JP2005048009A - Phenolic resin molding compound - Google Patents

Phenolic resin molding compound Download PDF

Info

Publication number
JP2005048009A
JP2005048009A JP2003204511A JP2003204511A JP2005048009A JP 2005048009 A JP2005048009 A JP 2005048009A JP 2003204511 A JP2003204511 A JP 2003204511A JP 2003204511 A JP2003204511 A JP 2003204511A JP 2005048009 A JP2005048009 A JP 2005048009A
Authority
JP
Japan
Prior art keywords
phenolic resin
graphite
molding compound
resin molding
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003204511A
Other languages
Japanese (ja)
Inventor
Hidemi Tanizawa
秀実 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003204511A priority Critical patent/JP2005048009A/en
Publication of JP2005048009A publication Critical patent/JP2005048009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenolic resin molding compound that has excellent dimensional accuracy while maintaining wear resistance and the like of conventional phenolic resin molding compounds using graphite, and can suitably be used for car parts, parts for general-purpose machines, parts for electrical home appliances, parts for OA equipment and peripheral equipment thereof and the like. <P>SOLUTION: The phenolic resin molding compound is prepared by heating and kneading a material comprising a phenolic resin, graphite, a glass fiber having a substantial fiber length of 10-150 μm and an average fiber length of 50-100 μm, and an inorganic powder having a substantial particle size of 0.1-15 μm and an average particle size of 0.5-10 μm. The molding compound comprises 20-40 wt% of a phenolic resin, 5-40 wt% of graphite, 10-40 wt% of the glass fiber and 5-40 wt% of the inorganic powder based on the total amount of the molding compound. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フェノール樹脂成形材料に関するものである。
【0002】
【従来の技術】
従来、耐摩耗性に優れ且つ動摩擦係数が低いフェノール樹脂成形材料を得る手段として固体潤滑剤である黒鉛が用いられる。黒鉛は優れた耐摩耗性と摺動特性を発現するが、反面機械的強度に劣ることから、ガラス繊維と併用し機械的強度を付与している。一般的に成形材料に用いられるガラス繊維は、繊維長1〜6mmのチョップドストランドが主流であり、その繊維長は成形材料中或いは成形体中において平均繊維長150〜350μmで存在する。このため機械的強度は向上するものの、繊維の配向の影響により寸法において異方差を生じやすいことから、寸法精度や寸法のばらつきに劣るという欠点があった。このため耐摩耗性、摺動特性に加え寸法精度の要求されるコンプレッサーやポンプのベーン或いは軸受け用には不向きであった。
【0003】
また、成形体中にガラス繊維が存在することにより、摺動時、ガラス繊維自身が摩擦界面において砕け、相手材を攻撃する、成形体自体の樹脂部分をガラス繊維の破片が削り取り成形体を摩耗させるといった悪影響があった。
【0004】
【発明が解決しようとする課題】
本発明者は、上記の点について鋭意検討を行った結果、機械的強度を保持しつつ、寸法精度が良好で、寸法ばらつきが小さく、かつ耐摩耗性に優れたフェノール樹脂成形材料を見出した。
即ち、本発明は、ガラス繊維を用いた上で、従来技術では難しかった耐摩耗性及び寸法精度に優れたフェノール樹脂成形材料を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
上記目的は、下記(1)〜(2)記載の本発明により達成される。
(1) フェノール樹脂、黒鉛、繊維長が実質的に10〜150μmであり、平均繊維長が50〜100μmのガラス繊維、及び粒径が実質的に0.1〜15μmであり平均粒径が0.5〜10μmの無機粉末を含有する材料を加熱混練してなることを特徴とするフェノール樹脂成形材料。
(2) 成形材料全体に対して、フェノール樹脂20〜40重量%、黒鉛5〜40重量%、前記ガラス繊維10〜40重量%、及び前記無機粉末5〜40重量%を含有する材料を加熱混練してなる請求項1記載のフェノール樹脂成形材料。
【0006】
本発明において、用いられるフェノール樹脂は、ノボラック型フェノール樹脂(以下、ノボラック樹脂という)、レゾール型フェノール樹脂(以下、レゾール樹脂という)があるが、特に限定されるものではない。これらは、単独或いは併用して用いることができるが、ノボラック樹脂の場合、通常硬化剤としてヘキサメチレンテトラミンを使用する。ヘキサメチレンテトラミンの配合量は、ノボラック樹脂100重量部に対し、10〜20重量部が好ましい。一方、レゾール樹脂は、自硬化性の樹脂であるため、ノボラック樹脂と異なりヘキサメチレンテトラミンを用いることなく硬化させることができる。
【0007】
フェノール樹脂(ヘキサメチレンテトラミンを用いる場合これを含む)は、成形材料全体に対して、通常20〜40重量%である。フェノール樹脂が20重量%未満であると、流動性が低下するため、成形材料の生産が困難となること、成形が困難になるといった問題が生じることがある。40重量%を越えると成形収縮や後収縮による寸法変化が大きくなり、寸法精度の低下や寸法ばらつきの増大に繋がることから所定の成形体寸法を維持することが難しい場合がある。
【0008】
本発明には基材として黒鉛を用いる。黒鉛としては天然黒鉛、人造黒鉛の何れも使用することができる。またその形状は、粒状、鱗片状などいずれも使用できる。黒鉛は、優れた固体潤滑剤であり、特に摩擦係数を低下させる効果が大きい。本発明においては、黒鉛を、成形材料全体に対して、好ましくは5〜40重量%、さらに好ましくは20〜40重量%配合する。前記下限値を下回ると、十分な低摩擦係数が得られないことがあり、耐摩耗特性の向上が不十分となる場合がある。また、前記上限値を上回ると、ガラス繊維による機械的強度向上効果を低下させる場合がある。
【0009】
本発明においては、基材としてガラス繊維を用いる。ガラス繊維は、実質的に繊維長150μm以下で平均繊維長50〜100μmのミルドファイバーを用いる。ガラス繊維を併用することにより、機械的強度を向上させることができる。150μmを越えるものが多くなると、配向性が出るため流れ方向と直交方向で寸法の異方差が生じ易くなり寸法精度が低下する要因となる。ただし、繊維長10μm未満のものが多いと、充分な機械的強度を得ることが難しくなる。また、平均繊維長は50〜100μmが好ましい。平均繊維長が50μm未満では成形材料の生産時せん断力が弱くなり十分に混練されにくくなる。100μmを越えると成形時の流動性が低下してくる。ガラス繊維の配合割合は、成形材料全体に対して、好ましくは10〜40重量%であり、さらに好ましくは10〜25重量%である。これにより、耐摩耗特性と機械的強度とをともに良好とすることができる。前記下限値を下回るとその配合効果が小さく、前記上限値を上回る量を配合すると耐摩耗性が低下するようになる。
【0010】
本発明において、基材として無機粉末を用いる。無機粉末としては、焼成されたカオリナイト、焼成クレー、タルク、シリカ、ガラス粉末、ガラスビーズ、炭酸カルシウム、ウォラストナイト等の通常のフェノール樹脂成形材料に用いられる粉末或いは粒状のものを単独或いは併用して用いることができる。これら無機粉末基材は、成形の際、流動時に配向がなく、成形収縮や後収縮が均一となり、良好な寸法精度、寸法安定性を確保することが可能となる。更に無機粉末は、ガラス繊維とフェノール樹脂との間に入り込み、最密充填されることから摩擦時のフェノール樹脂の脱落を抑え、耐摩耗特性を向上させる効果がある。
【0011】
これら無機粉末は、粒径が実質的に15μm以下であり、15μm以上では摩耗性が低下する。平均粒径0.5〜10μmであることが好ましい。平均粒径0.5μm未満では、成形材料生産時に無機粉末が凝集し易くなるため分散しにくく、また、かさばりが大きいため配合量を多くできない。また平均粒径10μmを越えると機械的強度が低下することがある。これら無機粉末の配合量は、成形材料全体にたいして、5〜40重量%が好ましく、さらに10〜30重量%が好ましい。前記下限値未満では、摩耗特性が低下するようになる。また前記上限値を越えると成形材料の生産性が低下するようになる。
【0012】
本発明のフェノール樹脂成形材料を製造する方法は、通常の方法が採用される。即ち、上記の配合物を所定の配合割合で混合し、更に着色剤、硬化触媒等を加え加熱ロールにより混練し、シート状にしたものを顆粒状に粉砕して得られる。
【0013】
【実施例】
以下、実施例により本発明を説明する。
表1に各実施例及び比較例の成形材料組成を示した。また、表2に各実施例及び比較例で得られた成形材料の特性評価結果を示した。
【0014】
実施例及び比較例に用いた各配合物の原料は以下の通りである。
フェノール樹脂:ノボラック樹脂、住友ベークライト(株)製PR−50716
黒鉛:日本黒鉛(株)製土壌黒鉛(粒度100メッシュパス)
ガラス繊維:(株)ヴェトロテックス製ミルドファイバーREV(繊維長20〜120μm、平均繊維長80μm、繊維径10〜13μm)
ガラス繊維:(株)ヴェトロテックス製チョップドストランドRES(平均繊維長3mm、繊維径10〜13μm)
無機粉末:水澤化学(株)製珪酸アルミニウム(粒径1〜10μm、平均粒径5μm)
着色剤:カーボンブラック
硬化触媒:酸化マグネシウム
離型剤:ステアリン酸
【0015】
これらを表1に示す割合で配合し、加熱ロール間で混練し、次いで、シート状にし冷却したものを粉砕して顆粒状の成形材料とした。
【表1】

Figure 2005048009
【0016】
特性を測定するための試験片は、上記成形材料を用いて、トランスファー成形により作製した。成形条件は、金型温度175℃、硬化時間3分とした。得られた成形体について、特性の評価を実施した。
表2における各成形材料の特性は、機械的強度として曲げ強さを、物理特性として、成形収縮率をJIS K 6911「熱硬化性プラスチック一般試験方法」により測定した。異方差の測定は、線膨張係数α1を直交/平行方向でTMA法により実施した。耐摩耗性評価は、成形した成形体を、鈴木式摩耗試験機により相手材をS55Cとして4時間後の摩擦係数及び成形体自身及び相手材の摩耗量を測定した。
【0017】
【表2】
Figure 2005048009
【0018】
実施例は、比較例に示す材料のチョップドストランドをミルドファイバーに置換した材料である。いずれも比較例に比べ、線膨張係数の異方性が小さい材料であった。摩耗特性はいずれも良好であり摩耗特性と寸法精度のよい材料である。
【0019】
【発明の効果】
以上の実施例及び比較例により得られた結果から明らかなように、本発明のフェノール樹脂成形材料は、従来のフェノール樹脂成形材料に比べ摩耗特性において優れた効果を発揮し、且つ寸法精度に優れ異方差の少ない材料である。このため自動車用部品、汎用機械用部品、家庭電化製品用部品、OA機器及びその周辺機器用部品等において、耐摩耗性及び寸法精度を必要とする部分へ好適に適用される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phenol resin molding material.
[0002]
[Prior art]
Conventionally, graphite, which is a solid lubricant, is used as a means for obtaining a phenol resin molding material having excellent wear resistance and a low dynamic friction coefficient. Graphite exhibits excellent wear resistance and sliding properties, but is inferior in mechanical strength, so it is used in combination with glass fiber to impart mechanical strength. Generally, chopped strands having a fiber length of 1 to 6 mm are mainly used for glass fibers used for the molding material, and the fiber length exists in the molding material or the molded body with an average fiber length of 150 to 350 μm. For this reason, although the mechanical strength is improved, anisotropy in the size is likely to occur due to the influence of the fiber orientation. Therefore, it is not suitable for vanes or bearings of compressors and pumps that require dimensional accuracy in addition to wear resistance and sliding characteristics.
[0003]
In addition, the presence of glass fiber in the molded body causes the glass fiber itself to crush at the friction interface when sliding, and attacks the mating material. There was an adverse effect such as.
[0004]
[Problems to be solved by the invention]
As a result of intensive studies on the above points, the present inventor has found a phenolic resin molding material having good dimensional accuracy, small dimensional variation and excellent wear resistance while maintaining mechanical strength.
That is, an object of the present invention is to provide a phenol resin molding material excellent in wear resistance and dimensional accuracy, which is difficult in the prior art, using glass fibers.
[0005]
[Means for Solving the Problems]
The above object is achieved by the present invention described in the following (1) to (2).
(1) Phenol resin, graphite, glass fiber having a fiber length of substantially 10 to 150 μm, an average fiber length of 50 to 100 μm, and a particle diameter of 0.1 to 15 μm and an average particle diameter of 0 A phenol resin molding material obtained by heating and kneading a material containing an inorganic powder of 5 to 10 μm.
(2) Heat-kneading a material containing 20 to 40% by weight of phenol resin, 5 to 40% by weight of graphite, 10 to 40% by weight of the glass fiber, and 5 to 40% by weight of the inorganic powder with respect to the entire molding material The phenol resin molding material according to claim 1.
[0006]
In the present invention, the phenol resin used includes novolak type phenol resins (hereinafter referred to as novolak resins) and resol type phenol resins (hereinafter referred to as resol resins), but is not particularly limited. These can be used alone or in combination. In the case of a novolak resin, hexamethylenetetramine is usually used as a curing agent. As for the compounding quantity of hexamethylenetetramine, 10-20 weight part is preferable with respect to 100 weight part of novolak resin. On the other hand, since the resol resin is a self-curing resin, it can be cured without using hexamethylenetetramine unlike the novolac resin.
[0007]
The phenol resin (including this when hexamethylenetetramine is used) is usually 20 to 40% by weight based on the entire molding material. If the phenolic resin is less than 20% by weight, the fluidity is lowered, which may cause problems such as difficulty in producing a molding material and difficulty in molding. If it exceeds 40% by weight, the dimensional change due to molding shrinkage and post-shrinkage becomes large, leading to a decrease in dimensional accuracy and an increase in dimensional variation, which makes it difficult to maintain a predetermined molded body size.
[0008]
In the present invention, graphite is used as a substrate. As graphite, both natural graphite and artificial graphite can be used. The shape can be either granular or scaly. Graphite is an excellent solid lubricant and is particularly effective in reducing the friction coefficient. In the present invention, graphite is preferably blended in an amount of 5 to 40% by weight, more preferably 20 to 40% by weight, based on the entire molding material. If the lower limit is not reached, a sufficiently low friction coefficient may not be obtained, and the wear resistance may not be sufficiently improved. Moreover, when it exceeds the said upper limit, the mechanical strength improvement effect by glass fiber may be reduced.
[0009]
In the present invention, glass fiber is used as the substrate. As the glass fiber, a milled fiber having a fiber length of substantially 150 μm or less and an average fiber length of 50 to 100 μm is used. By using glass fiber in combination, the mechanical strength can be improved. When the number exceeds 150 μm, the orientation is increased, and therefore, an anisotropic difference in dimensions is likely to occur in the direction orthogonal to the flow direction, which causes a decrease in dimensional accuracy. However, if the fiber length is less than 10 μm, it is difficult to obtain sufficient mechanical strength. The average fiber length is preferably 50 to 100 μm. When the average fiber length is less than 50 μm, the shearing force during production of the molding material becomes weak, and it becomes difficult to sufficiently knead. If it exceeds 100 μm, the fluidity during molding will decrease. The blending ratio of the glass fiber is preferably 10 to 40% by weight, more preferably 10 to 25% by weight, based on the entire molding material. Thereby, both the wear resistance and the mechanical strength can be improved. When the amount is less than the lower limit, the blending effect is small, and when the amount exceeds the upper limit, the wear resistance is lowered.
[0010]
In the present invention, an inorganic powder is used as the substrate. As the inorganic powder, powders or granular materials used for ordinary phenol resin molding materials such as calcined kaolinite, calcined clay, talc, silica, glass powder, glass beads, calcium carbonate, wollastonite, etc. are used alone or in combination. Can be used. These inorganic powder base materials have no orientation during flow during molding, uniform molding shrinkage and post-shrinkage, and can ensure good dimensional accuracy and dimensional stability. Further, the inorganic powder enters between the glass fiber and the phenolic resin and is closely packed, so that the phenolic resin is prevented from falling off during friction and has an effect of improving the wear resistance.
[0011]
These inorganic powders have a particle size of substantially 15 μm or less, and wear resistance decreases when the particle size is 15 μm or more. The average particle size is preferably 0.5 to 10 μm. If the average particle size is less than 0.5 μm, the inorganic powder tends to aggregate during production of the molding material, so that it is difficult to disperse, and the bulk is too large to increase the blending amount. On the other hand, if the average particle size exceeds 10 μm, the mechanical strength may decrease. The blending amount of these inorganic powders is preferably 5 to 40% by weight, more preferably 10 to 30% by weight, based on the entire molding material. If it is less than the lower limit value, the wear characteristics are lowered. If the upper limit is exceeded, the productivity of the molding material is lowered.
[0012]
A normal method is employ | adopted as the method of manufacturing the phenol resin molding material of this invention. That is, it is obtained by mixing the above-mentioned blend at a predetermined blending ratio, further adding a colorant, a curing catalyst and the like, kneading with a heating roll, and pulverizing it into a sheet.
[0013]
【Example】
Hereinafter, the present invention will be described by way of examples.
Table 1 shows the molding material composition of each example and comparative example. Table 2 shows the results of evaluating the characteristics of the molding materials obtained in the examples and comparative examples.
[0014]
The raw materials of each compound used in Examples and Comparative Examples are as follows.
Phenol resin: Novolac resin, PR-50716 manufactured by Sumitomo Bakelite Co., Ltd.
Graphite: Soil graphite manufactured by Nippon Graphite Co., Ltd. (particle size 100 mesh pass)
Glass fiber: Milled fiber REV manufactured by Vetrotex Co., Ltd. (fiber length 20 to 120 μm, average fiber length 80 μm, fiber diameter 10 to 13 μm)
Glass fiber: Chopped strand RES manufactured by Vetrotex Co., Ltd. (average fiber length 3 mm, fiber diameter 10 to 13 μm)
Inorganic powder: Aluminum silicate manufactured by Mizusawa Chemical Co., Ltd. (particle size 1 to 10 μm, average particle size 5 μm)
Colorant: Carbon black Curing catalyst: Magnesium oxide release agent: Stearic acid
These were blended in the proportions shown in Table 1, kneaded between heated rolls, and then crushed and cooled to obtain a granular molding material.
[Table 1]
Figure 2005048009
[0016]
A test piece for measuring the characteristics was produced by transfer molding using the molding material. The molding conditions were a mold temperature of 175 ° C. and a curing time of 3 minutes. The obtained molded body was evaluated for characteristics.
The properties of each molding material in Table 2 were measured according to JIS K 6911 “General Test Method for Thermosetting Plastics” as flexural strength as mechanical strength and molding shrinkage as physical properties. The anisotropic difference was measured by the TMA method with the linear expansion coefficient α1 orthogonal / parallel. In the wear resistance evaluation, the molded product was measured for the friction coefficient after 4 hours and the wear amount of the molded product itself and the counterpart material with a Suzuki-type abrasion tester with the counterpart material as S55C.
[0017]
[Table 2]
Figure 2005048009
[0018]
In the examples, chopped strands of the materials shown in the comparative examples are replaced with milled fibers. In all cases, the material had a smaller anisotropy of linear expansion coefficient than the comparative example. The wear characteristics are all good, and the material has good wear characteristics and dimensional accuracy.
[0019]
【The invention's effect】
As is clear from the results obtained from the above Examples and Comparative Examples, the phenolic resin molding material of the present invention exhibits an excellent effect in wear characteristics as compared with conventional phenolic resin molding materials, and has excellent dimensional accuracy. It is a material with little anisotropic difference. For this reason, it is suitably applied to parts that require wear resistance and dimensional accuracy in automobile parts, general-purpose machine parts, home appliance parts, OA equipment and peripheral equipment parts.

Claims (2)

フェノール樹脂、黒鉛、繊維長が実質的に10〜150μmであり、平均繊維長が50〜100μmのガラス繊維、及び粒径が実質的に0.1〜15μmであり平均粒径が0.5〜10μmの無機粉末を含有する材料を加熱混練してなることを特徴とするフェノール樹脂成形材料。Phenolic resin, graphite, glass fiber having a fiber length of substantially 10 to 150 μm, an average fiber length of 50 to 100 μm, and a particle diameter of substantially 0.1 to 15 μm and an average particle diameter of 0.5 to A phenol resin molding material obtained by heating and kneading a material containing 10 μm inorganic powder. 成形材料全体に対して、フェノール樹脂20〜40重量%、黒鉛5〜40重量%、前記ガラス繊維10〜40重量%、及び前記無機粉末が5〜40重量%を含有する材料を加熱混練してなる請求項1記載のフェノール樹脂成形材料。A material containing 20 to 40% by weight of a phenol resin, 5 to 40% by weight of graphite, 10 to 40% by weight of the glass fiber, and 5 to 40% by weight of the inorganic powder is heated and kneaded with respect to the entire molding material. The phenolic resin molding material according to claim 1.
JP2003204511A 2003-07-31 2003-07-31 Phenolic resin molding compound Pending JP2005048009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204511A JP2005048009A (en) 2003-07-31 2003-07-31 Phenolic resin molding compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204511A JP2005048009A (en) 2003-07-31 2003-07-31 Phenolic resin molding compound

Publications (1)

Publication Number Publication Date
JP2005048009A true JP2005048009A (en) 2005-02-24

Family

ID=34263495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204511A Pending JP2005048009A (en) 2003-07-31 2003-07-31 Phenolic resin molding compound

Country Status (1)

Country Link
JP (1) JP2005048009A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037164A1 (en) * 2005-09-28 2007-04-05 Terumo Kabushiki Kaisha Synthetic resin needles and synthetic resin composition for needles
WO2007055338A1 (en) * 2005-11-11 2007-05-18 Hitachi Chemical Co., Ltd. Resin molding material
JP2007177147A (en) * 2005-12-28 2007-07-12 Asahi Organic Chem Ind Co Ltd Phenol resin molding material
JP2007277538A (en) * 2006-03-13 2007-10-25 Sumitomo Bakelite Co Ltd Phenolic resin containing coated inorganic fine particle dispersed therein and method for producing the same
JP2009242662A (en) * 2008-03-31 2009-10-22 Air Water Inc Thermosetting molding material
JP2013067788A (en) * 2011-09-06 2013-04-18 Sumitomo Bakelite Co Ltd Phenolic resin molding material, and sliding part
JP2015120848A (en) * 2013-12-24 2015-07-02 旭有機材工業株式会社 Phenol resin molding material and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037164A1 (en) * 2005-09-28 2007-04-05 Terumo Kabushiki Kaisha Synthetic resin needles and synthetic resin composition for needles
US8038658B2 (en) 2005-09-28 2011-10-18 Terumo Kabushiki Kaisha Synthetic resin needles and synthetic resin composition for needles
JP5094403B2 (en) * 2005-09-28 2012-12-12 テルモ株式会社 Synthetic resin needle and synthetic resin composition for needle
WO2007055338A1 (en) * 2005-11-11 2007-05-18 Hitachi Chemical Co., Ltd. Resin molding material
US7772317B2 (en) 2005-11-11 2010-08-10 Hitachi Chemical Company, Ltd. Resin molding material
JP2007177147A (en) * 2005-12-28 2007-07-12 Asahi Organic Chem Ind Co Ltd Phenol resin molding material
JP2007277538A (en) * 2006-03-13 2007-10-25 Sumitomo Bakelite Co Ltd Phenolic resin containing coated inorganic fine particle dispersed therein and method for producing the same
JP2009242662A (en) * 2008-03-31 2009-10-22 Air Water Inc Thermosetting molding material
JP2013067788A (en) * 2011-09-06 2013-04-18 Sumitomo Bakelite Co Ltd Phenolic resin molding material, and sliding part
JP2015120848A (en) * 2013-12-24 2015-07-02 旭有機材工業株式会社 Phenol resin molding material and method for producing the same

Similar Documents

Publication Publication Date Title
JP5213302B2 (en) Phenolic resin molding material
JP2003313398A (en) Phenolic resin molding material and brake piston obtained by using the same
JP2005048009A (en) Phenolic resin molding compound
JP3121754B2 (en) Phenolic resin molding material
JP2002220507A (en) Phenol resin molding material
JP2004204031A (en) Phenolic resin molding material
JP2006257116A (en) Phenolic resin molding material
JP2005265033A (en) Phenol resin cam
JP2006257114A (en) Phenolic resin molding material for commutator
JP2005036127A (en) Phenol resin molding material and molded product thereof
JP5286863B2 (en) Phenolic resin molding material
JP2004282923A (en) Phenolic resin molding compound for commutator
JPH09286901A (en) Phenol resin gear
JP2010100740A (en) Phenolic resin-molding material and brake piston
JPH1149930A (en) Thermal-shock-resistant phenolic resin molding material composition
JPH06263963A (en) Phenol resin composition
JP2004210837A (en) Phenolic resin molding material
JP3851048B2 (en) Phenolic resin molding material
JP5402142B2 (en) Phenolic resin molding material
JP3938477B2 (en) Phenolic resin molding material
JP2003026901A (en) Phenolic resin molding material
JPH0349935B2 (en)
JP2005047971A (en) Phenolic resin molding material
JP3686747B2 (en) Sliding member
JP2006089665A (en) Phenolic resin molding material