exchanger 2 through the bypass pipe 12 (FIG. 3). Flow indicated by a broken line arrow). As a result, part of the high-temperature and high-pressure refrigerant passes through the pipe portion 12a inside the outdoor heat exchanger 2, and as a result, the outdoor heat exchanger 2 is warmed, and a defrosting effect is obtained.

【0026】このように、本実施形態では、暖房サイク
ルのまま霜取りを行うことができるので、霜取り時に室
内に冷風が吹き出すことがなくなる。
As described above, in the present embodiment, defrosting can be performed while the heating cycle is being performed, so that cold air does not blow into the room during defrosting.

【0027】以上、本発明の好適な実施の形態を説明し
た。以上の説明から明らかなように、本実施形態の空気
調和機は、冷房運転時の高圧圧力抑制と冷風の吹き出さ
ない霜取り運転とを同一の回路で実現したことにより、
製造コストの低減が図れる。
The preferred embodiment of the present invention has been described above. As is clear from the above description, the air conditioner of the present embodiment realizes the high-pressure suppression during the cooling operation and the defrosting operation without blowing the cool air in the same circuit,
Manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態の空気調和機の冷房運転時
の冷媒回路を示す図である。
FIG. 1 is a diagram illustrating a refrigerant circuit during a cooling operation of an air conditioner according to an embodiment of the present invention.

【図2】 冷房運転時における高圧圧力抑制制御の流れ
を示すフローチャートである。
FIG. 2 is a flowchart showing a flow of high-pressure suppression control during a cooling operation.

【図3】 実施形態の空気調和機の暖房運転時の冷媒回
路を示す図である。
FIG. 3 is a diagram illustrating a refrigerant circuit during a heating operation of the air conditioner according to the embodiment.

【図4】 暖房運転時における霜取り運転制御の流れを
示すフローチャートである。
FIG. 4 is a flowchart showing a flow of defrosting operation control during a heating operation.

【図5】 従来の空気調和機の冷媒回路を示す図であるFIG. 5 is a diagram showing a refrigerant circuit of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 室外熱交換器、3 膨張弁、4 室内
熱交換器、5 高圧圧力センサ、6 配管温度センサ、
7 四方弁、8 電子式リニア膨張弁(LEV)、9
電磁弁、10 キャピラリーチューブ、11 バイパス
用電磁弁、12,13 バイパス管路。
1 compressor, 2 outdoor heat exchanger, 3 expansion valve, 4 indoor heat exchanger, 5 high pressure sensor, 6 pipe temperature sensor,
7 Four-way valve, 8 Electronic linear expansion valve (LEV), 9
Solenoid valve, 10 capillary tube, 11 solenoid valve for bypass, 12, 13 bypass line.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年9月24日(1999.9.2
4)
[Submission date] September 24, 1999 (1999.9.2)
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】冷房運転時において、室外熱交換器2が汚
れたり、室外温度が上昇したりすると、冷媒回路の高圧
側、すなわち圧縮機1の出力から室外熱交換器2を経て
膨張弁3に至るまでの経路の圧力が上昇しすぎる場合が
ある。この従来装置では、圧縮機1の出力に設けた高圧
圧力センサ5により高圧側の圧力をモニタし、その圧力
が所定のしきい値を超えた場合に、バイパス用電磁弁1
1を開くことにより高圧側の冷媒の一部を低圧側、すな
わち膨張弁3の下流にバイパスし、高圧側の圧力の異常
上昇を抑制している。
During the cooling operation, if the outdoor heat exchanger 2 becomes dirty or the outdoor temperature rises, the refrigerant reaches the expansion valve 3 from the high pressure side of the refrigerant circuit, that is, the output of the compressor 1 via the outdoor heat exchanger 2. In some cases, the pressure in the path to the path may rise too much. In this conventional apparatus, the high pressure side pressure is monitored by a high pressure sensor 5 provided at the output of the compressor 1, and when the pressure exceeds a predetermined threshold, the bypass solenoid valve 1 is monitored.
By opening 1, a part of the refrigerant on the high pressure side is bypassed to the low pressure side, that is, downstream of the expansion valve 3, and an abnormal rise in pressure on the high pressure side is suppressed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外熱交換器、膨張機
構、室内熱交換器を順次連通してなる冷媒回路を備え、
四方弁の切換により冷房運転と暖房運転の切換が可能な
空気調和機であって、 室外熱交換器と膨張機構との間から分岐し、室外熱交換
器内の冷媒流路の近傍経路を通って、室内熱交換器と四
方弁との間に接続されるバイパス流路と、 前記バイパス流路に設けられた開閉弁と、 圧縮機の吐出部から四方弁までの間に設けられた高圧圧
力センサと、 冷房運転時に前記高圧圧力センサの圧力計測値が所定値
を超えたときに、前記開閉弁を開いて前記室外熱交換器
から出力された冷媒を前記室内熱交換器後段にバイパス
させる高圧抑制制御手段と、 を有する空気調和機。
A refrigerant circuit that sequentially communicates a compressor, a four-way valve, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger;
An air conditioner capable of switching between a cooling operation and a heating operation by switching a four-way valve. The air conditioner branches from between an outdoor heat exchanger and an expansion mechanism and passes through a route near a refrigerant flow path in the outdoor heat exchanger. A bypass flow path connected between the indoor heat exchanger and the four-way valve; an on-off valve provided in the bypass flow path; and a high-pressure pressure provided between the discharge part of the compressor and the four-way valve. A high-pressure sensor that opens the on-off valve and bypasses the refrigerant output from the outdoor heat exchanger to a downstream stage of the indoor heat exchanger when a pressure measurement value of the high-pressure pressure sensor exceeds a predetermined value during a cooling operation. An air conditioner comprising: a suppression control unit.
【請求項2】 前記高圧圧力センサの圧力計測値が前記
所定値を超えたときにその圧力計測値に応じた弁開度で
開動作する調節弁を、前記バイパス流路における前記室
外熱交換器と前記膨張機構との間の分岐部分から前記室
外熱交換器の冷媒流路の近傍部分までの間に設けたこと
を特徴とする請求項1記載の空気調和機。
2. The outdoor heat exchanger in the bypass passage, wherein a control valve that opens at a valve opening corresponding to the pressure measurement value when the pressure measurement value of the high pressure sensor exceeds the predetermined value. 2. The air conditioner according to claim 1, wherein the air conditioner is provided between a branch portion between the heat exchanger and the expansion mechanism and a portion near a refrigerant flow path of the outdoor heat exchanger. 3.
【請求項3】 暖房運転時に霜取り運転条件が満足され
た場合に前記開閉弁を開く制御手段を更に有することを
特徴とする請求項1記載の空気調和機。
3. The air conditioner according to claim 1, further comprising a control unit that opens the on-off valve when a defrosting operation condition is satisfied during a heating operation.
JP11173546A 1999-06-21 1999-06-21 Air conditioner Pending JP2001004234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11173546A JP2001004234A (en) 1999-06-21 1999-06-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11173546A JP2001004234A (en) 1999-06-21 1999-06-21 Air conditioner

Publications (1)

Publication Number Publication Date
JP2001004234A true JP2001004234A (en) 2001-01-12

Family

ID=15962546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11173546A Pending JP2001004234A (en) 1999-06-21 1999-06-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP2001004234A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100009B1 (en) 2007-12-13 2011-12-28 엘지전자 주식회사 Air conditioning system
CN104813123A (en) * 2012-11-29 2015-07-29 三菱电机株式会社 Air-conditioning device
CN113883659A (en) * 2021-09-28 2022-01-04 青岛海尔中央空调有限公司 Air conditioner control method and device and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100009B1 (en) 2007-12-13 2011-12-28 엘지전자 주식회사 Air conditioning system
CN104813123A (en) * 2012-11-29 2015-07-29 三菱电机株式会社 Air-conditioning device
CN104813123B (en) * 2012-11-29 2017-09-12 三菱电机株式会社 Conditioner
CN113883659A (en) * 2021-09-28 2022-01-04 青岛海尔中央空调有限公司 Air conditioner control method and device and air conditioner

Similar Documents

Publication Publication Date Title
JP3541394B2 (en) Air conditioner
EP1659348B1 (en) Freezing apparatus
JP4654828B2 (en) Air conditioner
KR100821728B1 (en) Air conditioning system
KR950014470B1 (en) Air conditioning apparatus in which one outdoor unit is connected to one or a plurality of indoor units
JP5310101B2 (en) Air conditioner
WO2007091566A1 (en) Refrigerant heating device
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
JP2007107853A (en) Air conditioner
JP2001004234A (en) Air conditioner
JPH08159621A (en) Air conditioner
JP2526716B2 (en) Air conditioner
JPH08166183A (en) Air-conditioning equipment
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JPH06317360A (en) Multi-chamber type air conditioner
JP2002081807A (en) Refrigerating device
JP2550762B2 (en) Air conditioner
JPH09257345A (en) Heat pump air-conditioner
JPH03122460A (en) Operating controller for refrigerating machine
JP4186399B2 (en) Heat pump air conditioner
JPH0755280A (en) Air conditioning system
JPH07117323B2 (en) Air conditioner
JPS6399472A (en) Air conditioner
JP2001108256A (en) Hot water supplying device
KR100218469B1 (en) Defrost system of heat pump