JP2001002888A - Production of phenolic resin molding material - Google Patents
Production of phenolic resin molding materialInfo
- Publication number
- JP2001002888A JP2001002888A JP16947499A JP16947499A JP2001002888A JP 2001002888 A JP2001002888 A JP 2001002888A JP 16947499 A JP16947499 A JP 16947499A JP 16947499 A JP16947499 A JP 16947499A JP 2001002888 A JP2001002888 A JP 2001002888A
- Authority
- JP
- Japan
- Prior art keywords
- phenolic resin
- component
- molding material
- weight
- resin molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、射出成形において
成形品重量変動率が小さく、成形品の寸法精度、疲労強
度及び耐摩耗性に優れたフェノール樹脂成形材料の製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a phenolic resin molding material having a small variation in weight of a molded article in injection molding and having excellent dimensional accuracy, fatigue strength and abrasion resistance of the molded article.
【0002】[0002]
【従来の技術】フェノール樹脂成形材料は耐熱性、電気
特性、機械的特性、寸法安定性などのバランスに優れ、
自動車の機構部品を始めとして広範囲の分野に利用され
ている。自動車の機構部品には、荷重が繰り返し部品に
かかるため疲労強度が要求され、また樹脂部品と金属部
品とが摺動し寸法性能及び耐摩耗特性が要求される。こ
のため、かかる用途には従来より比較的高強度で耐摩耗
性の優れた綿織物粉砕物を配合した木粉系フェノール樹
脂成形材料が用いられている。しかし、昨今の機構部品
に要求される疲労強度は、より高く厳しいものとなって
おり、従来の綿織物粉砕物を配合した木粉系フェノール
樹脂成形材料では疲労強度が十分でない。これらの問題
を解決するために、ガラス系フェノール樹脂成形材料を
用いたが、疲労強度は向上するものの耐摩耗特性が悪化
し、実用に供することは困難である。2. Description of the Related Art Phenolic resin molding materials have an excellent balance of heat resistance, electrical properties, mechanical properties, dimensional stability, etc.
It is used in a wide range of fields, including mechanical parts for automobiles. A mechanical component of an automobile is required to have a fatigue strength because a load is repeatedly applied to the component, and a resin component and a metal component are required to have dimensional performance and wear resistance due to sliding. For this reason, a wood flour-based phenolic resin molding material containing a crushed cotton fabric material having relatively high strength and excellent wear resistance has been used for such applications. However, the fatigue strength required for recent mechanical parts has become higher and more severe, and the conventional wood-powder-based phenolic resin molding material containing a crushed cotton fabric has insufficient fatigue strength. In order to solve these problems, a glass-based phenolic resin molding material is used. However, although the fatigue strength is improved, the abrasion resistance characteristics are deteriorated, and it is difficult to put to practical use.
【0003】また、一般の木粉系フェノール樹脂成形材
料は、シリンダ内で可塑化された状態でも比較的粘度が
高く、高圧力で金型内に射出されるためクッション成形
はなされていない。そのため、計量値のバラツキが大き
く、過剰の重量が射出された場合、成形品に残留応力が
多く残り金型から取り出し後の冷却過程において反りが
生じたり、バリの発生が多くなる。また、射出重量が少
ないときは成形品にカスレが生じ、良品が得られないこ
とがある。従来これらの問題を解決するために、成形材
料の溶融粘度の低下、すなわち流動性を高くし、射出圧
力を低くしてクッション成形をすることがある。この場
合、バリの発生は低減できるものの、成形サイクルが長
くなったり、成形品形状によっては低粘度化による成形
品内部で繊維の配向が生じ、成形品に異方性が生じて寸
法精度が低下するなど、実用に供することは困難であ
る。[0003] Further, general wood flour-based phenolic resin molding materials have a relatively high viscosity even in a plasticized state in a cylinder, and are injected into a mold under high pressure, so that cushion molding is not performed. For this reason, when the measured value has a large variation and an excessive weight is injected, the molded product has a large residual stress, and the molded product is warped in the cooling process after being taken out of the mold and burrs are increased. In addition, when the injection weight is small, the molded product may be blurred and a good product may not be obtained. Conventionally, in order to solve these problems, cushion molding may be performed by lowering the melt viscosity of the molding material, that is, increasing the fluidity and lowering the injection pressure. In this case, although the generation of burrs can be reduced, the molding cycle becomes longer, and depending on the shape of the molded product, the orientation of the fibers occurs inside the molded product due to the low viscosity, and the anisotropy occurs in the molded product, and the dimensional accuracy decreases. It is difficult to put it to practical use.
【0004】[0004]
【発明が解決しようとする課題】本発明は、これらの問
題を解決するため種々の検討の結果なされたものであ
り、その目的とするところは、射出成形において成形品
重量変動率が小さく、成形品寸法、疲労強度及び耐摩耗
性に優れたフェノール樹脂成形材料の製造方法を提供す
るところにある。The present invention has been made as a result of various studies to solve these problems, and it is an object of the present invention to reduce the rate of change in the weight of a molded article by injection molding and to reduce the molding rate. It is an object of the present invention to provide a method for producing a phenolic resin molding material having excellent product dimensions, fatigue strength and wear resistance.
【0005】[0005]
【課題が解決するための手段】本発明は、(a)フェノ
ール樹脂、(b)ガラス繊維及び(c)綿織物粉砕物を
溶融混練し、冷却後粉砕した後に、(d)カルナバワッ
クスを混合することを特徴とするフェノール樹脂成形材
料の製造方法に関するものであり、成形品寸法安定性、
疲労強度及び耐摩耗性に優れたフェノール樹脂成形材料
の製造方法を提供するものである。According to the present invention, (a) a phenolic resin, (b) glass fiber and (c) a crushed cotton fabric are melt-kneaded, cooled, pulverized, and then mixed with (d) carnauba wax. The present invention relates to a method for producing a phenolic resin molding material, characterized in that
An object of the present invention is to provide a method for producing a phenolic resin molding material having excellent fatigue strength and wear resistance.
【0006】本発明において、(a)フェノール樹脂は
通常のフェノール樹脂成形材料に使用されているもので
あれば良く、ノボラック型、レゾール型ともに使用でき
る。ノボラック型フェノール樹脂を使用する場合は通常
硬化剤としてヘキサメチレンテトラミンを使用する。フ
ェノール樹脂の数平均分子量は600〜1500が好ま
しい。600より小さいと成形材料の低粘度化により、
成形品の寸法に異方性が生じやすく、1500以上で
は、流動性が充分に得られず成形不良が生じやすい。In the present invention, the phenolic resin (a) may be any one used in ordinary phenolic resin molding materials, and can be used in both novolak type and resol type. When a novolak-type phenol resin is used, hexamethylenetetramine is usually used as a curing agent. The number average molecular weight of the phenol resin is preferably from 600 to 1500. If it is smaller than 600, the viscosity of the molding material is reduced,
If the size of the molded article is likely to be anisotropic, if it is 1500 or more, sufficient fluidity cannot be obtained, and molding failure tends to occur.
【0007】本発明に使用する(b)ガラス繊維は、従
来使用されているガラス繊維であり、通常繊維径15μ
m以下、繊維長0.1mm〜3mmのものが用いられ
る。ただし繊維径が2μm未満のものは製造が困難で一
般には市販されていない。15μmを越えると、金属に
対する摩擦抵抗が大きくなり金属及び樹脂成形品が大き
く摩耗するようになる。また繊維長が0.1mm未満で
は疲労強度の向上効果が小さく、3mmを越えると、金
属に対する摩擦抵抗が大きくなり金属及び樹脂成形品が
大きく摩耗するようになる。(b)ガラス繊維の配合量
は成形材料全体の5〜15重量%が好ましい。5重量%
未満では疲労強度の向上効果が小さく、15重量%を超
えると耐摩耗性が低下するようになる。The glass fiber (b) used in the present invention is a conventionally used glass fiber and usually has a fiber diameter of 15 μm.
m and a fiber length of 0.1 mm to 3 mm are used. However, those having a fiber diameter of less than 2 μm are difficult to produce and are not generally commercially available. If it exceeds 15 μm, the frictional resistance against the metal will increase, and the metal and resin molded products will be greatly worn. If the fiber length is less than 0.1 mm, the effect of improving the fatigue strength is small. If the fiber length is more than 3 mm, the frictional resistance against the metal increases, and the metal and resin molded articles wear significantly. (B) The compounding amount of the glass fiber is preferably 5 to 15% by weight of the whole molding material. 5% by weight
If it is less than 15%, the effect of improving the fatigue strength will be small, and if it exceeds 15% by weight, the wear resistance will decrease.
【0008】本発明に使用する(c)綿織物粉砕物は、
繊維長が0.2〜3.0mmのものが好ましい。0.2
mm未満では耐摩耗性及び疲労強度が向上せず、3.0
mmを超えると材料化段階での作業性が困難であり、ま
た見掛け密度が低下するようになる。(c)綿織物粉砕
物の配合量は成形材料全体の3〜10重量%が好まし
い。3重量%未満では疲労強度が低下し、10重量%を
超えると、成形材料化段階での作業性が低下し、また得
られた成形材料の見掛け密度が低下するようになる。The crushed cotton fabric (c) used in the present invention comprises:
Those having a fiber length of 0.2 to 3.0 mm are preferred. 0.2
If it is less than 3.0 mm, the wear resistance and fatigue strength are not improved, and
If it exceeds mm, workability in the materialization stage is difficult, and the apparent density decreases. (C) The blending amount of the crushed cotton fabric is preferably 3 to 10% by weight of the whole molding material. If it is less than 3% by weight, the fatigue strength is reduced, and if it exceeds 10% by weight, the workability at the stage of forming the molding material is reduced, and the apparent density of the obtained molding material is reduced.
【0009】本発明のフェノール樹脂成形材料は、基材
としてガラス繊維と綿織物粉砕物を配合した樹脂材料を
使用しているが、これらの基材はともに疲労強度を向上
させ、殊にガラス繊維が疲労強度の向上に大きく寄与
し、綿織物粉砕物が耐摩耗性の向上に寄与している。従
って、これらの基材を適量配合することにより、疲労強
度及び耐摩耗性の優れたフェノール樹脂成形材料を得る
ことができる。The phenolic resin molding material of the present invention uses, as a base material, a resin material in which glass fiber and a crushed cotton fabric are blended. Both of these base materials have improved fatigue strength. It greatly contributes to the improvement of the fatigue strength, and the crushed cotton fabric contributes to the improvement of the wear resistance. Therefore, a phenol resin molding material having excellent fatigue strength and abrasion resistance can be obtained by mixing these base materials in appropriate amounts.
【0010】本発明は、(d)カルナバワックスを、
(a)フェノール樹脂、(b)ガラス繊維及び(c)綿
織物粉砕物を溶融混練し、冷却し粉砕した後に添加混合
することを特徴とする。カルナバワックスが混合される
前のフェノール樹脂成形材料は、110℃における溶融
粘度が1〜5×103 Pa・s程度であり、一般の木粉
を充填材としたフェノール樹脂成形材料と同等の溶融粘
度を有する。カルナバワックスが混合された後では11
0℃における溶融粘度が1〜9×102 Pa・s程度に
低下する。これは、フェノール樹脂成形材料が低粘度に
なるのではなく、粘度測定器の壁面とフェノール樹脂成
形材料の界面にカルナバワックスが存在することにより
滑り効果が生じ、見掛けの粘度を下げる作用があるから
である。The present invention provides (d) carnauba wax,
It is characterized in that (a) a phenolic resin, (b) glass fiber and (c) a crushed cotton fabric are melt-kneaded, cooled, pulverized, and then added and mixed. The phenolic resin molding material before mixing with carnauba wax has a melt viscosity at 110 ° C. of about 1 to 5 × 10 3 Pa · s, which is equivalent to that of a phenolic resin molding material using general wood flour as a filler. Has viscosity. 11 after carnauba wax is mixed
The melt viscosity at 0 ° C. drops to about 1 to 9 × 10 2 Pa · s. This is because the phenolic resin molding material does not have a low viscosity, but the presence of carnauba wax at the interface between the wall surface of the viscometer and the phenolic resin molding material has a slipping effect and has the effect of lowering the apparent viscosity. It is.
【0011】従って、カルナバワックスは、射出成形機
シリンダ内で成形材料が可塑化計量される際にスクリュ
ーとシリンダ壁から受けるせん断による発熱を軽減す
る。そして、射出成形時に成形材料の見掛けの粘度を下
げるため低圧成形が可能となり、クッション成形が実現
される。また、150〜200℃ではフェノール樹脂成
形材料の硬化を妨げない。このため、低圧成形時の金型
内では、成形品の残留応力が少なく、また金型内での溶
融粘度は一般のフェノール樹脂成形材料と同様であり、
配向が生じにくい。これらのことから、成形時バリの発
生が少なく、成形品の寸法精度が良好である。カルナバ
ワックスの添加量は、通常、他の材料の合計100重量
部に対して、0.1〜1.0重量部配合して用いられ
る。添加量が、0.1重量部より少ないと上述の作用が
小さく、1.0重量部より多いと材料の滑りが大きく可
塑化計量が困難となる。Accordingly, the carnauba wax reduces heat generated by shearing from the screw and the cylinder wall when the molding material is plasticized and measured in the cylinder of the injection molding machine. Then, low pressure molding becomes possible to reduce the apparent viscosity of the molding material during injection molding, and cushion molding is realized. Further, at 150 to 200 ° C., the curing of the phenolic resin molding material is not prevented. For this reason, in the mold at the time of low pressure molding, the residual stress of the molded article is small, and the melt viscosity in the mold is the same as that of a general phenol resin molding material,
Orientation is unlikely to occur. From these, burrs are less generated during molding, and the dimensional accuracy of the molded product is good. The amount of carnauba wax added is usually 0.1 to 1.0 part by weight based on 100 parts by weight of other materials in total. When the addition amount is less than 0.1 part by weight, the above-mentioned action is small, and when the addition amount is more than 1.0 part by weight, the sliding of the material is large and the plasticization measurement becomes difficult.
【0012】また、本発明のフェノール樹脂成形材料に
は、更に木粉、パルプ粉、各種織物粉砕物、フェノール
樹脂積層板や成形品の粉砕物などの有機充填材、タル
ク、クレー、マイカ、炭酸カルシウム、カーボンなどの
無機充填材を1種以上を用いることができる。本発明の
フェノール樹脂成形材料中の配合割合は、樹脂成分が2
0〜70重量%、充填材が80〜30重量%である。ま
た、本発明のフェノール樹脂成形材料には、更に滑剤、
着色剤、硬化促進剤、難燃剤などの各種添加剤を適宜配
合することができる。Further, the phenolic resin molding material of the present invention further includes organic fillers such as wood powder, pulp powder, pulverized various fabrics, pulverized phenolic resin laminates and pulverized products, talc, clay, mica, carbonic acid and the like. One or more inorganic fillers such as calcium and carbon can be used. The mixing ratio in the phenolic resin molding material of the present invention is such that the resin component is 2%.
0 to 70% by weight, and the filler is 80 to 30% by weight. Further, the phenolic resin molding material of the present invention further comprises a lubricant,
Various additives such as a coloring agent, a curing accelerator, and a flame retardant can be appropriately compounded.
【0013】本発明のフェノール樹脂成形材料は、樹脂
成分、充填材、その他の添加剤を配合し、ロール、2軸
混練機などで混練し、冷却後粉砕してから、カルナバワ
ックスをミキサーなどで混合して製造することができ
る。The phenolic resin molding material of the present invention is prepared by mixing a resin component, a filler, and other additives, kneading them with a roll, a twin-screw kneader, cooling, pulverizing, and then mixing carnauba wax with a mixer. It can be manufactured by mixing.
【0014】[0014]
【実施例】以下実施例により本発明を説明する。配合に
おいて「部」は重量部である。表1に示す配合(重量
部)にて、加熱ロールにより混練してフェノール樹脂成
形材料を得た。表1の配合のうち、カルナバワックス
は、他の配合物をロール混練し、粉砕後に添加混合し
た。EXAMPLES The present invention will be described below with reference to examples. In the formulations, "parts" are parts by weight. The phenol resin molding material was obtained by kneading with a mixture (parts by weight) shown in Table 1 using a heating roll. Of the formulations in Table 1, carnauba wax was prepared by roll-kneading other formulations, adding and mixing after pulverization.
【0015】[0015]
【表1】 [Table 1]
【0016】(測定方法) 1.溶融粘度:島津フローテスター(島津製作所CFT
−500C)によって110℃での成形材料の粘度を測
定した。(溶融粘度の単位Pa・s) 2.重量変動率:射出成形で得られた成形品の重量変動
率(測定個数n=100)を測定したものを示した。 重量変動率=(100個の標準偏差/平均重量)×10
0(%) 3.疲労強度:JIS K 6911による曲げ強さの測
定方法において、荷重を6Kgf とし、試験片に繰り返し
荷重を加えて、破壊するまでの回数を示した。 4.耐摩耗性:鈴木式摩耗評価で、フェノール樹脂成形
品と金属(S−55C)を摺動させ、金属の摩耗量を示
した。(単位:mg、荷重:5kgf/cm2、周速:100m
m/秒、試験時間1時間) 5.寸法精度:φ50mmの円盤を成形し、その真円度
を三次元測定器で測定し、真円度が0.1mm未満を
○、0.1mm以上を×とした。なお、疲労強度、耐摩
耗性及び寸法精度試験用成形品は、トランスファー成形
(175℃、3分)にて作製した。(Measurement method) Melt viscosity: Shimadzu flow tester (CFT, Shimadzu Corporation)
The viscosity of the molding material at 110 ° C. was measured according to −500 C). (Unit of melt viscosity Pa · s) Weight change rate: The value obtained by measuring the weight change rate (measured number n = 100) of the molded product obtained by injection molding is shown. Weight fluctuation rate = (100 standard deviations / average weight) × 10
0 (%) Fatigue strength: In the method of measuring bending strength according to JIS K 6911, the load was set to 6 kgf, and the number of times until a test piece was repeatedly applied with a load to break was shown. 4. Abrasion resistance: In a Suzuki-type abrasion evaluation, a phenolic resin molded product and a metal (S-55C) were slid, and the amount of abrasion of the metal was indicated. (Unit: mg, load: 5 kgf / cm 2 , peripheral speed: 100 m
m / s, test time 1 hour) Dimensional accuracy: A disk having a diameter of 50 mm was formed, and its circularity was measured with a three-dimensional measuring device. The circularity was less than 0.1 mm, and the circularity was 0.1 mm or more. The molded products for the fatigue strength, wear resistance and dimensional accuracy tests were produced by transfer molding (175 ° C., 3 minutes).
【0017】[0017]
【発明の効果】上記の実施例からも明らかなように、本
発明の製造方法により得られたフェノール樹脂成形材料
は、射出成形において成形品重量変動率が小さく、成形
品の寸法精度、疲労強度及び耐摩耗性に優れている。こ
のため、自動車等の機構部品に適している。また、射出
成形時にシリンダ内での見掛けの粘度が低いため、一般
に熱可塑性樹脂成形材料の射出成形に用いられる逆流防
止リングを設けたスクリューを備えた成形機によっても
成形できる。また、低圧で成形できるため、バリの発生
を抑えることが出来る。As is clear from the above examples, the phenolic resin molding material obtained by the production method of the present invention has a small rate of weight variation of the molded article in the injection molding, the dimensional accuracy of the molded article, and the fatigue strength. And excellent wear resistance. Therefore, it is suitable for mechanical parts such as automobiles. In addition, since the apparent viscosity in the cylinder during injection molding is low, molding can be performed by a molding machine having a screw provided with a backflow prevention ring generally used for injection molding of a thermoplastic resin molding material. Further, since molding can be performed at a low pressure, generation of burrs can be suppressed.
Claims (2)
維及び(c)綿織物粉砕物を溶融混練し、冷却後粉砕し
た後に、(d)カルナバワックスを混合することを特徴
とするフェノール樹脂成形材料の製造方法。1. A phenolic resin molding characterized in that (a) a phenolic resin, (b) glass fiber and (c) a crushed cotton fabric are melt-kneaded, cooled and ground, and then mixed with (d) carnauba wax. Material manufacturing method.
料の合計量100重量部に対して0.1〜1.0重量部
である請求項1記載のフェノール樹脂成形材料の製造方
法。2. The method for producing a phenolic resin molding material according to claim 1, wherein the amount of (d) carnauba wax is 0.1 to 1.0 part by weight based on 100 parts by weight of the total amount of other materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16947499A JP2001002888A (en) | 1999-06-16 | 1999-06-16 | Production of phenolic resin molding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16947499A JP2001002888A (en) | 1999-06-16 | 1999-06-16 | Production of phenolic resin molding material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001002888A true JP2001002888A (en) | 2001-01-09 |
Family
ID=15887236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16947499A Pending JP2001002888A (en) | 1999-06-16 | 1999-06-16 | Production of phenolic resin molding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001002888A (en) |
-
1999
- 1999-06-16 JP JP16947499A patent/JP2001002888A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005048009A (en) | Phenolic resin molding compound | |
JP2001002888A (en) | Production of phenolic resin molding material | |
JP2000344999A (en) | Production of phenolic resin forming material | |
JP2002265752A (en) | Phenolic resin molding material | |
JP3906657B2 (en) | Phenolic resin molding material and pulley | |
JP2755902B2 (en) | Injection molding method of phenolic resin molding material | |
JP3233785B2 (en) | Injection molding method of phenolic resin molding material | |
JPH07278409A (en) | Phenolic resin molding material | |
JP2771457B2 (en) | Injection molding method of phenolic resin molding material | |
JP2004204031A (en) | Phenolic resin molding material | |
JP3290854B2 (en) | Phenolic resin molding material | |
JPH06263963A (en) | Phenol resin composition | |
JPH07113035A (en) | Phenolic resin molding material | |
JPH0925390A (en) | Phenol resin molding material | |
JP2004210837A (en) | Phenolic resin molding material | |
JP2002249636A (en) | Molding material of phenol resin | |
JP3121674B2 (en) | Phenolic resin molding material for low pressure molding | |
JP3233786B2 (en) | Injection molding method of phenolic resin molding material | |
JP2000086909A (en) | Thermosetting resin molding material | |
JP2003172433A (en) | Resin pulley | |
JP2001354834A (en) | Phenol resin molding material | |
JPH05295232A (en) | Phenolic resin molding material | |
JPH11236486A (en) | Phenol resin molding material | |
JP2001280449A (en) | Resin pulley | |
JP2005126548A (en) | Phenolic resin molding compound |