JP2004204031A - Phenolic resin molding material - Google Patents

Phenolic resin molding material Download PDF

Info

Publication number
JP2004204031A
JP2004204031A JP2002374268A JP2002374268A JP2004204031A JP 2004204031 A JP2004204031 A JP 2004204031A JP 2002374268 A JP2002374268 A JP 2002374268A JP 2002374268 A JP2002374268 A JP 2002374268A JP 2004204031 A JP2004204031 A JP 2004204031A
Authority
JP
Japan
Prior art keywords
molding material
phenolic resin
graphite
resin molding
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002374268A
Other languages
Japanese (ja)
Inventor
Hidemi Tanizawa
秀実 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002374268A priority Critical patent/JP2004204031A/en
Publication of JP2004204031A publication Critical patent/JP2004204031A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a phenolic resin molding material that has an excellent wear resistance while maintaining mechanical strengths and heat resistance of conventional phenolic resin molding materials. <P>SOLUTION: This phenolic resin molding material contains a phenol resin, graphite and an aramid fiber having a substantial fiber length of 100-400μm and an average fiber length of 200-300μm. Preferably, the molding material comprises 30-50 wt.% phenol resin, 5-40 wt.% graphite and 3-20 wt.% aramid fiber based on the total amount of the material. The phenolic resin molding material is used for automobile parts, general purpose machine parts, home electric appliance parts, OA equipment and its peripheral equipment parts, or the like. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フェノール樹脂成形材料に関するものである。
【0002】
【従来の技術】
従来、フェノール樹脂成形材料に耐摩耗性を付与する手段として固体潤滑剤である黒鉛や二硫化モリブデン、樹脂系潤滑剤であるポリエチレン、フッ素樹脂等を用いることが知られている。また、アラミド樹脂も良好な耐摩耗性を得ることができる。フェノール樹脂にアラミド樹脂を配合した例としては、下記の特許文献1などがある。繊維長500μm以上のアラミド繊維は、優れた機械的強度も得ることができるが、成形材料化する過程で粉砕ができなかったり、解繊しなかったりすることから生産性に問題がある。これまで繊維長500μm以下のアラミド繊維は、カットが難しく極めて高コストで実用性に乏しかった。
【0003】
【特許文献1】
特開2001−295903号公報
【0004】
これらの成形材料は、耐摩耗性が向上する一方でフェノール樹脂の特徴である耐熱劣化性などに代表される耐熱性を低下させたり、機械的強度の低下を招いたりする。機械的強度の向上には、通常ガラス繊維や、粉砕布などの有機の長繊維基材を用いる。しかしながらガラス繊維を用いた場合、摩耗性に問題が生じる。特に摩擦係数が大きくなり相手材への攻撃性が増す。一方、有機繊維は摩耗に関しては良好であるが、耐熱性においては熱的な安定性に乏しく熱劣化しやすいという欠点を持っている。
【0005】
【発明が解決しようとする課題】
本発明者は、上記の点について鋭意検討を行った結果、耐熱性及び機械的強度を低下させることなくフェノール樹脂成形材料に優れた耐摩耗性を付与することを見出した。
即ち、本発明は、従来技術では配合が難しいとされていた単繊維状のアラミド繊維を用いることで耐熱性及び機械的強度を有し、且つ黒鉛と併用することにより、この成形体自体及び相手材への耐摩耗性に優れたフェノール樹脂成形材料を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的は、下記の本発明(1)〜(2)により達成される。
(1) フェノール樹脂、黒鉛、及び繊維長が実質的に100〜400μmであり、平均繊維長が200〜300μmのアラミド繊維を含有することを特徴とするフェノール樹脂成形材料。
(2) フェノール樹脂30〜50重量%、黒鉛5〜40重量%、及びアラミド繊維3〜20重量%を含有する前記(1)に記載のフェノール樹脂成形材料。
【0007】
本発明で用いるフェノール樹脂は、ノボラック型フェノール樹脂、レゾール型フェノール樹脂があるが、特に限定されるものではない。これらは、単独或いは併用して用いることができるが、ノボラック型フェノール樹脂の場合、通常硬化剤としてヘキサメチレンテトラミンを使用する。ヘキサメチレンテトラミンの配合量は、ノボラック型フェノール樹脂100重量部に対し、10〜20重量部が好ましい。一方、レゾール型フェノール樹脂は、自硬化性の樹脂であるため、ノボラック樹脂と異なりヘキサメチレンテトラミンを用いることなく硬化させることができる。フェノール樹脂(ヘキサメチレンテトラミンを用いる場合、これを含む)は、成形材料全体に対して、通常30〜50重量%である。フェノール樹脂が30重量%未満であると、成形材料の生産が困難となることと、材料の流動性が著しく低下するため成形が困難になるといった問題が生じることがある。50重量%を越えると成形収縮や後収縮による寸法変化が大きくなるため所定の成形品寸法を維持することが難しい場合がある。
【0008】
本発明には基材として黒鉛を用いる。黒鉛としては天然黒鉛、人造黒鉛の何れも使用することができる。またその形状は、粒状、鱗片状などいずれも使用できる。黒鉛は、優れた固体潤滑剤であり、特に摩擦係数を低下させる効果が大きい。本発明においては、黒鉛を、好ましくは5〜40重量%、さらに好ましくは10〜30重量%配合する。前記下限値を下回ると、十分な低摩擦係数が得られないことがあり、耐摩耗特性の向上が不十分となる場合がある。また、前記上限値を上回ると、組み合わせるアラミド繊維や他の補強基材による機械的強度や耐熱性等の向上効果を低下させる場合がある。
【0009】
本発明においては、基材としてアラミド繊維を用いる。アラミド繊維は、繊維長100〜400μmで平均繊維長200〜300μmのものを用いる。黒鉛とアラミド繊維とを併用することにより、耐摩耗特性と機械的強度とをともに向上させることができる。100μm未満では充分な機械的強度を得ることが難しいことと、アラミド繊維の生産性の面からかなり高コストとなってしまうため実用性に乏しく好ましくない。一方、400μmを越えると、成形材料化する過程で、粉砕できなかったり、解繊が不十分なため繊維の分散性が低下し、成形体のクラックの起点となったりして機械的強度を低下させる要因となることがある。このため、特性、生産性、コストの面から繊維長100〜400μmで平均繊維長200〜300μmが好ましい。アラミド繊維は、耐熱性が高くまた耐摩耗特性にも優れており、且つ単繊維状のものは、補強材としても良好な基材であり機械的強度にも優れる。アラミド樹脂としての構造は、メタ型或いはパラ型の何れのものも用いることができる。
【0010】
アラミド繊維の配合割合は、成形材料全体に対して3〜40重量%であり、好ましくは、5〜25重量%である。これにより、耐摩耗特性と機械的強度とをともに良好とすることができる。前記下限値を下回るとその配合効果が小さく、前記上限値を上回る量を配合してもこれ以上特性の向上は小さく、高コストになってしまう。
【0011】
本発明において、必要に応じ、黒鉛以外の無機基材を用いることもできる。無機基材としては、ガラス繊維、焼成されたカオリナイト、焼成クレー、タルク、シリカ、ガラス粉末、ガラスビーズ、炭酸カルシウム、ワォラストナイト等の通常のフェノール樹脂成形材料に用いられる繊維状、針状、粉末或いは粒状のものを単独或いは併用して用いることができる。これら無機基材は、熱的に安定であり良好な耐熱性を確保できることが特長である。繊維状或いは針状基材は、一層の機械的強度の向上に用いられる。また粉末状或いは粒状基材は、成形流動時の基材の配向がなく、均一な成形収縮となり良好な寸法精度、寸法安定性を確保することが可能となる。
【0012】
また、低コストのために、木粉等の汎用に有機基材を配合することもできる。この場合でも、黒鉛とアラミド繊維を併用しない従来の場合に比較して、摩耗特性と機械的強度のバランスが良好である。これら無機基材あるいは有機基材の配合割合は成形材料全体の40重量%以下が好ましい。40重量%を超える場合、摩耗特性が低下するようになる。
【0013】
本発明のフェノール樹脂成形材料を製造する方法は、通常の方法が採用される。即ち、上記の配合物を所定の配合割合で混合し、更に着色剤、硬化触媒を加え加熱ロールにより混練し、シート状にしたものを顆粒状に粉砕して得られる。
【0014】
【実施例】
以下、実施例により本発明を説明する。
表1に各実施例及び比較例の成形材料組成について示した。また、表2に各実施例及び比較例で得られた成形材料の特性評価結果を示した。
【0015】
実施例及び比較例に用いた各配合物は以下の通りである。
フェノール樹脂:ノボラック型フェノール樹脂、住友ベークライト(株)製PR−50716
アラミド繊維:帝人(株)製テクノーラ(繊維長100〜400μm、平均繊維長250μm)
黒鉛:日本黒鉛(株)製土壌黒鉛(粒度100メッシュパス)
ガラス繊維:日本板硝子(株)製チョップドストランドRES(繊維長3mm、繊維径11μm)
無機基材:粉末状珪酸アルミニウム、水澤化学(株)製インシュライト
木粉:粒度100メッシュパス
着色剤:カーボンブラック
硬化触媒:酸化マグネシウム
離型剤:ステアリン酸
【0016】
これらを表1に示す割合で配合し、加熱ロール間で混練し、次いで、シート状にし冷却したものを粉砕して顆粒状の成形材料とした。
【0017】
【表1】

Figure 2004204031
【0018】
特性を測定するための試験片は、得られた成形材料を用いて、トランスファー成形により作成した。成形条件は、金型温度175℃、硬化時間3分とした。得られた成形体について、特性の評価を実施した。
【0019】
表2における各成形材料の特性は、機械的強度として引張り強さの加熱後の保持率及び曲げ強さをJIS K 6911「熱硬化性プラスチック一般試験方法」により測定した。耐摩耗性評価は成形した成形体を、鈴木式摩耗試験機により相手材をS55Cとして4時間後の摩擦係数及び成形体自身及び相手材の摩耗量を測定した。
【0020】
【表2】
Figure 2004204031
【0021】
実施例1は、比較例1に示す黒鉛とガラス繊維を併用した成形材料、或いは比較例3に示すガラス繊維のみの成形材料に比べ耐摩耗性と強度の両立された成形材料であった。実施例2は、比較例2に示すアラミド繊維とガラス繊維を併用した成形材料に比べ耐摩耗特性に優れた成形材料であった。実施例3は、ガラス繊維や無機粉末を用いず有機基材と組み合わせた場合であるが、ガラス繊維を用いた比較例1とほぼ同等の機械的強度を有し、且つ摩耗特性も良好な成形材料であった。
【0022】
【発明の効果】
以上の実施例及び比較例により得られた結果から明らかなように、本発明のフェノール樹脂成形材料は、従来のフェノール樹脂成形材料に比べ機械的強度と耐熱性を併せ持つとともに、摩耗特性において優れた効果を発揮できる。このため自動車用部品、汎用機械用部品、家庭電化製品用部品、OA機器及びその周辺機器用部品等の中でも耐摩耗を必要とする部分へ好適に適用される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a phenolic resin molding material.
[0002]
[Prior art]
Conventionally, it has been known to use a solid lubricant such as graphite or molybdenum disulfide, a resin-based lubricant such as polyethylene or fluororesin as a means for imparting wear resistance to a phenolic resin molding material. Also, aramid resin can obtain good abrasion resistance. Patent Literature 1 below discloses an example in which an aramid resin is blended with a phenol resin. Aramid fibers having a fiber length of 500 μm or more can have excellent mechanical strength, but have a problem in productivity because they cannot be ground or fibrillated during the process of forming a molding material. Until now, aramid fibers having a fiber length of 500 μm or less have been difficult to cut, have been extremely expensive, and have been poor in practicality.
[0003]
[Patent Document 1]
JP 2001-295903 A
While these molding materials have improved abrasion resistance, they lower the heat resistance typified by the phenol resin, such as heat deterioration resistance, or cause a decrease in mechanical strength. In order to improve the mechanical strength, usually, an organic long fiber base material such as glass fiber or crushed cloth is used. However, when glass fiber is used, a problem arises in abrasion. In particular, the coefficient of friction increases, and the aggressiveness against the partner material increases. On the other hand, organic fibers are good in terms of abrasion, but have a drawback that heat stability is poor in thermal stability and easily deteriorated by heat.
[0005]
[Problems to be solved by the invention]
As a result of intensive studies on the above points, the present inventors have found that excellent wear resistance can be imparted to a phenolic resin molding material without reducing heat resistance and mechanical strength.
That is, the present invention has heat resistance and mechanical strength by using monofilament-like aramid fiber, which has been considered difficult to mix in the prior art, and by using together with graphite, the molded body itself and the mating body It is an object of the present invention to provide a phenolic resin molding material having excellent abrasion resistance to a material.
[0006]
[Means for Solving the Problems]
The above object is achieved by the following present inventions (1) and (2).
(1) A phenolic resin molding material characterized by containing a phenolic resin, graphite, and aramid fibers having a fiber length of substantially 100 to 400 μm and an average fiber length of 200 to 300 μm.
(2) The phenolic resin molding material according to (1), comprising 30 to 50% by weight of a phenolic resin, 5 to 40% by weight of graphite, and 3 to 20% by weight of aramid fibers.
[0007]
The phenol resin used in the present invention includes a novolak phenol resin and a resol phenol resin, but is not particularly limited. These can be used alone or in combination. In the case of a novolak type phenol resin, hexamethylenetetramine is usually used as a curing agent. The blending amount of hexamethylenetetramine is preferably 10 to 20 parts by weight based on 100 parts by weight of the novolak type phenol resin. On the other hand, since the resol type phenol resin is a self-curing resin, unlike the novolak resin, it can be cured without using hexamethylenetetramine. The amount of the phenol resin (including hexamethylenetetramine when it is used) is usually 30 to 50% by weight based on the whole molding material. If the content of the phenolic resin is less than 30% by weight, there may be a problem that the production of the molding material becomes difficult, and the fluidity of the material is remarkably reduced, so that the molding becomes difficult. If it exceeds 50% by weight, dimensional change due to molding shrinkage and post-shrinkage becomes large, so that it may be difficult to maintain a predetermined molded product size.
[0008]
In the present invention, graphite is used as a base material. As the graphite, either natural graphite or artificial graphite can be used. In addition, any shape such as a granular shape and a scaly shape can be used. Graphite is an excellent solid lubricant, and is particularly effective in lowering the coefficient of friction. In the present invention, graphite is preferably blended in an amount of 5 to 40% by weight, more preferably 10 to 30% by weight. If the ratio is below the lower limit, a sufficiently low coefficient of friction may not be obtained, and the improvement of the wear resistance may be insufficient. On the other hand, if the upper limit is exceeded, the effect of improving the mechanical strength and heat resistance of the combined aramid fibers and other reinforcing base materials may be reduced.
[0009]
In the present invention, aramid fibers are used as the base material. Aramid fibers having a fiber length of 100 to 400 μm and an average fiber length of 200 to 300 μm are used. The combined use of graphite and aramid fiber can improve both the wear resistance and the mechanical strength. If the thickness is less than 100 μm, it is difficult to obtain sufficient mechanical strength and the cost of aramid fiber is considerably high, which is not practical and is not preferable. On the other hand, if it exceeds 400 μm, in the process of forming a molding material, it cannot be pulverized, or the fibrillation is insufficient, so that the dispersibility of the fiber decreases, and the starting point of cracks in the molded body decreases, and the mechanical strength decreases. Can be a factor that For this reason, the fiber length is preferably 100 to 400 μm and the average fiber length is 200 to 300 μm from the viewpoint of characteristics, productivity and cost. Aramid fiber has high heat resistance and excellent abrasion resistance, and a monofilament fiber is a good base material as a reinforcing material and has excellent mechanical strength. The structure of the aramid resin may be either a meta-type or a para-type.
[0010]
The mixing ratio of the aramid fiber is 3 to 40% by weight, and preferably 5 to 25% by weight, based on the whole molding material. As a result, both the wear resistance and the mechanical strength can be improved. If the amount is less than the lower limit, the compounding effect is small, and if the amount exceeds the upper limit, the improvement of the characteristics is further reduced and the cost increases.
[0011]
In the present invention, if necessary, an inorganic substrate other than graphite can be used. Examples of the inorganic base material include glass fiber, calcined kaolinite, calcined clay, talc, silica, glass powder, glass beads, calcium carbonate, wollastonite, and other fibrous and needle-like materials used in ordinary phenolic resin molding materials. , Powder or granules can be used alone or in combination. These inorganic substrates are characterized in that they are thermally stable and can ensure good heat resistance. The fibrous or acicular substrate is used for further improving the mechanical strength. In addition, the powdery or granular base material has no orientation of the base material during molding flow, and uniform shrinkage of the base material can be achieved, so that good dimensional accuracy and dimensional stability can be secured.
[0012]
Further, for low cost, an organic base material such as wood flour can be blended for general purpose. Even in this case, the balance between the wear characteristics and the mechanical strength is better than in the conventional case where graphite and aramid fiber are not used in combination. The mixing ratio of the inorganic base material or the organic base material is preferably 40% by weight or less based on the whole molding material. If it exceeds 40% by weight, the wear characteristics will be reduced.
[0013]
As a method for producing the phenolic resin molding material of the present invention, an ordinary method is employed. That is, it is obtained by mixing the above blends at a predetermined blending ratio, further adding a colorant and a curing catalyst, kneading them with a heating roll, and pulverizing the sheet into granules.
[0014]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Table 1 shows the compositions of the molding materials of the examples and comparative examples. Table 2 shows the results of evaluating the properties of the molding materials obtained in the examples and comparative examples.
[0015]
The formulations used in the examples and comparative examples are as follows.
Phenol resin: Novolak type phenol resin, PR-50716 manufactured by Sumitomo Bakelite Co., Ltd.
Aramid fiber: Teijin's Technora (fiber length 100-400 μm, average fiber length 250 μm)
Graphite: Soil graphite manufactured by Nippon Graphite Co., Ltd. (particle size 100 mesh pass)
Glass fiber: Chopped strand RES manufactured by Nippon Sheet Glass Co., Ltd. (fiber length 3 mm, fiber diameter 11 μm)
Inorganic base material: powdery aluminum silicate, Insulite wood flour manufactured by Mizusawa Chemical Co., Ltd .: particle size 100 mesh pass Colorant: carbon black curing catalyst: magnesium oxide release agent: stearic acid
These were blended in the ratios shown in Table 1, kneaded between heating rolls, then formed into a sheet and cooled to obtain a granular molding material.
[0017]
[Table 1]
Figure 2004204031
[0018]
A test piece for measuring the characteristics was prepared by transfer molding using the obtained molding material. The molding conditions were a mold temperature of 175 ° C. and a curing time of 3 minutes. The properties of the obtained molded body were evaluated.
[0019]
The properties of each molding material in Table 2 were measured by measuring the mechanical strength of the retention of tensile strength after heating and the bending strength according to JIS K 6911 “General thermosetting plastic test method”. For the evaluation of abrasion resistance, the molded article was measured by a Suzuki-type abrasion tester using a mating material of S55C and a friction coefficient after 4 hours and the wear amount of the molded body itself and the mating material.
[0020]
[Table 2]
Figure 2004204031
[0021]
Example 1 was a molding material having both abrasion resistance and strength as compared with the molding material using both graphite and glass fiber shown in Comparative Example 1 or the molding material containing only glass fiber shown in Comparative Example 3. Example 2 was a molding material having more excellent abrasion resistance than the molding material using both aramid fiber and glass fiber shown in Comparative Example 2. Example 3 is a case in which glass fiber and inorganic powder were not used and the organic substrate was combined, but the molding had almost the same mechanical strength as Comparative Example 1 using glass fiber, and also had good wear characteristics. Material.
[0022]
【The invention's effect】
As is clear from the results obtained by the above Examples and Comparative Examples, the phenolic resin molding material of the present invention has both mechanical strength and heat resistance as compared with the conventional phenolic resin molding material, and has excellent wear characteristics. The effect can be demonstrated. Therefore, it is suitably applied to parts requiring wear resistance among parts for automobiles, parts for general-purpose machines, parts for home appliances, parts for OA equipment and peripheral equipment thereof, and the like.

Claims (2)

フェノール樹脂、黒鉛、及び繊維長が実質的に100〜400μmであり、平均繊維長が200〜300μmのアラミド繊維を含有することを特徴とするフェノール樹脂成形材料。A phenolic resin molding material comprising phenolic resin, graphite, and aramid fibers having a fiber length of substantially 100 to 400 μm and an average fiber length of 200 to 300 μm. フェノール樹脂30〜50重量%、黒鉛5〜40重量%、及びアラミド繊維3〜20重量%を含有する請求項1に記載のフェノール樹脂成形材料。The phenolic resin molding material according to claim 1, comprising 30 to 50% by weight of a phenolic resin, 5 to 40% by weight of graphite, and 3 to 20% by weight of aramid fibers.
JP2002374268A 2002-12-25 2002-12-25 Phenolic resin molding material Pending JP2004204031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374268A JP2004204031A (en) 2002-12-25 2002-12-25 Phenolic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374268A JP2004204031A (en) 2002-12-25 2002-12-25 Phenolic resin molding material

Publications (1)

Publication Number Publication Date
JP2004204031A true JP2004204031A (en) 2004-07-22

Family

ID=32812336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374268A Pending JP2004204031A (en) 2002-12-25 2002-12-25 Phenolic resin molding material

Country Status (1)

Country Link
JP (1) JP2004204031A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138849A (en) * 2006-12-05 2008-06-19 Starlite Co Ltd Resin integrated chain guide and chain tensioner arm
JP2009242662A (en) * 2008-03-31 2009-10-22 Air Water Inc Thermosetting molding material
US7772317B2 (en) 2005-11-11 2010-08-10 Hitachi Chemical Company, Ltd. Resin molding material
JP2018080266A (en) * 2016-11-16 2018-05-24 旭有機材株式会社 Molding material for slide member, and slide member and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772317B2 (en) 2005-11-11 2010-08-10 Hitachi Chemical Company, Ltd. Resin molding material
JP2008138849A (en) * 2006-12-05 2008-06-19 Starlite Co Ltd Resin integrated chain guide and chain tensioner arm
JP2009242662A (en) * 2008-03-31 2009-10-22 Air Water Inc Thermosetting molding material
JP2018080266A (en) * 2016-11-16 2018-05-24 旭有機材株式会社 Molding material for slide member, and slide member and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2003313398A (en) Phenolic resin molding material and brake piston obtained by using the same
JP2004204031A (en) Phenolic resin molding material
JP2005048009A (en) Phenolic resin molding compound
JP2002220507A (en) Phenol resin molding material
JP2002265752A (en) Phenolic resin molding material
JP3906657B2 (en) Phenolic resin molding material and pulley
JP2008001883A (en) Phenol resin molding material
JPH09194685A (en) Phenolic resin molding material
JP2005265033A (en) Phenol resin cam
JP2003327753A (en) Rubber composition
JP2002003698A (en) Phenol resin molding material
JPH06263963A (en) Phenol resin composition
JP2004282923A (en) Phenolic resin molding compound for commutator
JPH10226743A (en) Phenol resin molding material
JPH07150012A (en) Phenolic resin molding material
JP2004210837A (en) Phenolic resin molding material
JP2005047971A (en) Phenolic resin molding material
JP2009227815A (en) Phenolic resin molding material
JP3938477B2 (en) Phenolic resin molding material
JP3851048B2 (en) Phenolic resin molding material
JP2000226496A (en) Phenolic resin molding material
JP2003026901A (en) Phenolic resin molding material
JP2002249636A (en) Molding material of phenol resin
JPS59215350A (en) Phenolic resin molding material
JP2006089665A (en) Phenolic resin molding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050809

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070201

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122