JP2006257116A - Phenolic resin molding material - Google Patents

Phenolic resin molding material Download PDF

Info

Publication number
JP2006257116A
JP2006257116A JP2005072400A JP2005072400A JP2006257116A JP 2006257116 A JP2006257116 A JP 2006257116A JP 2005072400 A JP2005072400 A JP 2005072400A JP 2005072400 A JP2005072400 A JP 2005072400A JP 2006257116 A JP2006257116 A JP 2006257116A
Authority
JP
Japan
Prior art keywords
molding material
rock wool
weight
phenol resin
resin molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005072400A
Other languages
Japanese (ja)
Other versions
JP4501735B2 (en
Inventor
Satoyuki Saito
智行 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005072400A priority Critical patent/JP4501735B2/en
Publication of JP2006257116A publication Critical patent/JP2006257116A/en
Application granted granted Critical
Publication of JP4501735B2 publication Critical patent/JP4501735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenolic resin molding material that gives an integrally molded article having a high rotation fracture strength and a reduced level difference between segments particularly when used for commutators. <P>SOLUTION: The molding material comprises a phenolic resin, an aminosilane and rock wool surface-treated with a cationic ammonium salt. Preferably, the content of the rock wool is 5-20 wt% based on the whole molding material. The molding material further comprises, as an inorganic filler, a glass fiber and at least one selected from among clay, calcium carbonate and talc. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フェノール樹脂成形材料に関するものである。   The present invention relates to a phenol resin molding material.

フェノール樹脂成形材料は、機械的特性、電気的特性に優れ、軽量な成形品を得られるため、電子・電気部品、各種機構部品から日用品に至るまで、広範な用途に適用されている。
広範囲の分野に利用されているフェノール樹脂成形材料の用途のひとつとしてコンミテータ(整流子)がある。コンミテータはモーターの一部品であり、一般的には、銅セグメントとフェノール樹脂成形材料に代表される熱硬化性樹脂成形材料で成形された絶縁体により構成されている。
コンミテータの絶縁体に使用される材料に要求される基本的な特性には、機械的強度、耐熱性(特に、熱時の強度・加熱寸法安定性)や寸法安定性などがあるため、ガラス繊維で強化されたフェノール樹脂成形材料が多く使用されている。
Phenolic resin molding materials are excellent in mechanical properties and electrical properties, and can obtain lightweight molded products. Therefore, phenol resin molding materials are applied to a wide range of applications from electronic / electrical parts and various mechanical parts to daily necessities.
One of the uses of phenol resin molding materials used in a wide range of fields is a commutator. The commutator is a component of a motor, and is generally composed of an insulator formed of a thermosetting resin molding material typified by a copper segment and a phenol resin molding material.
The basic properties required of materials used for insulators of commutators include mechanical strength, heat resistance (particularly strength during heating and dimensional stability during heating), and dimensional stability. Phenol resin molding materials reinforced with are often used.

しかしながら近年、モーターの小型・高出力化にともない、高温高速回転下で使用可能なコンミテータへの要求が高まっているものの、このようなガラス繊維強化フェノール樹脂成形材料をもってしても、高温高速回転中に生じる銅セグメント間段差(以下、単に「片間段差」ということがある)が大きくなり、モーターの騒音増大や寿命低下につながるという問題点があった。片間段差を少なくする事に関して、粘土鉱物を添加する技術が公開されている(例えば、特許文献1参照)。   However, in recent years, the demand for a commutator that can be used under high-temperature high-speed rotation has increased along with the miniaturization and high output of motors. The step between copper segments (hereinafter, sometimes simply referred to as “step between one side”) is increased, resulting in an increase in motor noise and a decrease in service life. A technique for adding a clay mineral has been disclosed for reducing the level difference between the pieces (see, for example, Patent Document 1).

特開平09−095595号公報Japanese Patent Application Laid-Open No. 09-095595

本発明の目的は、特にコンミテータに用いた場合に、回転破壊強度が高く、片間段差の少ない一体成形品を得ることができるフェノール樹脂成形材料を提供することである。   An object of the present invention is to provide a phenolic resin molding material capable of obtaining an integrally molded product having a high rotational fracture strength and a small step difference between pieces, particularly when used in a commutator.

このような目的は、下記(1)〜(4)に記載の本発明により達成される。
(1)フェノール樹脂と、アミノシラン及びカチオニック・アンモニウム塩で表面処理されたロックウールと、を含有することを特徴とするフェノール樹脂成形材料。
(2)前記ロックウールの含有量は、成形材料全体に対して5〜20重量%である(1)に記載のフェノール樹脂成形材料。
(3)更に、前記ロックウール以外の無機充填材として、ガラス繊維と、クレー、炭酸カルシウム、タルクの中から選ばれた1種以上とを含むものである(1)又は(2)のいずれかに記載のフェノール樹脂成形材料。
(4)コンミテータ用に用いられるものである、(1)ないし(3)のいずれかに記載のフェノール樹脂成形材料。
Such an object is achieved by the present invention described in the following (1) to (4).
(1) A phenol resin molding material containing a phenol resin and rock wool surface-treated with aminosilane and cationic ammonium salt.
(2) The phenol resin molding material according to (1), wherein the content of the rock wool is 5 to 20% by weight with respect to the entire molding material.
(3) Furthermore, as inorganic fillers other than the said rock wool, it contains glass fiber and 1 or more types chosen from clay, calcium carbonate, and talc, either (1) or (2) Phenolic resin molding material.
(4) The phenol resin molding material according to any one of (1) to (3), which is used for a commutator.

本発明のフェノール樹脂成形材料は、フェノール樹脂と、アミノシラン及びカチオニック・アンモニウム塩で表面処理されたロックウールと、を含有することを特徴とするものであり、特にコンミテータに用いた場合に、回転破壊強度が高く、片間段差の少ない一体成形品を得ることができる。   The phenolic resin molding material of the present invention is characterized by containing a phenolic resin and rock wool surface-treated with aminosilane and cationic ammonium salt, especially when used in a commutator. An integrally molded product having high strength and few steps between the pieces can be obtained.

以下、本発明のフェノール樹脂成形材料(以下、単に「成形材料」ということがある)について詳細に説明する。
本発明の成形材料は、フェノール樹脂と、アミノシラン及びカチオニック・アンモニウム塩で表面処理されたロックウール(以下、単に「表面処理済ロックウール」ということがある)と、を含有することを特徴とするものである。
Hereinafter, the phenol resin molding material of the present invention (hereinafter sometimes simply referred to as “molding material”) will be described in detail.
The molding material of the present invention contains a phenol resin and rock wool surface-treated with aminosilane and cationic ammonium salt (hereinafter sometimes simply referred to as “surface-treated rock wool”). Is.

本発明の成形材料に用いられるフェノール樹脂としては、ノボラック型フェノール樹脂またはレゾール型フェノール樹脂が挙げられ、これらを単独、あるいは両者を併用することができる。
ノボラック型フェノール樹脂を使用する場合、通常硬化剤としてヘキサメチレンテトラミンを使用する。ヘキサメチレンテトラミンを用いる場合、その含有量は特に限定されないが、ノボラック型フェノール樹脂100重量部に対して、10〜30重量部配合することが好ましく、特に15〜20重量部配合することが好ましい。ヘキサメチレンテトラミンの含有量が上記上限値を超えると、成形品の機械的強度が低下する場合があり、上記下限値未満では、成形収縮が大きくなり、成形品の機械的強度が低下する場合がある。
Examples of the phenolic resin used in the molding material of the present invention include novolac type phenolic resins and resol type phenolic resins, which can be used alone or in combination.
When a novolac type phenol resin is used, hexamethylenetetramine is usually used as a curing agent. When hexamethylenetetramine is used, its content is not particularly limited, but it is preferably 10 to 30 parts by weight, particularly preferably 15 to 20 parts by weight, based on 100 parts by weight of the novolak type phenol resin. If the content of hexamethylenetetramine exceeds the upper limit, the mechanical strength of the molded product may decrease. If the content is less than the lower limit, molding shrinkage may increase, and the mechanical strength of the molded product may decrease. is there.

本発明の成形材料においては、アミノシラン及びカチオニック・アンモニウム塩で表面処理されたロックウールを使用する。これにより、特にコンミテータ成形品に用いた場合に、回転破壊強度を低下させることなく片間段差を低減することが可能となる。
本発明の成形材料に用いられるロックウールは、玄武岩などの天然鉱物を溶融し、加工精製した鉱物繊維である。このロックウールの融点は、1000℃以上であることから、充填材として用いると耐熱性・耐摩耗性・耐久性・機械的強度を向上させることができる。
In the molding material of the present invention, rock wool surface-treated with aminosilane and cationic ammonium salt is used. Thereby, especially when used for a commutator molded product, it becomes possible to reduce the step between the pieces without reducing the rotational fracture strength.
The rock wool used in the molding material of the present invention is a mineral fiber obtained by melting, processing and refining a natural mineral such as basalt. Since the melting point of this rock wool is 1000 ° C. or higher, the heat resistance, wear resistance, durability and mechanical strength can be improved when used as a filler.

本発明の成形材料で用いられるロックウールは、アミノシラン及びカチオニック・アンモニウム塩で表面処理されたものである。これにより、フェノール樹脂との親和性、濡れ性を向上させ、成形品に高い機械的強度を付与することができる。
また、このように、アミノシラン及びカチオニック・アンモニウム塩で表面処理されているロックウールは、例えばアミノシラン単独で表面処理されたロックウールと比較して、成形材料中における分散性にきわめて優れるという特徴を有する。これにより、上記効果をさらに高めることができる。
さらに、ガラス繊維など配向性を有する無機充填材を併用する場合においては、例えばガラス繊維の一部を置換して上記ロックウールを配合することにより、機械的強度を実質的に低下させることなく、ガラス繊維の配向性による影響を大きく低減させることができる。
The rock wool used in the molding material of the present invention is surface-treated with aminosilane and cationic ammonium salt. Thereby, affinity with a phenol resin and wettability can be improved, and high mechanical strength can be provided to a molded article.
In addition, as described above, the rock wool surface-treated with aminosilane and cationic ammonium salt has a feature that the dispersibility in the molding material is extremely excellent as compared with, for example, rock wool surface-treated with aminosilane alone. . Thereby, the effect can be further enhanced.
Furthermore, in the case of using together an inorganic filler having orientation such as glass fiber, for example, by substituting part of the glass fiber and blending the rock wool, without substantially reducing the mechanical strength, The influence by the orientation of the glass fiber can be greatly reduced.

一方、ガラス繊維を高充填した成形材料を用いたコンミテータ成形品の場合、成形品の機械的強度は向上する反面、配向差が大きくなり、高温高速回転中にコンミテータの真円度が悪化し、片間段差増大に至る可能性がある。このため、無機の粒子状充填材或いは板状充填材を併用して用いることが一般的に行われてきた。しかしながら、無機の粒子状充填材或いは板状充填材を多く配合すると機械的強度が低下するという問題があった。   On the other hand, in the case of a commutator molded product using a molding material that is highly filled with glass fiber, the mechanical strength of the molded product is improved, but the orientation difference becomes large, and the roundness of the commutator deteriorates during high-temperature high-speed rotation, There is a possibility of increasing the step difference between the pieces. For this reason, it has been generally performed to use an inorganic particulate filler or a plate-like filler in combination. However, when a large amount of inorganic particulate filler or plate-like filler is blended, there is a problem that the mechanical strength is lowered.

本発明の成形材料に用いる表面処理済ロックウールの繊維径は特に限定されないが、1〜20μmが好ましく、5〜10μmが更に好ましい。繊維径が上記範囲を外れると成形品の機械的強度が不十分となる場合がある。
また、繊維長は特に限定されないが100〜650μmが好ましい。更に好ましくは100〜300μmである。繊維長が上記下限値未満では成形品の機械的強度が不十分となる場合があり、上記上限値を超えると成形材料製造時の作業性や分散性が低下する場合がある。
Although the fiber diameter of the surface-treated rock wool used for the molding material of this invention is not specifically limited, 1-20 micrometers is preferable and 5-10 micrometers is still more preferable. If the fiber diameter is out of the above range, the mechanical strength of the molded product may be insufficient.
Moreover, although fiber length is not specifically limited, 100-650 micrometers is preferable. More preferably, it is 100-300 micrometers. If the fiber length is less than the lower limit, the mechanical strength of the molded product may be insufficient. If the fiber length exceeds the upper limit, the workability and dispersibility during the production of the molding material may be reduced.

上記表面処理済ロックウールの含有量は特に限定されないが、成形材料全体に対して5〜20重量%が好ましく、更に好ましくは5〜15重量%である。上記下限値未満では、成形品の機械的強度が不十分となる場合があり、上記上限値を超えると、成形材料製造時の作業性や分散性が低下する場合がある。   Although content of the said surface-treated rock wool is not specifically limited, 5 to 20 weight% is preferable with respect to the whole molding material, More preferably, it is 5 to 15 weight%. If it is less than the lower limit, the mechanical strength of the molded product may be insufficient, and if it exceeds the upper limit, workability and dispersibility during the production of the molding material may be reduced.

本発明の成形材料は、上記表面処理済ロックウールのほか、ガラス繊維を含む無機充填材を含有することが好ましい。ガラス繊維を含有することにより、得られる成形品の機械的強度が向上する。
ガラス繊維の繊維径は、特に限定されないが、10〜15μmが好ましい。この範囲の繊維径のガラス繊維を用いることにより、成形材料化段階での作業性を向上させることができる。また、ガラス繊維の繊維長は、特に限定されないが、1〜3mmのチョップドストランドタイプのものを使用することが好ましい。この範囲の繊維長のガラス繊維を用いることにより、成形材料化時の作業性、成形性及び成形品の機械的強度を向上させることができる。
It is preferable that the molding material of this invention contains the inorganic filler containing glass fiber other than the said surface-treated rock wool. By containing glass fiber, the mechanical strength of the obtained molded product is improved.
Although the fiber diameter of glass fiber is not specifically limited, 10-15 micrometers is preferable. By using glass fibers having a fiber diameter in this range, workability at the stage of forming a molding material can be improved. The fiber length of the glass fiber is not particularly limited, but it is preferable to use a chopped strand type of 1 to 3 mm. By using glass fibers having a fiber length within this range, workability, moldability, and mechanical strength of a molded product can be improved.

上記ガラス繊維の含有量は、特に限定されないが、成形材料全体に対して30〜50重量%が好ましく、特に40〜50重量%が好ましい。ガラス繊維の含有量が上記下限値未満では成形品の機械的強度が不十分となる場合があり、上記上限値を超えると、成形材料製造時の作業性が低下や成形品の配向差が大きくなる場合がある。   Although content of the said glass fiber is not specifically limited, 30 to 50 weight% is preferable with respect to the whole molding material, and 40 to 50 weight% is especially preferable. If the glass fiber content is less than the lower limit, the mechanical strength of the molded product may be insufficient. If the glass fiber content exceeds the upper limit, the workability during the production of the molding material is reduced and the orientation difference of the molded product is large. There is a case.

本発明の成形材料は、さらに、粉末状の無機充填材を含有することが好ましい。これにより、成形品の配向差がさらに小さくなり寸法安定性をより向上させることができる。
上記粉末状の無機充填材としては、特に限定されないが、例えば、未焼成クレー、焼成クレー、ウォラスナイト、炭酸カルシウム、タルク、シリカ等を挙げることができる。これらの中でもクレー、炭酸カルシウム、タルクが好ましく、これらの中から1種以上を選択し使用することができる。これにより成形品の寸法安定性をさらに向上させることができる。
The molding material of the present invention preferably further contains a powdery inorganic filler. Thereby, the orientation difference of the molded product is further reduced, and the dimensional stability can be further improved.
The powdery inorganic filler is not particularly limited, and examples thereof include unfired clay, fired clay, wollastonite, calcium carbonate, talc, and silica. Among these, clay, calcium carbonate, and talc are preferable, and one or more of them can be selected and used. Thereby, the dimensional stability of the molded product can be further improved.

上記粉末状の無機充填材の含有量は、特に限定されないが、成形材料全体の5〜20重量%が好ましく、特に5〜15重量%が好ましい。かかる含有量が上記下限値未満では成形品の寸法安定性などが充分でない場合があり、上記上限値を超えると成形材料製造時の作業性や、成形品の機械的強度が低下する場合がある。   Although content of the said powdery inorganic filler is not specifically limited, 5 to 20 weight% of the whole molding material is preferable, and 5 to 15 weight% is especially preferable. If the content is less than the lower limit, the dimensional stability of the molded product may not be sufficient, and if the content exceeds the upper limit, the workability during the production of the molding material and the mechanical strength of the molded product may be reduced. .

本発明の成形材料には、本発明の目的を損なわない範囲で、離型剤、硬化助剤、顔料、エラストマ等の添加剤を添加することができる。   Additives such as mold release agents, curing aids, pigments, elastomers and the like can be added to the molding material of the present invention as long as the object of the present invention is not impaired.

本発明の成形材料を製造する方法は通常の混練方法が適用できる。例えば、フェノール樹脂、ガラス繊維、表面処理済ロックウール及びその他無機充填材を均一に混合した後、ロール、コニーダ、二軸押出し機等の混錬機単独またはロールと他の混合機との組み合わせで加熱混練した後、粉砕して得ることができる。   A normal kneading method can be applied to the method for producing the molding material of the present invention. For example, after uniformly mixing phenol resin, glass fiber, surface-treated rock wool and other inorganic fillers, kneading machines such as rolls, kneaders and twin screw extruders alone or in combination with rolls and other mixers It can be obtained by kneading after heating and kneading.

以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.

以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to this.

(実施例1)
成形材料全体に対して、レゾール型フェノール樹脂を6重量%、ノボラック型フェノール樹脂を24重量%、ヘキサメチレンテトラミン4重量%、ガラス繊維を45重量%、表面処理済ロックウールを10重量%、粉末状無機充填材として未焼成クレーを8重量%、および離型剤を1重量%、顔料を1重量%、硬化助剤として酸化マグネシウムを1重量%配合し、約90℃の加熱ロールで約5分間混練し、冷却後粉砕して成形材料を得た。
Example 1
6% by weight of resol type phenolic resin, 24% by weight of novolak type phenolic resin, 4% by weight of hexamethylenetetramine, 45% by weight of glass fiber, 10% by weight of surface-treated rock wool, powder 8% by weight of unfired clay as a fibrous inorganic filler, 1% by weight of release agent, 1% by weight of pigment, 1% by weight of magnesium oxide as a curing aid, and about 5% with a heating roll at about 90 ° C. The mixture was kneaded for minutes, cooled and pulverized to obtain a molding material.

(実施例2)
レゾール型フェノール樹脂を用いず、ノボラック型フェノール樹脂を29重量%に増量、ヘキサメチレンテトラミンを5重量%に増量した以外は、実施例1と同様にして成形材料を得た。
(Example 2)
A molding material was obtained in the same manner as in Example 1 except that the resol type phenol resin was not used and the novolak type phenol resin was increased to 29% by weight and the hexamethylenetetramine was increased to 5% by weight.

(比較例1)
表面処理済ロックウールを用いずに、成形材料全体に対して、レゾール型フェノール樹脂を6重量%、ノボラック型フェノール樹脂を24重量%、ヘキサメチレンテトラミン4重量%、ガラス繊維を55重量%、粉末状無機充填材として未焼成クレーを8重量%、及び離型剤を1重量%、顔料を1重量%、硬化助剤として酸化マグネシウムを1重量%配合し、約90℃の加熱ロールで約5分間混練し、冷却後粉砕して成形材料を得た。
(Comparative Example 1)
Without using surface-treated rock wool, 6% by weight of resol type phenol resin, 24% by weight of novolac type phenol resin, 4% by weight of hexamethylenetetramine, 55% by weight of glass fiber, powder 8% by weight of unfired clay as a fibrous inorganic filler, 1% by weight of a release agent, 1% by weight of pigment, 1% by weight of magnesium oxide as a curing aid, and about 5% with a heating roll at about 90 ° C. The mixture was kneaded for minutes, cooled and pulverized to obtain a molding material.

(比較例2)
ガラス繊維を45重量%に減量し、アミノシランで表面処理されたロックウールを10重量%追加配合した以外は、比較例1と同様にして成形材料を得た。
(Comparative Example 2)
A molding material was obtained in the same manner as in Comparative Example 1, except that the glass fiber was reduced to 45% by weight and 10% by weight of rock wool surface-treated with aminosilane was added.

(比較例3)
アミノシランで表面処理されたロックウールの代わりに、表面処理されていないロックウールを配合した以外は、比較例2と同様にして成形材料を得た。
(Comparative Example 3)
A molding material was obtained in the same manner as in Comparative Example 2 except that rock wool not surface-treated was blended instead of rock wool surface-treated with aminosilane.

(比較例4)
ロックウールを配合せず、未焼成クレーを18重量%に増量とした以外は、比較例2と同様にして成形材料を得た。
(Comparative Example 4)
A molding material was obtained in the same manner as in Comparative Example 2 except that rock wool was not blended and the unfired clay was increased to 18% by weight.

Figure 2006257116
Figure 2006257116

(使用した原料)
(1)レゾールフェノール樹脂:以下の方法にて製造した。
還流コンデンサー撹拌機、加熱装置、真空脱水装置を備えた反応装置内に、フェノール(P)とホルムアルデヒド(F)とをモル比(F/P)=1.7で仕込み、これに酢酸亜鉛をフェノール100重量部に対して0.5重量部添加した。この反応系のpHを5.5に調整し、還流反応を3時間行った。その後、真空度100Torr、温度100℃で2時間水蒸気蒸留を行って未反応フェノールを除去し、さらに、真空度100Torr、温度115℃で1時間反応させ、数平均分子量800のレゾールフェノール樹脂(固形)を得た。
(2)ノボラック型フェノール樹脂:住友ベークライト社製、A−1082(数平均分子量800)
(3)ヘキサメチレンテトラミン:住友精化社製 ウロトロピン
(4)ガラス繊維:日本板硝子社製 RES03−BM38(平均繊維径11μm、平均繊維長3mmのチョップドストランド)
(5)表面処理済ロックウール:ラピナス社製 RF840(平均繊維径5.5μm、平均繊維長300μm)
(6)アミノシラン表面処理済ロックウール:ラピナス社製 RS440(平均繊維径5.5μm、平均繊維長300μm)
(7)表面処理無しロックウール:ラピナス社製 MS605(平均繊維径5.5μm、平均繊維長300μm)
(8)未焼成クレー:ECC社製 ECKALITE 1
(9)離型剤:日本油脂社製 ステアリン酸
(10)顔料:三菱化学社製 カーボンブラック#750B
(11)硬化助剤(酸化マグネシウム):協和化学社製 キョーワマグ30
(Raw materials used)
(1) Resole phenolic resin: produced by the following method.
A reactor equipped with a reflux condenser stirrer, a heating device, and a vacuum dehydration device was charged with phenol (P) and formaldehyde (F) at a molar ratio (F / P) = 1.7, and zinc acetate was added to the phenol. 0.5 part by weight was added to 100 parts by weight. The pH of this reaction system was adjusted to 5.5, and a reflux reaction was performed for 3 hours. After that, steam distillation is performed for 2 hours at a vacuum degree of 100 Torr and a temperature of 100 ° C. to remove unreacted phenol, and further a reaction is carried out at a vacuum degree of 100 Torr and a temperature of 115 ° C. for 1 hour to obtain a resol phenol resin (solid) having a number average molecular weight of 800. Got.
(2) Novolac type phenolic resin: A-1082 (number average molecular weight 800) manufactured by Sumitomo Bakelite Co., Ltd.
(3) Hexamethylenetetramine: Urotropin (4) manufactured by Sumitomo Seika Co., Ltd. (4) Glass fiber: RES03-BM38 manufactured by Nippon Sheet Glass Co., Ltd. (chopped strand having an average fiber diameter of 11 μm and an average fiber length of 3 mm)
(5) Surface-treated rock wool: RF840 manufactured by Lapinus (average fiber diameter 5.5 μm, average fiber length 300 μm)
(6) Aminosilane surface-treated rock wool: RS440 (average fiber diameter 5.5 μm, average fiber length 300 μm) manufactured by Lapinus
(7) Rock wool without surface treatment: MS605 (average fiber diameter 5.5 μm, average fiber length 300 μm) manufactured by Lapinus
(8) Unfired clay: ECC KALITE 1 manufactured by ECC
(9) Release agent: manufactured by NOF Corporation Stearic acid (10) Pigment: Mitsubishi Chemical Corporation carbon black # 750B
(11) Curing aid (magnesium oxide): Kyowa Chemical Co., Ltd. Kyowa Mag 30

実施例および比較例により得られた成形材料を用いて、次の評価を行った。得られた結果を表2に示す。   The following evaluation was performed using the molding material obtained by the Example and the comparative example. The obtained results are shown in Table 2.

Figure 2006257116
Figure 2006257116

(測定方法)
<1>シャルピー衝撃強さ、曲げ強さ、成形収縮率:
試験片は、トランスファ成形(175℃、3分間)により作製し、JIS K 6911に準拠して測定した。
(Measuring method)
<1> Charpy impact strength, bending strength, molding shrinkage:
The test piece was produced by transfer molding (175 ° C., 3 minutes) and measured according to JIS K 6911.

<2>線膨張係数の異方性:
上記で得られた成形材料を用い、<1>の方法にて曲げ強さ試験用の試料を成形した。この試料を用いて成形材料の流れ方向の線膨張係数(α)、および流れに対し直交方向の線膨張係数(α)を、TMA法を用いて測定した。
<2> Anisotropy of linear expansion coefficient:
Using the molding material obtained above, a sample for bending strength test was molded by the method <1>. Using this sample, the linear expansion coefficient (α) in the flow direction of the molding material and the linear expansion coefficient (α) in the direction perpendicular to the flow were measured using the TMA method.

<3>回転破壊強度と片間段差
トランスファ成形(175℃、硬化時間3分間)、アフタキュア(180℃×4時間+210℃×4時間)にて、図1に示す試験用コンミテータを作製し、250℃中でコンミテータを回転させ破壊した際の回転数(回転破壊強度)と250℃中、45000rpm、10分間回転させた後、コンミテータの高さ方向の中心部分について、隣り合ったセグメント間の段差を、全周真円度計にて測定し、最大段差を得た。
<3> Rotational fracture strength and step difference between pieces The test commutator shown in FIG. 1 is prepared by transfer molding (175 ° C., curing time 3 minutes) and after-cure (180 ° C. × 4 hours + 210 ° C. × 4 hours). After rotating the commutator at ℃ for breaking (rotational fracture strength) and rotating at 45,000 rpm for 10 minutes at 250 ℃, the step between the adjacent segments in the central part of the commutator in the height direction The maximum step was obtained by measuring with an all-round roundness meter.

表2の結果から、本発明の表面処理済ロックウールを含む成形材料を用いた成形品である実施例1ないし2は、シャルピー衝撃強さ、曲げ強さ及び曲げ弾性率は実用範囲であり、所定の表面処理を施していないロックウールを用いた比較例1〜4に比較して片間段差が大幅に低減されている。また、ガラス繊維が高充填されている比較例1と同等の高い回転破壊強度が維持されている。   From the results of Table 2, Examples 1 and 2 which are molded articles using the molding material containing the surface-treated rock wool of the present invention have practical ranges of Charpy impact strength, bending strength and bending elastic modulus, Compared with Comparative Examples 1 to 4 using rock wool that has not been subjected to a predetermined surface treatment, the step difference between the pieces is greatly reduced. Moreover, the high rotational fracture strength equivalent to the comparative example 1 with which the glass fiber is highly filled is maintained.

本発明のフェノール樹脂成形材料は、特に、コンミテータに用いた場合に、回転破壊強度が高く片間段差の少ない一体成形品を得ることができる。   In particular, when the phenol resin molding material of the present invention is used in a commutator, it is possible to obtain an integrally molded product having a high rotational fracture strength and few steps between the pieces.

評価用コンミテータの断面図。Sectional drawing of the commutator for evaluation.

符号の説明Explanation of symbols

1:フェノール樹脂製絶縁体
2:銅セグメント
1: Insulator made of phenol resin 2: Copper segment

Claims (4)

フェノール樹脂と、アミノシラン及びカチオニック・アンモニウム塩で表面処理されたロックウールと、を含有することを特徴とするフェノール樹脂成形材料。 A phenol resin molding material comprising a phenol resin and rock wool surface-treated with an aminosilane and a cationic ammonium salt. 前記ロックウールの含有量は、成形材料全体に対して5〜20重量%である請求項1に記載のフェノール樹脂成形材料。 The phenol resin molding material according to claim 1, wherein the content of the rock wool is 5 to 20% by weight with respect to the entire molding material. 更に、前記ロックウール以外の無機充填材として、ガラス繊維と、クレー、炭酸カルシウム、タルクの中から選ばれた1種以上とを含むものである請求項1又は2に記載のフェノール樹脂成形材料。 Furthermore, the phenol resin molding material of Claim 1 or 2 which contains glass fiber and 1 or more types chosen from clay, calcium carbonate, and talc as inorganic fillers other than the said rock wool. コンミテータ用に用いられるものである、請求項1ないし3のいずれかに記載のフェノール樹脂成形材料。
The phenol resin molding material according to any one of claims 1 to 3, which is used for a commutator.
JP2005072400A 2005-03-15 2005-03-15 Phenolic resin molding material Expired - Fee Related JP4501735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072400A JP4501735B2 (en) 2005-03-15 2005-03-15 Phenolic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072400A JP4501735B2 (en) 2005-03-15 2005-03-15 Phenolic resin molding material

Publications (2)

Publication Number Publication Date
JP2006257116A true JP2006257116A (en) 2006-09-28
JP4501735B2 JP4501735B2 (en) 2010-07-14

Family

ID=37096739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072400A Expired - Fee Related JP4501735B2 (en) 2005-03-15 2005-03-15 Phenolic resin molding material

Country Status (1)

Country Link
JP (1) JP4501735B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106194A (en) * 2006-10-27 2008-05-08 Sumitomo Bakelite Co Ltd Thermosetting resin molding material
WO2008139681A1 (en) * 2007-05-07 2008-11-20 Panasonic Corporation Mold rectifier and rectification motor using the same
JP2009155435A (en) * 2007-12-26 2009-07-16 Toyo Ink Mfg Co Ltd Metal oxide dispersion, and resin composition and molding using the same
CN107488328A (en) * 2017-08-01 2017-12-19 江苏天龙玄武岩连续纤维股份有限公司 A kind of novel glass steel part inserts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133047A (en) * 1983-12-21 1985-07-16 Toshiba Chem Corp Phenolic resin molding compound
JPH05239314A (en) * 1992-03-03 1993-09-17 Hitachi Chem Co Ltd Molding material of phenol resin
JP2001239520A (en) * 2000-03-01 2001-09-04 Sumitomo Bakelite Co Ltd Method for producing glass fiber base material phenol molding material
JP2004123999A (en) * 2002-10-07 2004-04-22 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004282923A (en) * 2003-03-17 2004-10-07 Sumitomo Bakelite Co Ltd Phenolic resin molding compound for commutator
JP2006257114A (en) * 2005-03-15 2006-09-28 Sumitomo Bakelite Co Ltd Phenolic resin molding material for commutator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133047A (en) * 1983-12-21 1985-07-16 Toshiba Chem Corp Phenolic resin molding compound
JPH05239314A (en) * 1992-03-03 1993-09-17 Hitachi Chem Co Ltd Molding material of phenol resin
JP2001239520A (en) * 2000-03-01 2001-09-04 Sumitomo Bakelite Co Ltd Method for producing glass fiber base material phenol molding material
JP2004123999A (en) * 2002-10-07 2004-04-22 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004282923A (en) * 2003-03-17 2004-10-07 Sumitomo Bakelite Co Ltd Phenolic resin molding compound for commutator
JP2006257114A (en) * 2005-03-15 2006-09-28 Sumitomo Bakelite Co Ltd Phenolic resin molding material for commutator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106194A (en) * 2006-10-27 2008-05-08 Sumitomo Bakelite Co Ltd Thermosetting resin molding material
WO2008139681A1 (en) * 2007-05-07 2008-11-20 Panasonic Corporation Mold rectifier and rectification motor using the same
US8242659B2 (en) 2007-05-07 2012-08-14 Panasonic Corporation Mold commutator and commutator motor using the same
JP5136549B2 (en) * 2007-05-07 2013-02-06 パナソニック株式会社 Mold commutator and commutator motor incorporating the same
JP2009155435A (en) * 2007-12-26 2009-07-16 Toyo Ink Mfg Co Ltd Metal oxide dispersion, and resin composition and molding using the same
CN107488328A (en) * 2017-08-01 2017-12-19 江苏天龙玄武岩连续纤维股份有限公司 A kind of novel glass steel part inserts

Also Published As

Publication number Publication date
JP4501735B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4501735B2 (en) Phenolic resin molding material
WO2011052127A1 (en) Phenol resin molding material and phenol resin molded article
JP5504786B2 (en) Phenolic resin molding material
JP4569469B2 (en) Phenol resin molding material for pulley, resin pulley, and method of using resin molding material
JP2006257114A (en) Phenolic resin molding material for commutator
JP2005048009A (en) Phenolic resin molding compound
JP4952192B2 (en) Thermosetting resin molding material
JP2002220507A (en) Phenol resin molding material
JP2004282923A (en) Phenolic resin molding compound for commutator
JP4561535B2 (en) Melamine resin composition for commutator and commutator
JP5286863B2 (en) Phenolic resin molding material
JPH1149930A (en) Thermal-shock-resistant phenolic resin molding material composition
JP2006199895A (en) Phenolic resin molding compound
JP2007177036A (en) Phenol resin molding material for commutator and method for producing the same
JP2005272654A (en) Phenol resin molding material for commutator
JP3555835B2 (en) Phenolic resin molding material
JP2005281369A (en) Phenolic resin molding compound for commutator
JP5402142B2 (en) Phenolic resin molding material
JP2004277695A (en) Phenol resin molding compound
JP2006265317A (en) Phenolic resin molding material
JP2006143823A (en) Phenolic resin molding material
JP2006265424A (en) Phenol resin molding material for vibration damper and vibration damper obtained by molding the same
JP2003172433A (en) Resin pulley
JP2004131703A (en) Phenolic resin molding material for commutator
JP2006096778A (en) Phenolic resin molding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4501735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees