JP2000500284A - 側壁を効果的にレーザ剥離するためにビームを斜めに回転させる方法と装置 - Google Patents

側壁を効果的にレーザ剥離するためにビームを斜めに回転させる方法と装置

Info

Publication number
JP2000500284A
JP2000500284A JP9518032A JP51803297A JP2000500284A JP 2000500284 A JP2000500284 A JP 2000500284A JP 9518032 A JP9518032 A JP 9518032A JP 51803297 A JP51803297 A JP 51803297A JP 2000500284 A JP2000500284 A JP 2000500284A
Authority
JP
Japan
Prior art keywords
azimuth
angle
laser
laser beam
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9518032A
Other languages
English (en)
Inventor
メナヘム ゲヌット
リヴスヒッツ(ブヤナー)ボリス
オッファー テハル−ザハヴ
エリーゼル イスケヴイッチ
Original Assignee
オラミル セミコンダクター エクイプメント リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オラミル セミコンダクター エクイプメント リミテッド filed Critical オラミル セミコンダクター エクイプメント リミテッド
Publication of JP2000500284A publication Critical patent/JP2000500284A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor

Abstract

(57)【要約】 表面の剥離すべき側壁から被覆物質をほぼ完全に、かつ、迅速に除去する方法と装置であって、処理される表面の面に関し入射角αにて表面にレーザビームを入射させ、この角度はα>0であり、ビーム入射面の方位角を周期的に切換えるか徐々に変えることが含まれている。

Description

【発明の詳細な説明】 側壁を効果的にレーザ剥離するためにビームを斜めに回転させる方法と装置 発明の分野 この発明は、紫外レーザ表面処理方法、特に基板表面から異物を除去する方法 に関する。さらに詳しく述べると、この発明は、改良された乾式レーザ剥離処理 による半導体ウェーハから強靭なホトレジストを除去するために紫外レーザ放射 線ビームを斜めの方向から利用する方法に関する。発明の背景 種々の製品をつくる場合、表面に保護物質の層を塗布する必要があるが、この 保護物質の層は特定の製造工程が完了した後に除去しなければならない。このよ うな方法の1例は、いわゆる「マスキング」である。この方法では、マスクを通 して照射された保護物質の層を用いて表面にパターンをつくり、次いでこの表面 を現像液で処理して表面のマスクしない部分から物質を除去し、所定のパターン を残す。次いでこの表面をイオン注入またはエッチング剤で処理し、表面のマス クしない部分に化学種を導入、またはマスクしない部分から物質を除去する。こ れらの処理が完了すると、保護マスクの役割は終わり、保護マスクを除去しなけ ればならない。この方法は当該分野では従来からよく知られており、たとえば、 米国特許第5,114,834号に記載されている。 現代のVLSI/ULSI(超大規模集積)回路工業には、次のように主要な ホトレジスト剥離方法が2つ存在する: 1)酸または有機溶媒を用いる湿式剥離、 2)プラズマ・オゾン・オゾン/N2Oまたは紫外線/オゾンをベースとする剥 離を用いる乾式剥離。 これらの方法は不確実で、特に、VLSI/ULSI工業の将来の小型化を考 えると、完璧な方法からほど遠い方法である。現在の技術は約0.5μmの機能 サイズを有する装置を処理しうるが、今世紀末までには装置の加工可能サイズは 0. 25μmまで小さくなると考えられている。このようなサイズの変化が予想され るので、製造技術、特に剥離工程においてかなりの変更を必要とする。上で述べ たホトレジストを剥離する従来技術は、以下で説明するように、将来の装置には 不適当になるであろう。 湿式剥離法単独では、ホトレジストの化学的・物理的特性を変え、ホトレジス トの除去を非常に困難なものとするような強靭な処理の後では、ホトレジストの 完全剥離はできないので、これは完璧な解決策ではない。このような処理には、 たとえば、高線量注入(HDI)・反応性イオンエッチング(RIE)・紫外線 による深い硬化および高温ポストベークがある。HDIまたはRIEの後、注入 パターンまたはエッチングされた壁の側壁は最も除去困難である。 さらに、湿式法には他にもいくつか問題がある。すなわち、剥離液の強度は時 間とともに変わり、溶液に蓄積された汚染物がウェーハの性能に不利な影響を及 ぼす粒子源となりうる。また、剥離した化学物質には、腐食性で毒性のある物質 が含まれ、取扱コストや廃棄コストを高め、また、液相の表面張力と物質移動が ホトレジストの除去を不均一で困難なものにする。 乾式法もいくつか大きな欠点がある。すなわち、金属および微粒子による汚染 、プラズマ・電荷・電流・電界およびプラズマにより誘起される紫外線による損 傷並びに温度による損傷を受ける欠点があり、さらに不完全な除去という欠点が ある。上で述べたように、種々の作製工程の間に、ホトレジストは自身を硬化さ せる化学的・物理的変化を受け、これが従来技術による剥離処理を行うことを極 めて困難なものにする。ホトレジストを完全に除去するためには、通常湿式処理 と乾式処理を含む、複数の逐次工程が必要である。 当該分野はこの問題にいろいろな方向から取り組み、その結果種々の技術を用 いる商業的なホトレジスト除去装置を利用できる。たとえば、紫外線灰化装置が 日立(UA-3150A)から販売されており、乾式化学灰化装置も、たとえば、米 国のFusion Semiconductor Systemsから販売されており、この装置はN2Oと オゾンを用いて化学的灰化によりホトレジストを除去し、たとえば、UNA-200 灰化装置(ULVAC Japan Ltd.)におけるようにマイクロ波プラズマ灰化 も行われる。プラズマ・ホトレジスト除去も使われ、たとえば、Aspen装置(米 国のMattson Technology)およびAURA200(米国のGASONICS IP C)のように市販の装置を利用できる。 さらに最近になって、米国特許第5,114,834号に記載されている酸化雰囲気中 でレーザ紫外放射線を用いたアブレーションによるホトレジストの除去が行われ ている。アブレーション処理は、ホトレジストがレーザパルス・エネルギを強く 吸収することにより起こる。この処理方法は、ホトレジスト内の化学結合の解裂 による爆風と瞬間加熱を伴う、ホトレジスト層が周辺ガスへ局部的に放出される 現象である。一部はガス化し、一部はばらばらに分解されたホトレジストが表面 から上方に吹き飛ばされ、周辺ガスを瞬間的に加熱する。アブレーション生成物 は、爆風により、および紫外レーザ放射線の光化学反応や処理ガスにより迅速に 燃焼する。このプロセスの核心は照射ゾーンを流れる反応性ガス中で起こるアブ レーションされたホトレジストの燃焼を伴うレーザ・アブレーションである。レ ーザ放射線と迅速な燃焼を組み合わせると、ホトレジストの硬質部分(側壁)ア ブレーション限界が瞬間的に低下する。燃焼したアブレーション生成物は、真空 吸引またはガス掃引により除去され、完全に清浄な表面が残される。 米国特許第5,114,834号は、重要で新規な方法を提供するが、この方法では処 理量、すなわち、一定時間に剥離できるウェーハの数、が工業的に受け入れられ るレベルに達していない。レーザ剥離処理量は、剥離速度、すなわち、単位時間 あたりのホトレジストの単位面積を完全剥離するのに必要なレーザパルス数によ り決まる。 この明細書を通して、半導体ウェーハからホトレジストをアブレーションする 方法を参照しているが、これは単純化するために行っている。すなわち、この方 法が周知の方法であり広く取り組まれた問題であるからである。しかし、以下に 説明するこの発明は決してウェーハからホトレジストの剥離に限定されるもので はなく、必要により変更を加えて、フラットパネル表示装置(FPD)からホト レジストの剥離と浄化、あるいは、レンズ・半導体ウェーハ・またはホトマスク などの種々の対象物からの残滓の除去など他の多くの用途にも適用できる。 マイクロ・リソグラフィ処理において、ホトレジストとともに剥離される最も 強靭な構造物は、VLSI/ULSIパターンの側壁を形成しているフィルムで あ る。しかし、当該技術は今まで、乾式法ではこのような強靭な側壁フィルムを有 効、かつ、完全に除去できる適切な手段を提供できなかった。発明の概要 ウェーハ表面(剥離対象の側壁を含む)からホトレジストを完全、かつ、迅速 に除去するこの発明による方法には、処理される基板面に対し比較的垂直なα> 0の斜めの入射角でレーザビームを与え、そして周期的に(ウェーハ上をレーザ ビーム・フットプリントで走査する間に)レーザビーム方位角を切換え、ビーム を斜めに回転させる方法が含まれている。図面の簡単な説明 図1はビーム入射角αに関する制約を概略説明しており、 図2(aとb)は、Al上の側壁フィルムの剥離度に関する実験結果を、入射 角αとパルス数の関数としてまとめており、すなわち、a)は結果の二次元表示 であり、また、b)は対応する三次元表示であり、 図3は、この発明の一つの実施態様によるレーザビーム方位角φの不連続な光 学的切換を概略説明しており、 図4は、この発明の別の実施態様によるレーザビーム方位角φの不連続な光学 的切換を概略説明しており、 図5は、この発明のさらに別の実施態様によるレーザビーム方位角φの連続切 換を概略示しており、 図6は、側壁フィルムを完全に剥離するためのレーザビーム方位角方向の役割 を説明している実験結果を示している。発明の詳細な説明 もちろん、角αの大きさは、図1に概略説明しているように、ウェーハ上のV LSI/ULSI回路の幾何学的構造に依存する。下でより詳しく説明するよう に、この発明の好適な実施態様によると、側壁フィルムの剥離速度はビーム入射 角αとともに速くなり(図2)、剥離速度を最大にするためには角αを下記ルー ルに 従って選択することが望ましい: α=αmax=アークコタンジェント(AR)max ここで、(AR)maxは任意の型のウェーハの最大アスペクト比である。このア スペクト比は、図1を参照して下でより詳しく説明するように、金属突起部の高 さと2つの隣接突起部間の間隔の比h/wとして定義される。 入射角として角αmaxを用いて側壁をレーザ剥離すると、ウェーハ表面に垂直 なレーザビームを用いて操作した時に得られた結果と比べて、処理時間を短縮で きる。この結果は、図2で説明した現象の直接的帰結として2倍を超えることが できる。 当業者が認めているように、角αについて広範囲の値を与えうるレーザ剥離器 の光学ラインを有するこの発明の装置に、同じ装置を用いた場合異なる入射角を 必要とするバルクおよび側壁の剥離と浄化操作の両方を行わせるという目的を与 えることが望ましい。 レーザビーム方位角の切換は、不連続に行うこともできるし、連続的に行うこ ともできる。側壁の場合は方向の数が限られており、図3と4に概略説明してい るように、切換は不連続である。円い壁におけるように、あるいは、多数の側壁 方向が含まれ、輪郭が連続的に変わる場合は、切換は、図5に概略示すように連 続的に行う方が好ましい。 切換操作は、図3で概略示しているように、レーザビームの方位角を変えて光 学的に行うか、あるいは、図4に示しているように、ウェーハの回転により機械 的に行われる。 側壁フィルム剥離に関する上述の効果は、実際の剥離結果に関する実験テータ を示す、図6で説明している。図6の写真は、ただ一つの方位角でレーザビーム を連続的に照射した後に残った側壁フィルムを示している。残った側壁は入射ビ ームに平行であることがはっきりと見てとれる。これらの側壁を完全に除去する ためには、ビーム方位角を△φ=90°切り換える必要がある。 図面の詳細な説明 この明細書で述べた入射角は、図1と図2を参照して定義する。図1は、アス ペクト比(下に定義した)が最大の幾何学的構造要素を含む、一般的に数字1で 示した、ウェーハ部分の断面を概略示している。基板上の金属の突起物2と2’ はマイクロ・リソグラフィ処理の間の金属エッチングの結果として生じた側壁3 により覆われている。角度αは処理表面に対する垂線とレーザビームの間の角度 として定義する。レーザビームの可能な3つの方向を、幾何学的構造要素の上に 、L1(α=αmax)、L2(α>αmax)およびL3(α<αmax)により概略示している 。入射角α<αmaxにおいては、図1ではっきり示しているように、側壁フィル ムはレーザビームにより完全に照射されており、入射角α>αmaxにおいては、 フィルムの上部だけが照射されている。 図1から分かるように、入射角αmaxの値はアスペクト比AR=h/wの最大値と 関連している。ここで、「h」は金属突起物の高さであり、「w」は2つの隣接突 起物の間の間隔である。 すでに述べたように、図2(aとb)はAl上の側壁フィルムの剥離度(以後 、レスポンスと呼ぶ)に関する実験結果を、入射角αとパルス数の関数としてま とめており、a)は結果の二次元表示であり、b)は対応する三次元表示である 。図2aと2bにおいて、X軸は角度軸、Y軸はパルス数の軸であり、また、3 次元表示で追加されたZ軸はレスポンスである。このレスポンスの値は0〜3の 範囲にあり、3は完全除去、0は全く除去されていないことを示している。図2 に示した実験データから分かるように、側壁フィルムのレーザ剥離速度は、入射 角αが大きくなると増大し、レーザ剥離器の光学ラインはその角度で斜めのビー ム入射を与える必要がある: α≦αmax=アークコタンジェント(h/w)max 当業者が認めているように、右の側壁フィルムを除去するためには追加の剥離 が必要である。このためには、図1に示したレーザビームの方位角を、角度をφ =180°だけ変える必要がある。 図3と4は、この発明の2つの選択可能な実施態様、すなわち、光学的手段と 機械的手段による、レーザビームの方位角をφ=180°切り換えることができ る2つの方法を示している。 図3は、ウェーハにレーザビームのフットプリントを走査する間のレーザビー ム方位角を光学的に切換える原理を示している。ウェーハ4はチャック5に取り 付けられており、走査ヘッド6(ここからレーザビームはウェーハ5に到達する) は走査移動において、ウェーハへ相対的に移動する。この図で概略示した特定の 実施態様では、走査ヘッド6には回転ミラー7および2つの固定ミラー8と8’ が含まれている。回転ミラー7は、第1の位置(S-S')から第2の位置(T- T')へ頻度fにて移動する。レーザビームLは、回転ミラー7の表面に当たり 、回転ミラー7がT-T’の位置にある時に、傾斜した固定ミラー8に移動し、 第1の方位角で固定ミラーからウェーハ表面に達し、一方、回転ミラー7がS- S’の位置にある時に、傾斜した固定ミラー8’に達し、180°変えた方位角 でウェーハ表面に当たる。図3に示したスキームによると、ウェーハの走査は速 度vにて進行し、ビームの入射角が入射面OMPにてαである点Pで、パルス反 復速度fでレーザビームLはウェーハ表面に当たる。時間間隔△t=1/fにお いて、ビーム方位角は、上で説明したミラーの適切な回転により交互に△φ=1 80°変わる。この手順と装置は、迅速な切換が必要な場合に用いると最も便利 である。ただし、これらは当業者には明白である適切な調節により比較的ゆっく り変える場合も利用できる。方位角の変化がウェーハ全体の走査が完了した後で のみ、すなわち、ウェーハの端でのみ起きる場合、たとえば、遅い切換が必要な らば、同じ光学的スキームを使用できる。その場合、方位角φの切換は、いかな る時間間隔△t=D/vにても行うことができる。ここで、Dはウェーハの直径 であり、vは走査速度である。 図4は、レーザビームのフットプリントがウェーハの端に到達する度にウェー ハ9を角度△φ=180°回転させて行うことができる機械的手段(△φ=18 0°)によりゆっくりした不連続な切換を行う状況を説明している。角をA-B- C-Dで識別している小さな正方形要素が、図4aと図4bの間の△φ=180 °の回転を説明するために、レーザビームの入射点で示されている。レーザビー ムLとウェーハの垂直面Nの間の角度αも示されている。 図5はウェーハ10とレーザビームLの方位角面の連続的・相対的回転を説明 している。ここで、ウェーハの回転は次の角速度で示され式中nは、連続的に剥離する壁を表すために図5に概略示した、側壁フィルムA ・B・C・等すべてを完全に剥離するのに必要なレーザビーム・フットプリント によるウェーハ通過数である。 図6は、ウェーハ上の側壁の2つの方向の一つに対し垂直なレーザビーム入射 面にて側壁フィルムを剥離する実験結果を示している。これらの図は50パルス と100パルスで、光学顕微鏡(図6aと6c)と走査型電顕(図6b、6dお よび6e)でとったものである。図6aと6cは50パルス、一方図6c、6d および6eは100パルスである。数字1と2はレーザビームの方向を示してい る。これらは、ウェーハ表面に直角方向が異なる2種類の側壁がある場合は、完 全剥離には、一つのレーザビーム方位角方向では不十分であることを示している 。 この発明の上記およびその他の特徴や利点については、以下の非限定的な・説 明のための実施例によりさらによく理解できるであろう。 実施例1 金属蒸着後の6インチウェーハを、厚さ1.2μmのノポラック型ポジティブ ・ホトレジストの層で被覆し、上で述べた通常の方法でパターン化し、RIEに かけた。RIE処理の間に、金属の側壁並びにホトレジストを、いわゆる側壁を 形成する有機金属ポリマーフィルムで被覆した。 RIEの後、このウェーハをベースとカバーからなる処理チェンバで処理した 。ベースとカバーは気密接合部により接続され、ベースとカバーにより画定され た処理チェンバの内部を加圧または真空に保持できるようになっている。このベ ースはNxyガス入口と酸素/オゾン入口および照射ゾーンを通過したガスを排 気するガス出口を具備している。ベースはさらに剥離すべきエレメント、たとえ ば、ウェーハをその上に載せるチャックを具備している。チャックの中央から真 空をかけ、処理中ウェーハを正しい位置に保持する。剥離すべきエレメント、た とえば、シリコン・ウェーハの上に溶融シリカの窓を具備している。この窓は、 チェンバの上に配置された源泉から生じるレーザビームを通過させる。シリカ製 カバーフレームはシリカ窓を正しい位置に保持し、チェンバを加圧または真空状 態に保持する上で役立つ。 このようなチェンバは同じ出願人のイスラエル係属特許出願第115,934号に記 載され、クレイムされており、その説明をこの明細書で参考として援用する。 この方法は米国特許第5,114,835号により操作し、反応性ガスとしてオゾンを 用いる。チェンバ内の圧力は400mbarに保持する。レーザ放射線を、入射 角を垂直ウェーハ面について5°〜45°の範囲で変えて用いた。用いたレーザ はLambda Physik LPX 315 IMC エキシマレーザであった。統計学的ソフ トウエアにかけた実験結果は、図2の2aを2次元表示、2bを3次元表示で示 している。プロットは、剥離に必要なパルス数の減少を照射の入射角増加の関数 として示している。 上で説明したように、0〜3の値がレスポンスであり、側壁フィルムの除去度 合いを示している。すなわち、3は完全除去を示し、0は全く除去されないこと を示している。(S.W.Alはアルミニウム上の側壁を示している)。5°の場 合と比較した45°で照射した場合の改良の度合は、レスポンス2.75の線を 見ると判明する。5°では50パルス必要であるが、45°で放射した場合は、 わずか20パルスで同じ除去成績をうることができる。これは、入射角を大きく すると、剥離処理量が2倍以上になることを示している。 レスポンス3.0の線を見ると、10〜30°の範囲で最も劇的な改良が認め られることが分かる。完全除去は、オージェ電子分光法(AES)・走査型電顕( SEM)・全反射蛍光X線(TXRF)および原子吸収分光法(AAS)などの 分析法により確認した。 実施例2 パターン化したノボラック型ホトレジストの層(高線量注入した、厚さ1.2μ mの層、注入線量は5×1015原子/cm2および80kevのエネルギであった )で被覆した6インチのウェーハを、実施例1で説明したように、処理チェンバ でレーザ放射線により処理した。レーザビームの入射面の方位角の効果を、パタ ーンの光学顕微鏡写真とSEM写真を示す図6ではっきりと見ることができる。 レーザビームに平行な側壁に比べ、ビーム入射面に垂直な側壁が優先的にエッチ ングされていることをはっきりと見ることができる。剥離処理を短時間で完了さ せるために、レーザビーム面の方位角を90°(ウェーハ面において)変える必 要がある。 図6aと6bの側壁を、それぞれ、図6cと6dの側壁を比較すれば分かるよ うに、倍数のパルスを用いた時でさえもビーム方位角の切換なしでは、側壁は全 く除去されない(図6d)。一方、入射ビームに垂直な剥離方向にある側壁をす べて除去するためには100パルスで十分であった(図6d)。したがって、図 6dの残りの側壁をすべて除去するためには、この発明によるとビーム方位角を 切換える必要がある。方位角を変えないと、側壁の完全除去に必要なパルス数は 、方位角を変えた場合よりもかなり多くなることを、実験は示している。 図6eは、図6dの残留側壁の一つをより詳細に示している。 上述の説明と実施例はすべて説明のためのものであり、この発明を限定するた めのものではない。レーザビームの方位角を変えた種々の手段において多くの修 正した方法を行うことができ、また、種々の角度を用いることができ、さらに種 々の光学並びに機械装置を用いることができるが、これらはすべてこの発明の範 囲内にある。
【手続補正書】特許法第184条の8第1項 【提出日】1997年10月30日(1997.10.30) 【補正内容】 (34条補正) 米国特許第4,914,270号には、加工物から位置と方向が正確な側壁を備えてい る連続薄層物質を除去して特定の輪郭をした3次元の形状に段階的に接近させる 、レーザ成形装置が開示されている。この装置にはレーザビーム発生手段と加工 物表面を横断してビームを繰り返し走査させる手段が含まれている。ここで、こ のビームはレーザ表面に対し垂直な軸について所定の角度を形成する。米国特許 第4,914,270号はブランク基板の成形に関するもので、すでに成形された側壁か らホトレジストなどの被覆物質の除去に関するものではない。 マイクロ・リソグラフィ処理において、ホトレジストとともに剥離される最も 強靭な構造物は、VLSI/ULSIパターンの側壁を形成しているフィルムで ある。しかし、当該技術は今まで、乾式法ではこのような強靭な側壁フィルムを 有効、かつ、完全に除去できる適切な手段を提供できなかった。発明の概要 ウェーハ表面(剥離対象の側壁を含む)からホトレジストを除去するこの発明 による方法には、処理される基板面に対し比較的垂直なα>0の斜めの入射角で レーザビームを与え、そして周期的に(ウェーハ上をレーザビーム・フットプリ ントで走査する間に)レーザビーム方位角を切換え、ビームを斜めに回転させ、 異物を完全に、かつ、加速して剥離する方法が含まれている。図面の簡単な説明 図1はビーム入射角αに関する制約を概略説明しており、 図2(aとb)は、Al上の側壁フィルムの剥離度に関する実験結果を、入射 角αとパルス数の関数としてまとめており、すなわち、a)は結果の二次元表示 であり、また、b)は対応する三次元表示であり、 図3は、この発明の一つの実施態様によるレーザビーム方位角φの不連続な光 学的切換を概略説明しており、 図4は、この発明の別の実施態様によるレーザビーム方位角φの不連続な光学 的切換を概略説明しており、 図5は、この発明のさらに別の実施態様によるレーザビーム方位角φの連続切 換を概略示しており、請求の範囲 1.基板(1)表面の側壁から被覆物質(3)を紫外線レーザ処理により除去する方 法であって、前記表面におけるレーザビーム(L)入射を前記表面の垂線に関し入 射角αにて行い、前記角度がα>0であり、ビーム入射面の方位角を周期的に切 換えるか徐々に変え、異物をほぼ完全、かつ、加速させて剥離することを特徴と する方法。 2.前記被覆物質がホトレジストもしくは有機および無機異物である請求の範囲 第1項に記載の方法。 3.前記基板に突起物(2,2')があり、角度αの大きさが、α<αmax=アーク コタンジェント(AR)maxであり、式中、(AR)maxが基板突起物の高さと2つの 隣接した突起物の間の間隔の最大比である請求の範囲第1項に記載の方法。 4.前記ビーム方位角を不連続に切換える請求の範囲第1から第3項までのいず れか一つに記載の方法。 5.前記ビーム方位角を連続的に切換える請求の範囲第1から第3項までのいず れか一つに記載の方法。 6.ビーム方位角切換頻度が前記レーザビームのパルス反復速度に等しい請求の 範囲第1から第4項までのいずれか一つに記載の方法。 中Dは基板(9)の直径、vは走査速度であり、そしてnは基板の側壁すべてから 異物の完全除去に必要なレーザビーム・フットプリントが基板を通過する回数で ある請求の範囲第1、第3または第5項のいずれか一つに記載の方法。 8.基板(4)の表面の側壁から被覆物質を紫外線レーザ処理によりほぼ完全に、 かつ、加速して除去する装置であって、ビーム(L)を発生するレーザ源、前記ビ ームを前記表面の面に関して角度αにて前記表面に衝突させる手段(6,8,8') 、およびビーム入射面の方位角を周期的に切換えたり徐々に変える手段(7)を具 備し、前記角度がα>0であることを特徴とする装置。 9.前記ビームを前記表面(4)に衝突させる手段が、一つ以上の光学的構成要素 (8,8')を含む請求の範囲第8項に記載の装置。 10.前記ビーム入射面の方位角を変える手段に回転式光学的構成要素(7)が含 まれる請求の範囲第8または第9項に記載の装置。 11.前記光学的構成要素にミラー(7)が含まれる請求の範囲第9または第10 項に記載の装置。 12.前記ビーム入射面の方位角を変える手段に基板表面を回転させる手段が含 まれる請求の範囲第8、第9または第11項に記載の装置。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(KE,LS,MW,SD,S Z,UG),UA(AM,AZ,BY,KG,KZ,MD ,RU,TJ,TM),AL,AM,AT,AU,AZ ,BA,BB,BG,BR,BY,CA,CH,CN, CU,CZ,DE,DK,EE,ES,FI,GB,G E,HU,IL,IS,JP,KE,KG,KP,KR ,KZ,LC,LK,LR,LS,LT,LU,LV, MD,MG,MK,MN,MW,MX,NO,NZ,P L,PT,RO,RU,SD,SE,SG,SI,SK ,TJ,TM,TR,TT,UA,UG,US,UZ, VN (72)発明者 テハル−ザハヴ オッファー イスラエル国 42311 ナタニア ビンヤ ミン アヴェニュウ 28 (72)発明者 イスケヴイッチ エリーゼル イスラエル国 26000 キリヤット−モズ キン ネヴェ−ガニム アニレヴイッチ ストリート 1/11

Claims (1)

  1. 【特許請求の範囲】 1.表面の剥離すべき側壁から被覆物質をほぼ完全に、かつ、迅速に除去する方 法であって、表面におけるレーザビーム入射を処理される表面の面に関し入射角 αにて行い、前記角度がα>0であり、ビーム入射面の方位角を周期的に切換え るか徐々に変えることを特徴とする方法。 2.前記被覆物質がホトレジストもしくは有機および無機異物である請求の範囲 第1項に記載の方法。 3.前記角度αの大きさが、α<αmax=アークコタンジェント(AR)maxであ り、ここで、ARは剥離される側壁の幾何学構造要素のアスペクト比である請求 の範囲第1項に記載の方法。 4.前記ビーム方位角を不連続に切換える請求の範囲第1から第3項までのいず れか一つに記載の方法。 5.前記ビーム方位角を連続的に切換える請求の範囲第1から第3項までのいず れか一つに記載の方法。 6.前記ビーム方位角切換頻度がパルス反復速度fに等しい請求の範囲第1から 第4項までのいずれか一つに記載の方法。 の範囲第1、第3または第5項のいずれか一つに記載の方法。 8.表面の剥離すべき側壁から被覆物質を除去する装置であって、ビームを発生 するレーザ源、前記ビームを処理される表面の面に関して角度αにて前記表面に 衝突させる手段、およびビーム入射面の方位角を周期的に切換えたり徐々に変え る手段を具備し、前記角度がα>0であることを特徴とする装置。 9.前記ビームを前記表面に衝突させる手段が一つ以上の光学的構成要素を含む 請求の範囲第8項に記載の装置。 10.前記ビーム入射面の方位角を変える手段に回転式光学的構成要素が含まれ る請求の範囲第8または第9項に記載の装置。 11.前記光学的構成要素にミラーが含まれる請求の範囲第9または第10項に 記載の装置。 12.前記ビーム入射面の方位角を変える手段に処理される表面を回転させる手 段が含まれる請求の範囲第8、第9または第11項に記載の装置。 13.表面の剥離すべき側壁から被覆物質をほぼ完全に、かつ、迅速に除去する 方法であって、特に実施例に示され、かつ、ほぼ記載された通りの方法。 14.表面の剥離すべき側壁から被覆物質を除去する装置であって、特に実施例 に示され、かつ、ほぼ記載された通りの装置。
JP9518032A 1995-11-09 1996-11-04 側壁を効果的にレーザ剥離するためにビームを斜めに回転させる方法と装置 Pending JP2000500284A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IL11593395A IL115933A0 (en) 1995-11-09 1995-11-09 Process and apparatus for oblique beam revolution for the effective laser stripping of sidewalls
IL115933 1995-11-09
PCT/IL1996/000140 WO1997017163A1 (en) 1995-11-09 1996-11-04 Process and apparatus for oblique beam revolution, for the effective laser stripping of sidewalls

Publications (1)

Publication Number Publication Date
JP2000500284A true JP2000500284A (ja) 2000-01-11

Family

ID=11068163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9518032A Pending JP2000500284A (ja) 1995-11-09 1996-11-04 側壁を効果的にレーザ剥離するためにビームを斜めに回転させる方法と装置

Country Status (7)

Country Link
US (1) US6265138B1 (ja)
EP (1) EP0859682A1 (ja)
JP (1) JP2000500284A (ja)
KR (1) KR19990067434A (ja)
AU (1) AU7331196A (ja)
IL (1) IL115933A0 (ja)
WO (1) WO1997017163A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225943A (ja) * 2002-01-16 2003-08-12 Xerox Corp 特徴形成方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800625A (en) * 1996-07-26 1998-09-01 Cauldron Limited Partnership Removal of material by radiation applied at an oblique angle
IL123416A0 (en) 1998-02-23 1998-09-24 Oramir Semiconductor Ltd Multi laser surface treatment in ambient fast flowing photoreactive gases
KR100840678B1 (ko) * 2002-06-12 2008-06-24 엘지디스플레이 주식회사 포토레지스트의 제거장치 및 이를 이용한 포토레지스트제거방법
US7820369B2 (en) * 2003-12-04 2010-10-26 International Business Machines Corporation Method for patterning a low activation energy photoresist
PL2336147T3 (pl) 2003-12-17 2015-01-30 Janssen Alzheimer Immunotherap Immunogenne koniugaty A beta z nośnikiem peptydowym i sposoby ich otrzymywania
HUE026000T2 (en) 2003-12-17 2016-04-28 Wyeth Llc Immunogenic peptide-bearing conjugates and methods for their preparation
CA2975147A1 (en) 2015-01-31 2016-08-04 Yangbing Zhao Compositions and methods for t cell delivery of therapeutic molecules
CN112666674A (zh) * 2020-12-28 2021-04-16 中国科学院长春光学精密机械与物理研究所 一种光学像移补偿方法及装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060455A (en) 1979-10-20 1981-05-07 Metal Box Co Ltd Preparing thin metal sheet for welding
JP2674746B2 (ja) 1986-02-20 1997-11-12 日本電気株式会社 半導体製造装置
US4752668A (en) 1986-04-28 1988-06-21 Rosenfield Michael G System for laser removal of excess material from a semiconductor wafer
JPS6418226A (en) 1987-07-14 1989-01-23 M T C Japan Kk Dry ashing device
IL84255A (en) 1987-10-23 1993-02-21 Galram Technology Ind Ltd Process for removal of post- baked photoresist layer
US4932282A (en) 1988-07-05 1990-06-12 Ford Motor Company Timing valve for manually selected gears of an automatic transmission
US5643472A (en) 1988-07-08 1997-07-01 Cauldron Limited Partnership Selective removal of material by irradiation
US5024968A (en) 1988-07-08 1991-06-18 Engelsberg Audrey C Removal of surface contaminants by irradiation from a high-energy source
US5099557A (en) 1988-07-08 1992-03-31 Engelsberg Audrey C Removal of surface contaminants by irradiation from a high-energy source
US4914270A (en) 1988-11-08 1990-04-03 University Of Southern California Method and apparatus for shaping articles using a laser beam
JPH02165616A (ja) 1988-12-19 1990-06-26 Mitsubishi Electric Corp 露光装置
US5225650A (en) * 1989-07-14 1993-07-06 Maho Aktiengesellschaft Process and device for the manufacture of cavities in workpieces through laser beams
ES2054166T3 (es) 1989-07-14 1994-08-01 Maho Ag Procedimiento y maquina herramienta para producir espacios huecos en piezas macizas por medio de rayo laser.
US5023424A (en) 1990-01-22 1991-06-11 Tencor Instruments Shock wave particle removal method and apparatus
US5319183A (en) * 1992-02-18 1994-06-07 Fujitsu Limited Method and apparatus for cutting patterns of printed wiring boards and method and apparatus for cleaning printed wiring boards
RU2114486C1 (ru) 1992-03-31 1998-06-27 Колдрэн Лимитед Партнершип Устройство для удаления поверхностных загрязнений с подложки (варианты)
TW252211B (ja) 1993-04-12 1995-07-21 Cauldron Ltd Parthership
WO1995007152A1 (en) 1993-09-08 1995-03-16 Uvtech Systems, Inc. Surface processing
TW260806B (ja) 1993-11-26 1995-10-21 Ushio Electric Inc
US6009888A (en) 1998-05-07 2000-01-04 Chartered Semiconductor Manufacturing Company, Ltd. Photoresist and polymer removal by UV laser aqueous oxidant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225943A (ja) * 2002-01-16 2003-08-12 Xerox Corp 特徴形成方法

Also Published As

Publication number Publication date
EP0859682A1 (en) 1998-08-26
KR19990067434A (ko) 1999-08-16
IL115933A0 (en) 1996-01-31
US6265138B1 (en) 2001-07-24
WO1997017163A1 (en) 1997-05-15
AU7331196A (en) 1997-05-29

Similar Documents

Publication Publication Date Title
EP0714119B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
US6350391B1 (en) Laser stripping improvement by modified gas composition
JP3410720B2 (ja) 導電性溶液を用いた水晶基板のクリーニング方法
CA2222502C (en) Removal of material by polarized radiation and back side application of radiation
US5912186A (en) Method for processing semiconductor material
US8221595B2 (en) Lift-off patterning processes employing energetically-stimulated local removal of solid-condensed-gas layers
JP2000515811A (ja) 傾斜した角度で照射される放射線による材料の除去
US20080210269A1 (en) Removing unwanted film from wafer edge region with reactive gas jet
US6494217B2 (en) Laser cleaning process for semiconductor material and the like
US20080289651A1 (en) Method and apparatus for wafer edge cleaning
JP2004327973A (ja) 基板に適用された層のエッジ部分の除去方法及び装置、基板コーティング方法及び装置、及び基板
JP2000500284A (ja) 側壁を効果的にレーザ剥離するためにビームを斜めに回転させる方法と装置
JP2001507515A (ja) 表面からの異物のレーザ除去
JP2023088915A (ja) ビードブラストを用いない表面のテクスチャリング
JP2000126704A (ja) 光学素子の洗浄方法および洗浄装置
JPH0677126A (ja) 凝縮状態を利用した平坦化材料層形成方法
JP2003305697A (ja) 中空構造体の製造方法
EP0879113B1 (en) Damage-free laser surface treatment method
JPS5936257B2 (ja) レジスト材料の剥離方法
JP2000500285A (ja) カセットセルを有するレーザープロセッシングチェンバー
IL124136A (en) Process and apparatus for oblique beam revolution, for the effective laser stripping of sidewalls
JPS6191930A (ja) 半導体基板の清浄方法
JP2966036B2 (ja) エッチングパターンの形成方法
JP2622188B2 (ja) 薄膜デバイスの微細加工方法
Spiess et al. Structuring of polyimide by ArF excimer laser ablation