JP2000500085A - Method for producing biaxially oriented polyester film - Google Patents

Method for producing biaxially oriented polyester film

Info

Publication number
JP2000500085A
JP2000500085A JP9518754A JP51875497A JP2000500085A JP 2000500085 A JP2000500085 A JP 2000500085A JP 9518754 A JP9518754 A JP 9518754A JP 51875497 A JP51875497 A JP 51875497A JP 2000500085 A JP2000500085 A JP 2000500085A
Authority
JP
Japan
Prior art keywords
stretching
film
stretched film
longitudinally stretched
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP9518754A
Other languages
Japanese (ja)
Inventor
ソウ、ジョン・ウーク
シム、ワン・スプ
Original Assignee
エスケーシー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスケーシー・リミテッド filed Critical エスケーシー・リミテッド
Publication of JP2000500085A publication Critical patent/JP2000500085A/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/045Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique in a direction which is not parallel or transverse to the direction of feed, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Abstract

(57)【要約】 本発明は、ポリエステル樹脂を溶融押出して実質的に無定形な樹脂シートを得、前記シートを3.0ないし6.0範囲の総延伸比で縦延伸して縦延伸されたフィルムを得、前記縦延伸フィルムを横延伸することを含む、二軸配向ポリエステルフィルムの製法において、前記縦延伸をi)前記の実質的に無定形なシートを10ないし500mmの総延伸距離、100ないし140℃および1.1ないし2.0の延伸比で第1対角延伸して1次縦延伸されたフィルムを得る段階;ii)前記1次縦延伸されたフィルムを100ないし140℃および1.2ないし3.0の延伸比で平行延伸して2次縦延伸されたフィルムを得る段階;およびiii)前記2次縦延伸されたフィルムを100ないし140℃および1.5ないし3.0の延伸比で第2対角延伸して縦延伸されたフィルムを得る段階からなる三段階で行うことを特徴とする。 (57) Abstract: The present invention provides a substantially amorphous resin sheet by melt-extruding a polyester resin, and longitudinally stretching the sheet at a total stretching ratio of 3.0 to 6.0 to obtain a vertically stretched film. A process for producing a biaxially oriented polyester film, comprising transversely stretching the longitudinally stretched film, wherein the longitudinal stretching is performed by i) the substantially amorphous sheet having a total stretching distance of 10 to 500 mm, 100 to 140 ° C. And a first diagonal stretching at a stretching ratio of 1.1 to 2.0 to obtain a first longitudinally stretched film; ii) paralleling the first longitudinally stretched film at 100 to 140 ° C. and a stretching ratio of 1.2 to 3.0. Stretching to obtain a second longitudinally stretched film; and iii) stretching the second longitudinally stretched film in the second diagonal direction at 100 to 140 ° C. and a stretching ratio of 1.5 to 3.0. In three stages It is characterized in.

Description

【発明の詳細な説明】 二軸配向ポリエステルフィルムの製造方法発明の分野 本発明は、表面平滑性および厚さ均一性に優れた二軸配向ポリエステルフィル ムの高生産性製造法に関する。発明の背景 ポリエステルフィルムは、一般に、優れた機械的強度、耐熱性、電気絶縁性お よび耐薬品性を有するため磁気記録媒体、食品包装材、電気絶縁体などの製造に 広く使用されてきた。ポリエステルフィルムは、機械的強度および耐熱性に優れ ているためビデオテープ、オーディオテープおよびコンピュータテープの製造に 特に有用である。 日本特公昭30−5639号は、二軸配向ポリエステルフィルムの製造方法を開示し ている。この方法においては、ポリエステル樹脂を乾燥し、ダイに通して溶融押 出し、得られた無定形シートを縦方向に延伸した後、横方向に延伸する。また、 日本特開昭54−8672号は、二軸延伸されたフィルムを更に一軸または二軸再延伸 することによってその物理的強度および厚さ均一性を向上させる方法を開示して いる。 縦延伸工程が最終二軸配向フィルムの厚さ均一性に重要な影響を及ぼすという 事実は広く公知されている。従来の無定形樹脂シートの縦延伸工程においては、 過度な配向結晶化によるフィルム収縮が起こるので高倍率の縦延伸を使用するこ とができなかった。したがって、縦延伸シートの両端部の厚さ均一性が不良にな り、横延伸工程途中にフィルム破断が起こりやすい。 したがって、従来の延伸方法に比べて厚さ均一性が改善されたフィルムを製造 するために多段縦延伸法が開発された。たとえば、日本特開昭48−43772号、50 −75、50−139872、49−42277、54−56674、58−78729、58−160123および60−6 1233と、日本特公昭57−48377、57−49377および59−36851 は多段縦延伸法を開示している。しかし、これらの方法は、延伸段階間に煩わし い冷却と昇温段階が必要であり、また最終フィルム製品の厚さ均一性が不十分で ある。 また、USP4,370,291には、二つの別途の延伸領域を用いて、各段階での延 伸温度および延伸比だけでなく、フィルムの復屈折率値を調節する二段階縦延伸 法が開示されている。しかし、第1平行縦延伸段階において延伸応力を遮断する ためにはニップロールが必要である。したがって、縦延伸装置が複雑になり、フ ィルムがロール表面に粘着しやすいという問題がある。発明の要約 したがって、本発明の目的は、改善された表面平滑性および厚さ均一性を有す る二軸配向ポリエステルフィルムの高生産性製造法を提供することである。 本発明の一態様によって、ポリエステル樹脂を溶融押出して実質的に無定形な 樹脂シートを得、前記シートを3.0ないし6.0範囲の総延伸比で縦延伸して縦延伸 されたフィルムを得、前記縦延伸フィルムを横延伸することを含む、二軸配向ポ リエステルフィルムの製法において、前記縦延伸を i)前記の実質的に無定形なシートを10ないし500mmの総延伸距離、100ないし14 0℃および1.1ないし2.0の延伸比で第1対角延伸して1次縦延伸されたフィルム を得る段階; ii)前記1次縦延伸されたフィルムを100ないし140℃および1.2ないし3.0の延伸 比で平行延伸して2次縦延伸されたフィルムを得る段階;および iii)前記2次縦延伸されたフィルムを100ないし140℃および1.5ないし3.0の延 伸比で第2対角延伸して縦延伸されたフィルムを得る段階、 からなる三段階で行うことを特徴とする方法が提供される。図面の簡単な説明 図1は、本発明の一実施態様による三段階縦延伸法の概略図であり、 図2は、本発明のまた一つの実施態様による三段階縦延伸法の概略図であり、 図3は、通常の三段階縦延伸法に対する概略図である。発明の詳細な説明 “平行延伸”とは、フィルムが一つのロールを離れる地点から次のロールと接 触する地点までシートを延伸するにおいて二つのロールが同一方向に回転する場 合を意味する。 “対角延伸”とは、フィルムが一つのロールを離れる地点から次のロールと接 触する地点までシートを延伸するにおいて二つのロールが逆方向に回転する場合 を意味する。 “配向結晶化”とは、無定形シートのランダムポリマー鎖がシートの延伸作用 によって配向および結晶化されることを意味する。 本発明によると、ポリエステル樹脂を溶融押出して実質的に無定形な樹脂シー トを得、前記シートを3.0ないし6.0範囲の総延伸比で縦延伸して縦延伸されたフ ィルムを得、前記縦延伸フィルムを横延伸することを含む、二軸配向ポリエステ ルフィルムの製法において、前記縦延伸を i)前記の実質的に無定形なシートを10ないし500mmの総延伸距離、100ないし14 0℃および1.1ないし2.0の延伸比で第1対角延伸して1次縦延伸されたフィルム を得る段階; ii)前記1次縦延伸されたフィルムを100ないし140℃および1.2ないし3.0の延伸 比で平行延伸して2次縦延伸されたフィルムを得る段階;および iii)前記2次縦延伸されたフィルムを100ないし140℃および1.5ないし3.0の延 伸比で第2対角延伸して縦延伸されたフィルムを得る段階、 からなる三段階で行うことを特徴とする方法が提供される。 本発明の前記三段階縦延伸法は、改善された厚さ均一性を有するポリエステル フィルムを提供し、フィルムの過度な配向結晶化を抑制する。本発明の縦延伸方 法の第1対角延伸段階は、フィルム中のポリマー鎖の微細表面結晶化および配向 化を誘導してロール表面にフィルムが粘着することを効果的に防止する。後続平 行延伸は、延伸応力を遮断するためフィルム上にスクラッチを生成させなく、第 2対角延伸段階は、フィルム幅の収縮を最小化しながら縦延伸されたフィルムの 厚さ均一性および機械的強度を向上させる。各ロールの表面は、フィルムのロー ル表面への粘着を最小化するためにテフロン、シリコンゴムなどでコーティング される。 総縦延伸比が3.0未満である場合には、フィルム厚さの均一性が不良になり、 総縦延伸比が6.0を超過すると、後続横延伸工程においてフィルムが破断しやす い。縦延伸工程が連続して前述した三段階で行われなければ、縦延伸されたフィ ルムが過度に結晶化し、厚さがより不均一になり、また、冷却−加熱の必要性の ため延伸装置が複雑になり、工程が非効率的になるという問題がある。 本発明方法の第1対角延伸段階は平行延伸段階で代替されることができないが 、その理由は平行延伸が相当なフィルム幅の収縮を誘発し、横方向のフィルム厚 さの均一性を低下させるからである。 図1は、本発明の一実施態様による三段階縦延伸工程に対する概略図である。 ロール1は予熱ロール、ロール2ないし4は延伸ロール、ロール5は冷却ロール 、ロール3’および4’はニップロールであり、l1は第1縦延伸工程の延伸距 離である。無定形シート(F)を、第1縦延伸段階、すなわち、ロール2とロー ル3との間で行われる対角縦延伸段階を経させ、第2縦延伸段階に該当する平行 縦延伸をロール3とロール4との間で行い、第3縦延伸段階においてロール4と ロール5との間で第2対角縦延伸を行って、縦延伸シート(F')を得る。 図2は、第1縦延伸段階が三段対角延伸からなる、本発明のまた他の実施態様 による三段階縦延伸工程に対する概略図である。ロール1は予熱ロール、ロール 2ないし6は延伸ロール、ロール7は冷却ロール、ロール5’および6’はニッ プロールであり、l11,l12およびl13は各々第1縦延伸段階での第1段、第2段 、第3段延伸距離である。無定形シート(F)を、ロール2とロール3との間、 ロール3とロール4との間およびロール4とロール5との間での三段対角延伸に 該当する第1縦延伸段階を経させ、第2縦延伸段階はロール5とロール6との間 で行う平行延伸であり、第3縦延伸段階はロール6とロール7との間で行って縦 延伸シート(F')を得る第2対角延伸に該当する。 下記実施例は本発明を例示するためのものであり、本発明の範囲を制限しない 。実施例 実施例1 固有粘度が0.63dl/gであり、主にポリエチレンテレフタレートからなるポリ エステルをダイに通して60m/分の成形速度で溶融押出して無定形シートを形成 し、図1に示した延伸装置を用いて次のように二軸延伸フィルムを製造した。図 1を参照すると、ロール1と2は110℃に維持し、ロール3、4および5は各々1 20℃、125℃および25℃に維持した。ロール3とロール4との間の延伸距離は40m mであった。得られた無定形シートを下記の三段階縦延伸工程を経させた:一次 に、シートをロール2とロール3との間で1.3の延伸比で対角延伸した後、第2 段階としてロール3とロール4との間で1.5の延伸比で平行延伸し、第3段階と してロール4とロール5との間で2.3の延伸比でさらに対角延伸して、縦延伸さ れたフィルムを製造した。次いで、縦延伸フィルムを縦方向に4.0の延伸比で延 伸した後、220℃で熱固定して、14μm厚さの二軸配向ポリエステルフィルムを得 た。 実施例2 ロール1と2の温度を120℃、ロール3と4の温度を各々125℃および130℃に し、三段階縦延伸段階の各段階での延伸比を各々1.4、1.6および2.0にすること を除いては、実施例1の手順に従って二軸配向ポリエステルフィルムを製造した 。 実施例3 ロール1と2の温度を125℃、ロール3と4の温度を各々130℃および135℃ にし、三段階縦延伸段階の各段階での延伸比を各々1.3、1.6および2.16にするこ とを除いては、実施例1の手順に従って二軸配向ポリエステルフィルムを製造し た。 実施例4 ロール3とロール4との間の第1縦延伸の延伸距離が200mmであることを除い ては、実施例1の手順に従って二軸配向ポリエステルフィルムを製造した。 実施例5 図2に示した延伸装置を用いて実施例1と同様な工程に従って二軸配向ポリエ ステルフィルムを製造した。図2において、ロール1ないし4の温度は110℃で あり、ロール5、6および7の温度は各々120℃、125℃および25℃に維持した。 第1縦延伸段階は三段対角延伸工程で行うが、第1段はロール2と3の間で延伸 距離40mm、延伸比1.15に、第2段はロール3と4との間で延伸距離40mm、延伸比 1.15に、第3段はロール4と5の間で延伸距離40mm、延伸比1.21にした。第2縦 延伸段階に該当する平行延伸はロール5と6との間で延伸比1.5で行い、第3縦 延伸段階として、ロール6と7との間で延伸比1.88で対角延伸を行った。 比較実施例1 ロール1と2(図1に示す)の温度を90℃にすることを除いては、実施例1の 手順に従って二軸配向ポリエステルフィルムを製造した。 比較実施例2 ロール3(図1に示す)の温度を90℃にすることを除いては、実施例1の手 順に従って二軸配向ポリエステルフィルムを製造した。 比較実施例3 ロール4の温度(図1に示す)を95℃にすることを除いては、実施例1の手順 に従って二軸配向ポリエステルフィルムを製造した。 比較実施例4 ロール4の温度を150℃にすることを除いては、実施例1の手順に従って二軸 配向ポリエステルフィルムを製造した。 比較実施例5 シート成形速度を92.3m/分にし、三段階延伸段階の各段階での延伸比を各々1 .3、1.5および1.5にして総縦延伸比が2.93であることを除いては、実施例1の手 順に従って二軸配向ポリエステルフィルムを製造した。 比較実施例6 シート成形速度を42m/分にし、三段階延伸段階の各段階での延伸比を各々1.5 、1.8および2.4にして総縦延伸比が6.48であることを除いては、実施例1の手順 に従って二軸配向ポリエステルフィルムを製造した。 比較実施例7 三段階延伸段階の各段階での延伸比が各々1.0、2.0および2.25であることを除 いては、実施例1の手順に従って二軸配向ポリエステルフィルムを製造した。 比較実施例8 三段階延伸段階の各段階での延伸比が各々1.8、2.0および1.25であることを除 いては、実施例1の手順に従って二軸配向ポリエステルフィルムを製造した。 比較実施例9 ロール2と3(図1に示す)との間の延伸距離が600mmであることを除いては 、実施例1の手順に従って二軸配向ポリエステルフィルムを製造した。 比較実施例10 ロール2と3との間の第1縦延伸が平行延伸であり、ロール2と3との間の延 伸距離が140mmであることを除いては、実施例1の手順に従って二軸配向ポリエ ステルフィルムを製造した。 試験例 延伸比、延伸距離、フィルム幅の収縮程度、横延伸工程中のフィルムの破断頻 度、厚さ均一性およびフィルム表面上のスクラッチ現象を下記方法に従って測定 してその結果を表1に示した。 1.縦方向延伸比 ここで、iは1ないし3の延伸段階であり、 Si1は縦延伸開始点を有するロールの走速であり、 Si2は縦延伸終点を有するロールの走速である。 縦方向総延伸比=ε1 x ε2 x ε3 2.延伸距離 延伸距離(l1j)=フィルムが一つのロールを離れる地点と次のロールと接 触 する地点との長さ 第1段階総延伸距離(l1j)=Σl1j ここで、jは第1縦延伸段階での1ないし3の延伸段 3.フィルム幅収縮率ここで、Waは延伸ロールを離れた後のフィルム幅であり、 Wbは延伸ロールに接触する前のフィルム幅である。 4.破断度 横延伸工程(72時間)中に発生する破断回数によって破断度を評価した。 A:1回以下、B:2ないし4回、C:5ないし8回、D:9回以上 5.厚さ均一性 厚さ測定器(日本安立社製品)を使って横方向20mm間隔でフィルムの厚さを 測定した。シート厚さの偏差を表1に示した。 6.フィルム表面に形成されたスクラッチ フィルム表面に形成されたスクラッチは、フィルムを蛍光灯に照らして肉眼 で評価した。 X:スクラッチが観察されなかった。 O:スクラッチが観察された。 【表1】 表1から分かるように、本発明による実施例1ないし5で得られた二軸配向ポ リエステルフィルムは、比較実施例1ないし10で得られたポリエステルフィルム より表面平滑性および厚さ均一性に優れている。また、横延伸工程中に起こる破 断回数が少ないことは本発明方法の生産性が高いことを示す。DETAILED DESCRIPTION OF THE INVENTION Method for producing biaxially oriented polyester filmField of the invention   The present invention provides a biaxially oriented polyester film having excellent surface smoothness and thickness uniformity. The present invention relates to a high-productivity manufacturing method for a system.Background of the Invention   Polyester films generally have excellent mechanical strength, heat resistance, Because of its chemical resistance, it can be used for manufacturing magnetic recording media, food packaging materials, electrical insulators, etc. Widely used. Polyester film has excellent mechanical strength and heat resistance Production of video tapes, audio tapes and computer tapes Particularly useful.   Japanese Patent Publication No. 30-5639 discloses a method for producing a biaxially oriented polyester film. ing. In this method, the polyester resin is dried and melted through a die. The obtained amorphous sheet is stretched in the longitudinal direction, and then stretched in the transverse direction. Also, JP-A-54-8672 discloses that a biaxially stretched film is further monoaxially or biaxially redrawn. To improve its physical strength and thickness uniformity by doing I have.   The longitudinal stretching process has a significant effect on the thickness uniformity of the final biaxially oriented film The facts are widely known. In the longitudinal stretching process of the conventional amorphous resin sheet, Use high-magnification longitudinal stretching because film shrinkage occurs due to excessive orientational crystallization. And couldn't. Therefore, the thickness uniformity at both ends of the longitudinally stretched sheet becomes poor. In addition, the film is likely to break during the transverse stretching process.   Therefore, a film with improved thickness uniformity compared to the conventional stretching method is manufactured. In order to do this, a multi-stage longitudinal stretching method was developed. For example, Japanese Patent Publication No. 48-43772, 50 -75, 50-139872, 49-42277, 54-56674, 58-78729, 58-160123 and 60-6 1233 and Japanese Patent Publication Nos. 57-48377, 57-49377 and 59-36851 Discloses a multi-stage longitudinal stretching method. However, these methods are cumbersome during the stretching step. Cooling and heating steps are required, and the final film product has poor thickness uniformity. is there.   U.S. Pat. No. 4,370,291 uses two separate stretch zones to extend each stage. Two-step longitudinal stretching that adjusts the birefringence value of the film as well as the stretching temperature and stretching ratio A law is disclosed. However, the stretching stress is interrupted in the first parallel longitudinal stretching stage. For this purpose, a nip roll is required. Therefore, the longitudinal stretching device becomes complicated, and There is a problem that the film easily sticks to the roll surface.Summary of the Invention   It is therefore an object of the present invention to have improved surface smoothness and thickness uniformity To provide a highly productive method for producing a biaxially oriented polyester film.   According to one aspect of the present invention, a polyester resin is melt extruded to form a substantially amorphous Obtain a resin sheet, longitudinally stretch the sheet longitudinally at a total stretch ratio of 3.0 to 6.0 range A biaxially oriented film, comprising transversely stretching the longitudinally stretched film. In the method for producing a polyester film, the longitudinal stretching is performed. i) applying the above substantially amorphous sheet to a total stretching distance of 10 to 500 mm, 100 to 14 mm; First longitudinally stretched film with first diagonal stretching at 0 ° C and stretching ratio of 1.1 to 2.0 Obtaining; ii) stretching the first longitudinally stretched film at 100 to 140 ° C. and 1.2 to 3.0 Parallel stretching at a ratio to obtain a secondary longitudinally stretched film; and iii) The second longitudinally stretched film is stretched at 100 to 140 ° C. and 1.5 to 3.0. Obtaining a longitudinally stretched film by performing a second diagonal stretching at an elongation ratio, Provided in three steps:BRIEF DESCRIPTION OF THE FIGURES   FIG. 1 is a schematic diagram of a three-stage longitudinal stretching method according to an embodiment of the present invention,   FIG. 2 is a schematic diagram of a three-stage longitudinal stretching method according to another embodiment of the present invention;   FIG. 3 is a schematic diagram for a normal three-stage longitudinal stretching method.Detailed description of the invention   “Parallel stretching” refers to the point where the film leaves one roll and contacts the next roll. When the two rolls rotate in the same direction when stretching the sheet to the point of touch Means   “Diagonal stretching” refers to the point where the film leaves one roll and contacts the next roll. When the two rolls rotate in opposite directions when stretching the sheet to the point of touch Means   "Oriented crystallization" means that the random polymer chains of the amorphous sheet Means to be oriented and crystallized.   According to the present invention, a polyester resin is melt-extruded to form a substantially amorphous resin sheet. The sheet is longitudinally stretched at a total stretching ratio in the range of 3.0 to 6.0 to obtain a vertically stretched sheet. A biaxially oriented polyester comprising obtaining a film and transversely stretching the longitudinally stretched film. In the manufacturing method of i) applying the above substantially amorphous sheet to a total stretching distance of 10 to 500 mm, 100 to 14 mm; First longitudinally stretched film with first diagonal stretching at 0 ° C and stretching ratio of 1.1 to 2.0 Obtaining; ii) stretching the first longitudinally stretched film at 100 to 140 ° C. and 1.2 to 3.0 Parallel stretching at a ratio to obtain a secondary longitudinally stretched film; and iii) The second longitudinally stretched film is stretched at 100 to 140 ° C. and 1.5 to 3.0. Obtaining a longitudinally stretched film by performing a second diagonal stretching at an elongation ratio, Provided in three steps:   The three-stage longitudinal stretching method of the present invention provides a polyester having improved thickness uniformity. Provide a film and suppress excessive oriented crystallization of the film. Longitudinal stretching method of the present invention The first diagonal stretching step of the method involves fine surface crystallization and orientation of the polymer chains in the film. And effectively prevents the film from sticking to the roll surface. Succeeding flat Line stretching does not create scratches on the film to block stretching stress, The bi-diagonal stretching step is for the longitudinally stretched film while minimizing film width shrinkage. Improves thickness uniformity and mechanical strength. The surface of each roll is Coated with Teflon, silicone rubber, etc. to minimize sticking to the surface Is done.   If the total longitudinal stretching ratio is less than 3.0, the uniformity of the film thickness becomes poor, When the total longitudinal stretching ratio exceeds 6.0, the film is easily broken in the subsequent transverse stretching process. No. If the longitudinal stretching process is not performed continuously in the three steps described above, the longitudinally stretched Over-crystallized, more uneven thickness and the need for cooling-heating. Therefore, there is a problem that the stretching apparatus becomes complicated and the process becomes inefficient.   Although the first diagonal stretching step of the method of the present invention cannot be replaced by a parallel stretching step, The reason is that the parallel stretching induces considerable film width shrinkage and the transverse film thickness This is because the uniformity of the thickness is reduced.   FIG. 1 is a schematic view of a three-stage longitudinal stretching process according to an embodiment of the present invention. Roll 1 is a preheating roll, Rolls 2 to 4 are stretching rolls, Roll 5 is a cooling roll , Rolls 3 'and 4' are nip rolls and l1Is the stretching distance in the first longitudinal stretching step It is separation. The amorphous sheet (F) is subjected to the first longitudinal stretching step, ie, roll 2 and roll Through a diagonal longitudinal stretching step performed between the second longitudinal stretching step and a parallel longitudinal stretching step. The longitudinal stretching is performed between the roll 3 and the roll 4, and the roll 4 and the The second diagonal longitudinal stretching is performed with the roll 5 to obtain a longitudinally stretched sheet (F ′).   FIG. 2 shows yet another embodiment of the present invention, wherein the first longitudinal stretching step comprises three-stage diagonal stretching. FIG. 3 is a schematic view of a three-stage longitudinal stretching process according to the present invention. Roll 1 is a preheating roll, roll 2 to 6 are stretching rolls, roll 7 is a cooling roll, and rolls 5 'and 6' are nips. Prowl, l11, L12And l13Are the first and second stages, respectively, in the first longitudinal stretching stage , The third-stage stretching distance. Amorphous sheet (F) is placed between roll 2 and roll 3, For three-stage diagonal stretching between the rolls 3 and 4 and between the rolls 4 and 5 After passing through the corresponding first longitudinal stretching step, the second longitudinal stretching step is performed between the roll 5 and the roll 6. The third longitudinal stretching step is performed between the roll 6 and the roll 7 and This corresponds to the second diagonal stretching for obtaining a stretched sheet (F ′).   The following examples are intended to illustrate the invention and do not limit the scope of the invention .Example Example 1   Intrinsic viscosity of 0.63dl / g, mainly composed of polyethylene terephthalate Melt extrusion of ester through die at 60m / min forming speed to form amorphous sheet Then, a biaxially stretched film was manufactured as follows using the stretching apparatus shown in FIG. Figure Referring to FIG. 1, rolls 1 and 2 are maintained at 110.degree. Maintained at 20 ° C, 125 ° C and 25 ° C. The stretching distance between Roll 3 and Roll 4 is 40m m. The resulting amorphous sheet was subjected to the following three-stage longitudinal stretching process: primary After the sheet is stretched diagonally between the rolls 2 and 3 at a stretch ratio of 1.3, As a step, the film is stretched in parallel at a stretch ratio of 1.5 between the rolls 3 and 4, and the third step And further stretched diagonally between the rolls 4 and 5 at a stretch ratio of 2.3, and stretched longitudinally. A film was produced. Next, the longitudinally stretched film is stretched in the machine direction at a stretch ratio of 4.0. After stretching, heat-set at 220 ° C to obtain a 14μm thick biaxially oriented polyester film. Was. Example 2   Rolls 1 and 2 at 120 ° C, Rolls 3 and 4 at 125 ° C and 130 ° C respectively And the stretching ratio in each of the three-stage longitudinal stretching stages should be 1.4, 1.6 and 2.0, respectively. A biaxially oriented polyester film was manufactured according to the procedure of Example 1 except for . Example 3   Rolls 1 and 2 at 125 ° C, Rolls 3 and 4 at 130 ° C and 135 ° C respectively And the draw ratio in each of the three longitudinal stretching stages should be 1.3, 1.6 and 2.16, respectively. A biaxially oriented polyester film was produced according to the procedure of Example 1 except that Was. Example 4   Except that the stretching distance of the first longitudinal stretching between the rolls 3 and 4 is 200 mm Then, a biaxially oriented polyester film was manufactured according to the procedure of Example 1. Example 5   Using the stretching apparatus shown in FIG. A steal film was produced. In FIG. 2, the temperature of rolls 1 to 4 is 110 ° C. Yes, the temperatures of rolls 5, 6 and 7 were maintained at 120 ° C, 125 ° C and 25 ° C, respectively. The first longitudinal stretching step is performed in a three-stage diagonal stretching process, while the first stage is performed between rolls 2 and 3. The distance is 40mm and the stretching ratio is 1.15. The second stage is the stretching distance between the rolls 3 and 4 of 40mm and the stretching ratio. At 1.15, the third stage had a draw distance of 40 mm between rolls 4 and 5 and a draw ratio of 1.21. 2nd vertical The parallel stretching corresponding to the stretching step is performed between the rolls 5 and 6 at a stretching ratio of 1.5, As a stretching step, diagonal stretching was performed between the rolls 6 and 7 at a stretching ratio of 1.88. Comparative Example 1   Example 1 except that the temperature of rolls 1 and 2 (shown in FIG. 1) was 90 ° C. A biaxially oriented polyester film was manufactured according to the procedure. Comparative Example 2   The procedure of Example 1 was repeated except that the temperature of the roll 3 (shown in FIG. 1) was 90 ° C. A biaxially oriented polyester film was manufactured according to the order. Comparative Example 3   The procedure of Example 1 except that the temperature of the roll 4 (shown in FIG. 1) was 95 ° C. To produce a biaxially oriented polyester film. Comparative Example 4   Except that the temperature of the roll 4 is set to 150 ° C., An oriented polyester film was manufactured. Comparative Example 5   The sheet forming speed was 92.3 m / min, and the stretching ratio in each of the three stages of stretching was 1 The procedure of Example 1 was repeated except that the total longitudinal draw ratio was 2.93 at .3, 1.5 and 1.5. A biaxially oriented polyester film was manufactured according to the order. Comparative Example 6   The sheet forming speed was set to 42 m / min, and the stretching ratio at each of the three stages of stretching was 1.5. , 1.8 and 2.4, except that the total longitudinal stretch ratio was 6.48. To produce a biaxially oriented polyester film. Comparative Example 7   Except that the stretching ratio in each of the three stages of stretching is 1.0, 2.0 and 2.25, respectively. Then, a biaxially oriented polyester film was produced according to the procedure of Example 1. Comparative Example 8   Except that the stretching ratio in each of the three stages of stretching is 1.8, 2.0 and 1.25, respectively. Then, a biaxially oriented polyester film was produced according to the procedure of Example 1. Comparative Example 9   Except that the stretching distance between rolls 2 and 3 (shown in FIG. 1) is 600 mm According to the procedure of Example 1, a biaxially oriented polyester film was produced. Comparative Example 10   The first longitudinal stretching between the rolls 2 and 3 is a parallel stretching, and the stretching between the rolls 2 and 3 is Except that the elongation was 140 mm, the biaxially oriented polyether was made according to the procedure of Example 1. A steal film was produced. Test example   Stretch ratio, stretch distance, degree of film width shrinkage, frequency of film breakage during transverse stretching process Degree, thickness uniformity and scratch on the film surface are measured according to the following methods The results are shown in Table 1. 1. Longitudinal stretching ratio Where i is one to three stretching stages, Si1Is the running speed of the roll having a longitudinal stretching start point, Si2Is the running speed of the roll having the longitudinal stretching end point.     Total longitudinal stretching ratio = ε1 x εTwo x εThree 2. Stretch distance     Stretch distance (l1j) = The point where the film leaves one roll and contacts the next roll Touch                     Length to the point     First stage total stretching distance (l1j) = Σl1j Here, j is one to three stretching stages in the first longitudinal stretching stage. 3. Film width shrinkageWhere WaIs the film width after leaving the stretching roll, WbIs the film width before contacting the stretching roll. 4. Breaking degree     The degree of break was evaluated by the number of breaks occurring during the transverse stretching step (72 hours).     A: 1 or less, B: 2 to 4 times, C: 5 to 8 times, D: 9 or more times 5. Thickness uniformity     Measure the thickness of the film at intervals of 20 mm in the horizontal direction using a thickness measuring device It was measured. Table 1 shows the sheet thickness deviation. 6. Scratch formed on film surface     The scratches formed on the film surface can be visually inspected by illuminating the film with fluorescent light. Was evaluated.     X: No scratch was observed.     O: Scratch was observed.                                 [Table 1]  As can be seen from Table 1, the biaxially oriented poly obtained in Examples 1 to 5 according to the present invention. The polyester film is a polyester film obtained in Comparative Examples 1 to 10. More excellent in surface smoothness and thickness uniformity. Also, breakage that occurs during the transverse stretching process A small number of breaks indicates that the productivity of the method of the present invention is high.

Claims (1)

【特許請求の範囲】 1.ポリエステル樹脂を溶融押出して実質的に無定形な樹脂シートを得、前記シ ートを3.0ないし6.0範囲の総延伸比で縦延伸して縦延伸されたフィルムを得、前 記縦延伸フィルムを横延伸することを含む、二軸配向ポリエステルフィルムの製 法において、前記縦延伸を i)前記の実質的に無定形なシートを10ないし500mmの総延伸距離、100ない し140℃および1.1ないし2.0の延伸比で第1対角延伸して1次縦延伸されたフィ ルムを得る段階; ii)前記1次縦延伸されたフィルムを100ないし140℃および1.2ないし3.0の 延伸比で平行延伸して2次縦延伸されたフィルムを得る段階;および iii)前記2次縦延伸されたフィルムを100ないし140℃および1.5ないし3.0 の延伸比で第2対角延伸して縦延伸されたフィルムを得る段階、 からなる三段階で行うことを特徴とする方法。 2.前記第1対角延伸段階が1ないし3段の対角延伸工程からなることを特徴と する請求項1に記載の方法。 3.横延伸比が3.0ないし5.0の範囲であることを特徴とする請求項1に記載の方 法。[Claims] 1. The polyester resin is melt extruded to obtain a substantially amorphous resin sheet. The sheet is stretched longitudinally at a total stretch ratio of 3.0 to 6.0 to obtain a longitudinally stretched film. Producing a biaxially oriented polyester film, including transversely stretching the longitudinally stretched film. In the method, the longitudinal stretching is     i) a total stretch distance of 10 to 500 mm of the substantially amorphous sheet, no 100 The first longitudinally stretched film is first diagonally stretched at 140 ° C. and a stretching ratio of 1.1 to 2.0. Obtaining lum;     ii) The first longitudinally stretched film is heated at 100 to 140 ° C and 1.2 to 3.0 ° C. Parallel stretching at a stretching ratio to obtain a second longitudinally stretched film; and     iii) The second longitudinally stretched film is heated at 100 to 140 ° C. and 1.5 to 3.0 A second diagonal stretching at a stretching ratio of to obtain a longitudinally stretched film,     A method characterized in that the method is performed in three steps: 2. The first diagonal stretching step comprises one to three diagonal stretching steps. The method of claim 1, wherein 3. 2. The method according to claim 1, wherein the transverse stretching ratio is in the range of 3.0 to 5.0. Law.
JP9518754A 1995-11-14 1996-11-13 Method for producing biaxially oriented polyester film Ceased JP2000500085A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1019950041204A KR0164972B1 (en) 1995-11-14 1995-11-14 Process for producing polyester film
KR1995/41204 1995-11-14
PCT/KR1996/000200 WO1997018078A1 (en) 1995-11-14 1996-11-13 Process for the preparation of biaxially oriented polyester film

Publications (1)

Publication Number Publication Date
JP2000500085A true JP2000500085A (en) 2000-01-11

Family

ID=19434007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9518754A Ceased JP2000500085A (en) 1995-11-14 1996-11-13 Method for producing biaxially oriented polyester film

Country Status (5)

Country Link
JP (1) JP2000500085A (en)
KR (1) KR0164972B1 (en)
CN (1) CN1060432C (en)
TW (1) TW341585B (en)
WO (1) WO1997018078A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147927B2 (en) * 2002-06-26 2006-12-12 Eastman Chemical Company Biaxially oriented polyester film and laminates thereof with copper
JP2008068533A (en) * 2006-09-14 2008-03-27 Fujifilm Corp Method for longitudinally orienting thermoplastic resin film, and longitudinally oriented film manufactured by the method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527211A (en) * 1978-08-15 1980-02-27 Toray Ind Inc Producing process of polyester film
JPS59140028A (en) * 1983-01-18 1984-08-11 Diafoil Co Ltd Preparation of polyester film
US5139727A (en) * 1988-11-11 1992-08-18 Daifoil Company, Limited Process for producing biaxially oriented polyester film

Also Published As

Publication number Publication date
CN1204276A (en) 1999-01-06
CN1060432C (en) 2001-01-10
KR970025922A (en) 1997-06-24
KR0164972B1 (en) 1999-03-20
WO1997018078A1 (en) 1997-05-22
TW341585B (en) 1998-10-01

Similar Documents

Publication Publication Date Title
JPS5936851B2 (en) Manufacturing method of polyester film
JP2000500085A (en) Method for producing biaxially oriented polyester film
JPH0125695B2 (en)
KR100369442B1 (en) Manufacturing method of biaxially oriented polyester film
JPH08283496A (en) Polystyrene-based film for condenser
KR100369441B1 (en) Manufacturing method of biaxially oriented polyester film
JPH04101827A (en) Manufacture of biaxially oriented polyether ether ketone film
JP3367129B2 (en) Method for producing polyester film
JP2004276565A (en) Manufacturing process of biaxially oriented polyester film
KR0140311B1 (en) Process for preparing biaxially oriented polyester film
JPH10258458A (en) Biaxially oriented polyester film and its manufacture
KR20000067585A (en) the Process of Biaxial-oriented Polyester film Manufacture
KR19990049686A (en) Manufacturing method of biaxially oriented polyester film
JP2825728B2 (en) Method for producing biaxially oriented polyester film
JP2788775B2 (en) Method for producing biaxially stretched polyester film
JP2001328159A (en) Method for producing biaxially oriented film
KR0140294B1 (en) Process for preparing biaxially oriented polyester film
KR19990049684A (en) Manufacturing method of biaxially oriented polyester film
JPH0773877B2 (en) Method for producing biaxially oriented polyester film
KR0140309B1 (en) Process for preparing biaxially oriented polyester film
KR19990049685A (en) Manufacturing method of biaxially oriented polyester film
JPH07106599B2 (en) Stretch molding method for polyester film
JP2555707B2 (en) Process for producing polyethylene 2,6-naphthalate film
JP2825727B2 (en) Method for producing biaxially oriented polyester film
KR0140310B1 (en) Process for preparing biaxially oriented polyester film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A313 Final decision of rejection without a dissenting response from the applicant

Free format text: JAPANESE INTERMEDIATE CODE: A313

Effective date: 20060320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516