JP2000327302A - Method and apparatus for producing high-purity hydrogen - Google Patents

Method and apparatus for producing high-purity hydrogen

Info

Publication number
JP2000327302A
JP2000327302A JP11136872A JP13687299A JP2000327302A JP 2000327302 A JP2000327302 A JP 2000327302A JP 11136872 A JP11136872 A JP 11136872A JP 13687299 A JP13687299 A JP 13687299A JP 2000327302 A JP2000327302 A JP 2000327302A
Authority
JP
Japan
Prior art keywords
reforming
catalyst bed
producing high
purity hydrogen
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11136872A
Other languages
Japanese (ja)
Inventor
Yui-Min Rin
ユイ−ミン リン
Min-Hon Rei
ミン−ホン レイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHONGGUO SHIIYUU KOFUN YUGENKO
ZHONGGUO SHIIYUU KOFUN YUGENKOSHI
Original Assignee
ZHONGGUO SHIIYUU KOFUN YUGENKO
ZHONGGUO SHIIYUU KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHONGGUO SHIIYUU KOFUN YUGENKO, ZHONGGUO SHIIYUU KOFUN YUGENKOSHI filed Critical ZHONGGUO SHIIYUU KOFUN YUGENKO
Priority to JP11136872A priority Critical patent/JP2000327302A/en
Publication of JP2000327302A publication Critical patent/JP2000327302A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing high-purity hydrogen by a reforming of hydrocarbon capable of solving a problem in a conventional technique. SOLUTION: This apparatus is equipped with at least one reforming chamber 12 provided with a reforming catalyst bed 13, at least one hydrogen permeation thin film tube 14 which is built in the reforming chamber 12 so as to form a hydrogen gas isolation space 16 and permeates a hydrogen gas generated in the reforming catalyst bed 13 into the hydrogen gas isolation space 16 and at least one oxidation chamber 22 which is arranged closely to the reforming catalyst bed 13, provided with an oxidation catalyst bed 23 in the interior of the chamber, at least partially isolated from the thin film tube 14 by the reforming catalyst bed 13, burns an impermeable gas in the thin film tube 14 and supplies heat to the reforming chamber 12. A high-purity hydrogen is produced by the apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭質燃料の水蒸気改
質による高純度水素の製造方法及びその装置に関し、該
装置は水素透過性薄膜チューブ及び酸化触媒ベッドを設
けた酸化室を含んでいる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing high-purity hydrogen by steam reforming of carbonaceous fuel, and the apparatus includes an oxidation chamber provided with a hydrogen-permeable thin-film tube and an oxidation catalyst bed.

【0002】[0002]

【従来の技術】水蒸気改質により、炭化水素或いは炭質
燃料、例えばメタノール、エタノール、ガソリン、石油
及びその類似物から水素ガスを製造して色々な異なる用
途に供する技術は従来からすでに開示されており、本発
明は特に炭質燃料の水蒸気改質により水素ガスを生成し
て電動自動車及び工場現場発電に使われている燃料電池
に供するものである。
2. Description of the Related Art Techniques for producing hydrogen gas from hydrocarbons or carbonaceous fuels, such as methanol, ethanol, gasoline, petroleum and the like, by steam reforming for various different applications have been disclosed. In particular, the present invention is to generate hydrogen gas by steam reforming of carbonaceous fuel and supply it to electric vehicles and fuel cells used for power generation at factory sites.

【0003】炭化水素或いは炭質燃料、例えばメタノー
ルの水蒸気改質は一種の可逆及び吸熱反応であり、した
がって、熱を供給して反応の進行を促進し平衡状態で反
応させるようにする必要がある。水蒸気改質反応の歩留
りは反応が平衡状態にある下でしか最大に達することが
できず、低温下においては歩留りが比較的低いため、十
分な水素ガス歩留りを得るには通常水蒸気改質の反応温
度を 700〜900 ℃まで上昇させることを要する。このよ
うな高い反応温度は、反応過程で生成物の一種を抽出し
て反応の平衡状態を崩すことにより元来の歩留りを保ち
ながら下げることができる。
[0003] Steam reforming of hydrocarbons or carbonaceous fuels, such as methanol, is a type of reversible and endothermic reaction, so it is necessary to provide heat to promote the reaction and make it react in equilibrium. Since the yield of the steam reforming reaction can reach the maximum only when the reaction is in an equilibrium state, and the yield is relatively low at a low temperature, the steam reforming reaction is usually required to obtain a sufficient hydrogen gas yield. It is necessary to raise the temperature to 700-900 ° C. Such a high reaction temperature can be lowered while maintaining the original yield by extracting one of the products in the reaction process and breaking the equilibrium state of the reaction.

【0004】これまで、炭質燃料の水蒸気改質によって
得られる水素ガスは一般に約70%純度の程度で、この純
度を更に一歩進んで約96%まで純化しなければ技術的に
も経済的にも燃料電池に適さない。
Heretofore, hydrogen gas obtained by steam reforming of carbonaceous fuel generally has a purity of about 70%, and unless this purity is further advanced to about 96%, it is technically and economically necessary. Not suitable for fuel cells.

【0005】半導体産業で見受けられるように、高純度
水素ガスは一層の薄いパラジウム或いはパラジウム合金
薄膜を利用して得ることができるが、それら薄膜の水素
ガス透過量が低いため、表面積を広くする必要があって
費用も高く、工業的な規模には採算が合わない。特に、
高温や高圧の環境で使用するには該金属薄膜の厚さは通
常薄すぎて充分な機械強度を有していない。
As is found in the semiconductor industry, high-purity hydrogen gas can be obtained by using thinner palladium or palladium alloy thin films. However, since the hydrogen gas permeability of these thin films is low, it is necessary to increase the surface area. Costly, and not economically viable on an industrial scale. In particular,
For use in a high temperature or high pressure environment, the thickness of the metal thin film is usually too thin to have sufficient mechanical strength.

【0006】米国特許第 5,451,386号明細書には、一種
のチューブ状多孔性セラミック担体内周面にパラジウム
金属層を析出させてなるチューブ式多孔性セラミック担
体が開示されており、上記従来の薄膜に比べて、この種
の薄膜を使用すると比較的高い水素ガス透過量及び選別
性が得られ、このような薄膜は例えばアンモニアの分解
促進に用いて高温で水素ガスを分離する場合に、比較的
優れた機械強度を具えている。該セラミック担体は高温
及び高圧の下に使用できるものの、如何なる欠陥をも発
生させないためには、該パラジウム金属層薄膜の厚さを
10μm以上にしなければならない。しかし乍ら、透過量
を向上させるには該パラジウム金属層薄膜の厚さを低下
させることに頼らなければならない筈で、上記のような
制限は水素ガスの透過量向上を妨げる。
US Pat. No. 5,451,386 discloses a tubular porous ceramic carrier obtained by depositing a palladium metal layer on the inner peripheral surface of a kind of tubular porous ceramic carrier. In comparison, the use of this type of thin film provides a relatively high hydrogen gas permeation rate and selectivity, and such a thin film is relatively excellent when, for example, hydrogen gas is separated at a high temperature, for example, for promoting the decomposition of ammonia. With mechanical strength. Although the ceramic carrier can be used under high temperature and high pressure, the thickness of the palladium metal layer thin film should be reduced so as not to cause any defects.
It must be at least 10 μm. However, in order to improve the permeation amount, it is necessary to rely on reducing the thickness of the palladium metal layer thin film, and the above-mentioned restriction hinders the improvement in the permeation amount of hydrogen gas.

【0007】上記米国特許明細書における Buxbaum氏な
どの開示によれば、ニオブ円盤上に析出した2μm厚さ
のパラジウム薄膜により水素ガスを抽出する際、 500℃
以上の温度になると、ニオブ金属がパラジウム金属中に
拡散して、水素ガスが該パラジウム薄膜を透過できなく
なり機能を失う。
According to the disclosure of Buxbaum et al. In the above-mentioned US patent specification, when extracting hydrogen gas with a 2 μm-thick palladium thin film deposited on a niobium disk, 500 ° C.
At the above temperature, the niobium metal diffuses into the palladium metal, and the hydrogen gas cannot pass through the palladium thin film and loses its function.

【0008】また、米国特許第 5,741,474号明細書に
は、炭化水素及び/又は酸素原子含有炭化水素を改質し
て水素含有改質ガスを形成し、しかる後に該改質ガスか
ら水素ガスを分離して高純度水素ガスを製造するシステ
ムが開示されており、この種のシステムは水蒸気改質及
び部分酸化に使われる触媒を取付けた改質室と、水素分
離薄膜、例えばパラジウム或いはパラジウム−銀合金薄
膜とを含み、該部分酸化によって生じた熱と不透過ガス
を燃焼して生じた熱が該改質反応を持続させる。しかし
乍ら、該不透過ガスを燃焼させるには更に余分な燃料で
燃焼させなければならないと同時に、その燃焼は屡々極
めて高い温度の下で行われるので、装置を特殊材料で造
って大量の熱が流失するのを防がなくてはならず、且つ
該不透過ガスの燃焼は必ずしも完全に汚染ガスが生じな
い程度に転化してから放出されるとは限らない。
Further, US Pat. No. 5,741,474 discloses that a hydrocarbon and / or an oxygen atom-containing hydrocarbon is reformed to form a hydrogen-containing reformed gas, and then the hydrogen gas is separated from the reformed gas. A system for producing high-purity hydrogen gas is disclosed, comprising a reforming chamber equipped with a catalyst used for steam reforming and partial oxidation, and a hydrogen separation membrane, such as palladium or a palladium-silver alloy. The heat generated by the partial oxidation and the heat generated by burning the impermeable gas sustain the reforming reaction. However, burning the impervious gas requires additional fuel to be burned, and at the same time, the combustion is often carried out at very high temperatures; Must be prevented from escaping, and the combustion of the impermeable gas is not necessarily released after conversion to such an extent that no polluting gas is completely generated.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記数々の
問題点が解決された、炭化水素或いは炭質燃料の改質に
よる高純度水素の製造方法及びその装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus for producing high-purity hydrogen by reforming hydrocarbon or carbonaceous fuel, in which the above-mentioned problems have been solved.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の炭質燃料の水蒸気改質による高純度水素の
製造装置は、少なくとも一つの炭質燃料を触媒作用によ
り水蒸気改質して水素ガスを生成させるための改質触媒
ベッドを具えた改質室と、上記改質触媒ベッドに被覆さ
れて水素ガス隔離空間を形成するよう該改質室に内装さ
れ、且つ該改質触媒ベッドで生じた水素ガスを該水素ガ
ス隔離空間内へ透過させ得る少なくとも一つの水素ガス
透過性薄膜管と、上記改質触媒ベッドと密接して設けら
れ、内部に酸化触媒ベッドを具えて改質触媒ベッドの少
なくとも一部分により上記薄膜管と隔離され、該薄膜管
の不透過ガスを燃焼させると共に熱を該改質室に供給す
る酸化室と、を含む。
In order to achieve the above object, the present invention provides an apparatus for producing high-purity hydrogen by steam reforming of carbonaceous fuel according to the present invention. A reforming chamber provided with a reforming catalyst bed for producing hydrogen, and the reforming chamber is provided in the reforming chamber so as to form a hydrogen gas isolation space covered with the reforming catalyst bed, and is formed in the reforming catalyst bed. At least one hydrogen gas permeable thin-film tube capable of transmitting the hydrogen gas into the hydrogen gas isolation space, and provided in close contact with the reforming catalyst bed, and provided with an oxidation catalyst bed therein. An oxidation chamber, which is at least partially separated from the thin-film tube, and burns the impermeable gas of the thin-film tube and supplies heat to the reforming chamber.

【0011】また、本発明の炭質燃料の水蒸気改質によ
る高純度水素の製造方法は、改質触媒ベッドを装着した
改質室を設けて、該改質室に該改質触媒ベッドに被覆さ
れるよう水素ガス透過性薄膜管を内装し、該薄膜管によ
り水素ガス隔離空間を画成させる工程と、該改質室に密
接して酸化室を設け、該酸化室内に酸化触媒ベッドを装
設する工程と、該改質触媒ベッド内に炭質燃料を含んだ
混合物を供給して、水蒸気改質反応を行わせて水素ガス
及びその他の改質ガスを生じさせる工程と、該水素ガス
隔離空間より水素ガスを抽出する工程と、上記その他の
改質ガスを該酸化室に導入して触媒酸化を行い、該その
他の改質ガスを無汚染ガスに変える工程と、を含む。
Further, according to the method of the present invention for producing high-purity hydrogen by steam reforming of carbonaceous fuel, a reforming chamber equipped with a reforming catalyst bed is provided, and the reforming chamber is covered with the reforming catalyst bed. Providing a hydrogen gas permeable thin film tube so that a hydrogen gas isolation space is defined by the thin film tube; providing an oxidation chamber in close contact with the reforming chamber; and providing an oxidation catalyst bed in the oxidation chamber. Supplying a mixture containing a carbonaceous fuel into the reforming catalyst bed and performing a steam reforming reaction to generate hydrogen gas and other reformed gases. A step of extracting hydrogen gas and a step of introducing the other reformed gas into the oxidation chamber to perform catalytic oxidation, and converting the other reformed gas into a non-polluting gas.

【0012】好ましくは、本発明に使われる水素ガス可
透過薄膜は多孔性基材及び薄い金属層を具えて、該金属
層はパラジウム及びパラジウム合金からなる群から選ば
れ、該金属層は該基材表面に位置する。該多孔性基材は
多孔性ステンレス材料及び多孔性セラミック材料からな
る群から選ばれ、該基材の厚さは約 0.5mm〜2mmの範囲
にあって、該金属層の厚さは約1〜20μmの範囲にあ
る。
Preferably, the hydrogen gas permeable thin film used in the present invention comprises a porous substrate and a thin metal layer, wherein the metal layer is selected from the group consisting of palladium and a palladium alloy. Located on the material surface. The porous substrate is selected from the group consisting of a porous stainless steel material and a porous ceramic material, the thickness of the substrate is in a range of about 0.5 mm to 2 mm, and the thickness of the metal layer is about 1 to 2 mm. It is in the range of 20 μm.

【0013】改質触媒ベッドは銅を基にした触媒物質、
鉄を基にした触媒物質及びニッケルを基にした触媒物質
からなる群から選択され、酸化触媒ベッドはパラジウム
及び白金触媒からなる群を含む。炭質燃料の水蒸気改質
反応は 250〜550 ℃の範囲で行うことができて、改質さ
れた水素ガスは2〜20atm (0.20〜2.0MPa)の範囲の薄
膜透過圧力差の下で抽出される。炭質燃料はメタノー
ル、エタノール、ガソリン、石油及びこれら混合物から
なる群の中から選ばれ、本発明における一実施例の改質
室に送入される混合物はメタノール及び水蒸気を含み、
該メタノールは0.5〜30h-1のWHSV(重量空間速度(Wei
ght Hourly Space Velocity))で供給され、水蒸気とメ
タノールのモル比は1:2である。
The reforming catalyst bed comprises a copper-based catalytic material,
The oxidation catalyst bed is selected from the group consisting of iron-based catalyst materials and nickel-based catalyst materials, and the oxidation catalyst bed comprises the group consisting of palladium and platinum catalysts. The steam reforming reaction of carbonaceous fuel can be performed in the range of 250-550 ° C, and the reformed hydrogen gas is extracted under the membrane permeation pressure difference of 2-20atm (0.20-2.0MPa) . The carbonaceous fuel is selected from the group consisting of methanol, ethanol, gasoline, petroleum and mixtures thereof, and the mixture delivered to the reforming chamber of one embodiment of the present invention contains methanol and steam;
The methanol has a WHSV of 0.5 to 30 h -1 (weight hourly space velocity (Wei
ght Hourly Space Velocity)) and the molar ratio of steam to methanol is 1: 2.

【0014】上記のように構成された本発明は、酸化室
内で酸化触媒ベッドを使用しているので、比較的低い温
度で炭質燃料及び不透過改質ガスを酸化して改質室に熱
を供給できると共に、該不透過改質ガスを完全に無汚染
ガスに転化して排出することができ、該不透過改質ガス
を処理するための余計な装置を必要としない。
In the present invention constructed as described above, since the oxidation catalyst bed is used in the oxidation chamber, the carbonaceous fuel and the impermeable reformed gas are oxidized at a relatively low temperature to generate heat in the reforming chamber. In addition to being able to be supplied, the impervious reformed gas can be completely converted into a non-polluting gas and discharged, so that no extra device is required for treating the impervious reformed gas.

【0015】また、水素ガス透過流量を向上させたこと
により改質温度及び薄膜両側圧力差を比較的低いレベル
に低めることができ、このような高い水素ガス透過流量
は該炭質燃料や炭化水素の転化率を高めて、甚だしい場
合には90%以上にも高めることができる。そして、改質
温度及び薄膜両側圧力差の低下から反応器全体を比較的
廉価な材料で製作できて、熱エネルギーを節減して水素
ガス可透過薄膜の機械強度及び安定度に対する悪影響を
軽減できる利点があると同時に、このような高い水素ガ
ス透過流量は装置の体積をより小型化させる可能性があ
って、電動自動車や工場現場発電に利用される燃料電池
と連接して適用できる。
Further, by improving the hydrogen gas permeation flow rate, the reforming temperature and the pressure difference between both sides of the thin film can be reduced to relatively low levels. Conversion can be increased, and in extreme cases can be increased to over 90%. Further, the entire reactor can be made of a relatively inexpensive material from the reduction of the reforming temperature and the pressure difference between both sides of the thin film, so that the heat energy can be reduced and the adverse effect on the mechanical strength and stability of the hydrogen gas permeable thin film can be reduced. At the same time, such a high hydrogen gas permeation flow rate may reduce the volume of the apparatus, and can be applied in connection with an electric vehicle or a fuel cell used for power generation at a factory site.

【0016】[0016]

【発明の実施の形態】以下、本発明を実施の形態に基づ
いて具体的に説明するが、本発明はこの例だけに限定さ
れない。図1に示す如く、本発明による装置はシングル
ジャケットチューブ形反応器10として造られて、該反応
器10はケーシングとする外管11内部に改質室12を画成
し、且つ内管14を同心状に保持する。該改質室12内には
改質触媒ベッド13が内装されて、該内管14を該改質触媒
ベッド13により長手向きに延伸嵌挿する状態に包囲把持
し、該内管14は支承式薄膜管であって内部に水素ガス隔
離空間16を仕切る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be specifically described based on embodiments, but the present invention is not limited to these examples. As shown in FIG. 1, the apparatus according to the present invention is constructed as a single-jacketed tube type reactor 10, which defines a reforming chamber 12 inside an outer tube 11 serving as a casing, and defines an inner tube 14 therein. Hold concentrically. A reforming catalyst bed 13 is provided in the reforming chamber 12, and the inner tube 14 is surrounded and gripped by the reforming catalyst bed 13 in a state of being extended and fitted in a longitudinal direction. It is a thin film tube and partitions a hydrogen gas isolation space 16 inside.

【0017】[実施例1]この実施例では、テストを図
1の設備によって行い、その内管或いは支承式薄膜管14
は支承式パラジウム薄膜管であって、多孔性ステンレス
担体表面に無電解メッキを施してなり、該多孔性ステン
レス担体は米国のMott Metallurgical社から購入した1
mm厚さ及び 0.5μmろ過等級を具えたもので、そのパラ
ジウム層の厚さは約15μmである。整備された該支承式
パラジウム薄膜管を各種異なる温度及び圧力の下でテス
トした結果、該支承式薄膜管の水素ガス透過挙動はジー
ベルト(Sieverts)の法則に準じ、水素ガス可透過率の
測定値範囲は約3〜10m3 /m2 ・h ・atm0.5で、水素
ガス選択率範囲H2/N2は 100〜5.000 である。三種のそ
れぞれ薄膜1、薄膜2及び薄膜3が異なる支承式パラジ
ウム薄膜管を幾つかの実験に使用する。
[Embodiment 1] In this embodiment, a test was conducted by the equipment shown in FIG.
Is a support-type palladium thin-film tube in which the surface of a porous stainless steel carrier is subjected to electroless plating, and the porous stainless steel carrier was purchased from Mott Metallurgical Co., USA.
With a thickness of 0.5 mm and a filtration rating of 0.5 μm, the thickness of the palladium layer is about 15 μm. As a result of testing the installed supported palladium thin-film tube at various temperatures and pressures, the hydrogen gas permeation behavior of the supported thin-film tube was measured in terms of hydrogen gas permeability according to Sieverts' law. The range is about 3 to 10 m 3 / m 2 · h · atm 0.5 , and the hydrogen gas selectivity range H 2 / N 2 is 100 to 5.000. Three types of supported palladium membrane tubes, each with a different membrane 1, membrane 2 and membrane 3, are used in some experiments.

【0018】実験において、水素ガスと窒素ガスが外管
11の一端から該改質室12内へ入り、該改質室内の水素ガ
スが該改質室12と水素ガス隔離空間16との薄膜両側圧
力差により連続的に該水素ガス隔離空間16内に吸取られ
て、該改質室12内に残留した不透過ガスは該外管11から
流出する。
In the experiment, hydrogen gas and nitrogen gas were
11 enters the reforming chamber 12 from one end, and the hydrogen gas in the reforming chamber continuously enters the hydrogen gas isolating space 16 due to the pressure difference between both sides of the thin film between the reforming chamber 12 and the hydrogen gas isolating space 16. The impermeable gas remaining in the reforming chamber 12 after being sucked out flows out of the outer tube 11.

【0019】水素ガス可透過流量(各単位薄膜表面積当
りの水素ガス透過流量)及びH2/N2選択率(単一水素ガ
スと窒素ガスの透過流量比)の異なる温度及び圧力の下
における結果を表1、表2及び表3に示す。該支承式薄
膜の透過側(下流側)は大気圧に維持される。なお、以
下の表中の atmを単位とする圧力は、その数値に0.101
を乗じることで MPaを単位とするものに変換される。
Results under different temperatures and pressures of hydrogen gas permeation flow rate (hydrogen gas permeation flow rate per unit thin film surface area) and H 2 / N 2 selectivity (permeation ratio of single hydrogen gas to nitrogen gas). Are shown in Tables 1, 2 and 3. The permeate side (downstream) of the bearing membrane is maintained at atmospheric pressure. The pressure in units of atm in the table below is 0.101
Is converted to a value in MPa.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】[実施例2]図1の設備及び実施例1の支
承式薄膜管を使用して、該支承式薄膜管の水素ガス可透
過率を研究するためのその他のテストを行う。その操作
温度は 350℃で、水素ガス及び窒素ガスの濃度はそれぞ
れ50%で、水素ガス隔離空間の内部圧力は1〜2atm(0.
10〜0.20MPa)であり、透過を経た水素ガス純度は99.5%
である。それらテストの結果を表4に示す。
EXAMPLE 2 Using the equipment of FIG. 1 and the supported thin-film tube of Example 1, another test is conducted to study the hydrogen gas permeability of the supported thin-film tube. The operating temperature is 350 ° C, the concentration of hydrogen gas and the concentration of nitrogen gas are each 50%, and the internal pressure of the hydrogen gas isolation space is 1-2 atm (0.
10 ~ 0.20MPa), purity of hydrogen gas after permeation is 99.5%
It is. Table 4 shows the results of these tests.

【0024】[0024]

【表4】 [Table 4]

【0025】表4は該水素ガス隔離空間内での高圧操作
の実行可能性を説明するもので、この実行可能性により
後続の水素ガスを圧力容器内に圧入する工程で圧縮に要
するエネルギーを節減することができる。
Table 4 illustrates the feasibility of the high pressure operation in the hydrogen gas isolation space, which saves the energy required for compression in the subsequent step of injecting hydrogen gas into the pressure vessel. can do.

【0026】[実施例3]図1のシングルジャケットチ
ューブ形反応器10と従来の薄膜管を具えていない反応器
の水素ガス出口濃度の比較を行う。
Example 3 The hydrogen gas outlet concentration of the single-jacket tube reactor 10 of FIG. 1 is compared with that of a conventional reactor having no thin-film tube.

【0027】図1に示す如く、炭質燃料及び水を外管11
の一端より改質室12へ送込んで、改質触媒により水蒸気
改質反応を行う。改質室12内にある改質された水素ガス
は改質の過程で該改質室12と水素ガス隔離空間16との薄
膜両側圧力差により連続的に水素ガス隔離空間16に抽出
され、水素ガス隔離空間16に抽出されない水素ガス及び
改質されたガス中の残留ガスは排出ガスとして排出され
る。
As shown in FIG. 1, carbonaceous fuel and water are
Is fed into the reforming chamber 12 from one end, and a steam reforming reaction is performed by the reforming catalyst. The reformed hydrogen gas in the reforming chamber 12 is continuously extracted into the hydrogen gas isolation space 16 due to the pressure difference between both sides of the thin film between the reforming chamber 12 and the hydrogen gas isolation space 16 during the reforming process. Hydrogen gas not extracted into the gas isolation space 16 and residual gas in the reformed gas are exhausted as exhaust gas.

【0028】該シングルジャケットチューブ形反応器10
と従来の反応器の操作条件は同様であり、水蒸気改質に
使われる触媒は銅−亜鉛触媒で、Nissan Girdler社の製
品G66Bを使用する。操作条件の温度は 350℃で、メタノ
ールを水蒸気改質の原料に用い、その原料の反応器に供
給される量は8h-1WHSV(重量空間速度)で、水蒸気と炭
素の比は 1.2:1である。テストの結果を表5に示す。
The single-jacket tube reactor 10
And the operating conditions of the conventional reactor are the same, the catalyst used for steam reforming is a copper-zinc catalyst, using Nissan Girdler product G66B. The operating temperature was 350 ° C, methanol was used as the raw material for steam reforming, and the amount of the raw material supplied to the reactor was 8h -1 WHSV (weight hourly space velocity), and the ratio of steam to carbon was 1.2: 1. It is. Table 5 shows the test results.

【0029】[0029]

【表5】 [Table 5]

【0030】従来の反応器に比べて、本発明の図1の設
備は直接実質上の純水素ガスを製造できて、従来の反応
器によって製造された水素ガスは更に純化しなければ純
水素ガスを得られない。ここで注意すべきことは、本発
明の図1の装置のメタノール転化率は従来の反応器より
もやや高いことである。
Compared with the conventional reactor, the apparatus of FIG. 1 of the present invention can directly produce substantially pure hydrogen gas, and the hydrogen gas produced by the conventional reactor must be further purified if it is pure hydrogen gas. I can't get it. It should be noted that the methanol conversion of the apparatus of FIG. 1 of the present invention is slightly higher than the conventional reactor.

【0031】図2に示すのは、本発明によって形成され
たダブルジャケットチューブ形反応器20で、図1のシン
グルジャケットチューブ形反応器10と比較すると、該ダ
ブルジャケットチューブ形反応器20は外側ケーシング21
を具えて、該外側ケーシングにより酸化室22を仕切り、
該酸化室22は酸化触媒ベッド23を含んで、該酸化触媒ベ
ッド23が図1のシングルジャケットチューブ形反応器10
を被覆する。該酸化室22は連接装置(図示せず)を介し
て該改質室12と連通し、該酸化室22により不透過ガスは
酸化及び転化されて無汚染ガスとして排出される。
FIG. 2 shows a double jacketed tube reactor 20 formed in accordance with the present invention, which, when compared to the single jacketed tube reactor 10 of FIG. twenty one
With the outer casing partitioning the oxidation chamber 22;
The oxidation chamber 22 includes an oxidation catalyst bed 23, and the oxidation catalyst bed 23 corresponds to the single-jacketed tubular reactor 10 of FIG.
Is coated. The oxidizing chamber 22 communicates with the reforming chamber 12 via a connecting device (not shown), and the opaque gas is oxidized and converted by the oxidizing chamber 22 and discharged as a non-polluting gas.

【0032】[実施例4]図2のダブルジャケットチュ
ーブ形反応器20の酸化室及びその内部の酸化触媒Pd/Al
2O3 を除いて、ダブルジャケットチューブ形反応器20と
図1のシングルジャケットチューブ形反応器10を同じ操
作条件で多数のテストにかける。
[Embodiment 4] The oxidation chamber of the double-jacketed tube reactor 20 shown in FIG. 2 and the oxidation catalyst Pd / Al in the inside thereof
Except for 2 O 3 , the double jacketed tube reactor 20 and the single jacketed tube reactor 10 of FIG. 1 are subjected to multiple tests under the same operating conditions.

【0033】改質触媒ベッドとして銅−亜鉛触媒を使用
する。改質室内の反応温度及び圧力はそれぞれ 350℃及
び6atm(0.61MPa )で、メタノールの原料供給速度は8
h -1WHSV、且つ水蒸気と炭素の比は 1.2:1である。酸
化室22へ進んで該不透過ガスを酸化する空気速度は1200
-1GHSV(ガス空間速度(gas hourly space velocity))で
ある。そのテストの結果を表6に示す。
A copper-zinc catalyst is used as a reforming catalyst bed. The reaction temperature and pressure in the reforming chamber were 350 ° C and 6 atm (0.61 MPa), respectively, and the feed rate of methanol was 8
h -1 WHSV and the ratio of water vapor to carbon is 1.2: 1. The air velocity for oxidizing the impermeable gas to the oxidation chamber 22 is 1200
-1 GHSV (gas hourly space velocity). Table 6 shows the results of the test.

【0034】[0034]

【表6】 [Table 6]

【0035】表6が示すように、酸化触媒23を装着した
ダブルジャケットチューブ形反応器20の出口で排出され
るガスの水素ガス及び一酸化炭素含有量は大幅に低減す
る。
As shown in Table 6, the hydrogen gas and the carbon monoxide content of the gas discharged at the outlet of the double jacketed tube reactor 20 equipped with the oxidation catalyst 23 are greatly reduced.

【0036】[実施例5]本実施例はメタノールの供給
速度による水素ガス発生率に対する影響を検討するもの
で、メタノールの供給速度WHSV及び料/膜面積比(メタ
ノール供給速度とパラジウム薄膜表面積の比)のほか、
本実施例における実験用の反応器及び条件は実施例4と
同様である。本実施例によるテストの結果を表7に示
す。
Example 5 In this example, the effect of the methanol supply rate on the hydrogen gas generation rate was examined. The methanol supply rate WHSV and the material / membrane area ratio (the ratio of the methanol supply rate to the palladium thin film surface area ratio) ),
The experimental reactor and conditions in this example are the same as in Example 4. Table 7 shows the results of the test according to this example.

【0037】[0037]

【表7】 [Table 7]

【0038】表7の結果から水素ガスの発生率はメタノ
ールの供給速度が速くなると低下することが分かる。
From the results shown in Table 7, it can be seen that the hydrogen gas generation rate decreases as the methanol supply rate increases.

【0039】[実施例6]本実施例は料/膜面積比によ
る水素ガス発生量に対する影響を検討するもので、メタ
ノールの供給速度WHSV及び料/膜面積比のほかは、実験
用の反応器及び条件とも実施例4と同様であり、そのテ
ストの結果を表8に示す。
Example 6 In this example, the effect of the material / membrane area ratio on the amount of hydrogen gas generated was examined. In addition to the methanol supply rate WHSV and the material / membrane area ratio, the experimental reactor was used. The conditions are the same as in Example 4. The results of the test are shown in Table 8.

【0040】[0040]

【表8】 [Table 8]

【0041】表8から料/膜面積比が半分まで低下する
と水素ガス発生率が二倍になることが分かる。
It can be seen from Table 8 that the hydrogen gas generation rate doubles when the material / membrane area ratio is reduced by half.

【0042】[実施例7]本実施例はダブルジャケット
チューブ形反応器の排出ガスが無汚染ガスであることを
証明するもので、メタノール供給速度WHSV及び料/膜面
積比のほかは、実験用反応器及び条件とも実施例4と同
様であり、テストの結果を表9に示す。
Example 7 This example proves that the exhaust gas of a double-jacketed tube reactor is a non-polluting gas. Except for the methanol feed rate WHSV and the feed / membrane area ratio, it was used for experiments. The reactor and conditions were the same as in Example 4, and the results of the test are shown in Table 9.

【0043】[0043]

【表9】 [Table 9]

【0044】表9は改質されるガス中の不透過ガス内の
水素ガス及び一酸化炭素が完全に転化して無汚染ガスと
して排出されるのを示す。
Table 9 shows that the hydrogen gas and carbon monoxide in the impermeable gas in the reformed gas are completely converted and discharged as a non-polluting gas.

【0045】[実施例8]本実施例は水素ガス発生率と
改質圧力との関係を検討するもので、改質室内の圧力の
ほかは、実験用反応器及び条件とも上記実施例4と同様
であり、そのテストの結果を表10に示す。
[Embodiment 8] In this embodiment, the relationship between the hydrogen gas generation rate and the reforming pressure is examined. In addition to the pressure in the reforming chamber, the experimental reactor and the conditions were the same as those in the above-mentioned Embodiment 4. Similarly, the results of the test are shown in Table 10.

【0046】[0046]

【表10】 [Table 10]

【0047】表10から水素ガス発生率は反応圧力の上昇
に応じて高くなることが分かる。
From Table 10, it can be seen that the hydrogen gas generation rate increases as the reaction pressure increases.

【0048】[実施例9]本実施例は水素ガス発生率と
改質温度との間の関係を検討するもので、改質室内の温
度のほかは、実験用反応器及び条件とも上記実施例4と
同様であり、そのテストの結果を表11に示す。
[Embodiment 9] In this embodiment, the relationship between the hydrogen gas generation rate and the reforming temperature was examined. In addition to the temperature inside the reforming chamber, the experimental reactor and conditions were the same as those in the above embodiment. Table 4 shows the results of the test.

【0049】[0049]

【表11】 [Table 11]

【0050】表11から水素ガス発生率が反応温度の上昇
につれて増加することが分かる。
It can be seen from Table 11 that the hydrogen gas generation rate increases as the reaction temperature increases.

【0051】図3に示す如く、マルチジャケットチュー
ブ形反応器30は外側ケーシング31を含んで、該外側ケー
シング31が酸化触媒ベッド33を収容するのに使われる酸
化室を画成して、4本の管状部材34が該酸化室32に内装
されて該酸化触媒ベッド33により被覆され、各管状部材
34が更に改質触媒ベッド35及び水素ガス透過性薄膜管14
を収納して、それら薄膜管14が上記酸化触媒ベッド33に
よって隔離される。
As shown in FIG. 3, the multi-jacketed tubular reactor 30 includes an outer casing 31 which defines an oxidation chamber used to accommodate an oxidation catalyst bed 33 and includes four outer casings. Each of the tubular members 34 is housed in the oxidation chamber 32 and covered with the oxidation catalyst bed 33.
34 is a reforming catalyst bed 35 and a hydrogen gas permeable thin film tube 14
And the thin film tubes 14 are isolated by the oxidation catalyst bed 33.

【0052】図4に示すのは、本発明によって形成され
た水素ガス製造用のもう一種のマルチジャケットチュー
ブ形反応器40であり、該マルチジャケットチューブ形反
応器40は外側ケーシング41を具えて、該外側ケーシング
41が改質触媒ベッド43を充満した改質室42を画成し、5
本の管状部材45を所定間隔に該改質室42内に装設して、
該改質触媒ベッド43により被覆し、各管状部材45が更に
酸化触媒ベッド47を内装した酸化室46を画成して、複数
の薄膜管14を所定間隔に該改質触媒ベッド43内に設け、
それら薄膜管14を該酸化触媒ベッド47により隔離する。
FIG. 4 shows another multi-jacketed tubular reactor 40 for producing hydrogen gas formed according to the present invention, the multi-jacketed tubular reactor 40 having an outer casing 41. The outer casing
41 defines a reforming chamber 42 filled with a reforming catalyst bed 43,
The tubular members 45 are provided at predetermined intervals in the reforming chamber 42,
Each of the tubular members 45 further defines an oxidation chamber 46 in which an oxidation catalyst bed 47 is provided, and a plurality of thin film tubes 14 are provided in the reforming catalyst bed 43 at predetermined intervals. ,
The thin film tubes 14 are isolated by the oxidation catalyst bed 47.

【0053】[0053]

【発明の効果】上記のように構成された本発明は、比較
的低い温度で炭質燃料及び不透過改質ガスを酸化して改
質室に熱を供給できる一方、不透過改質ガスを完全に無
汚染ガスに転化して排出することができ、該不透過改質
ガスを処理するために余分な設備を設ける必要がない。
且つ高い水素ガス透過流量を提供して改質温度及び薄膜
両側圧力差を比較的低い程度に低めることができるの
で、該炭質燃料や炭化水素の転化率を高めて、改質温度
及び薄膜両側圧力差の低下から比較的低廉な材料で全体
反応器を製作できて、熱エネルギーを節減して水素ガス
可透過薄膜の機械強度及び安定度に対する悪影響を軽減
でき、特に装置の体積をより小型に縮小できて、燃料電
池と連接して電動自動車や工場現場発電に適用すること
ができる。
According to the present invention having the above-described structure, the carbonaceous fuel and the impermeable reformed gas can be oxidized at a relatively low temperature to supply heat to the reforming chamber, while the impermeable reformed gas is completely oxidized. It can be converted to non-polluting gas and discharged, and there is no need to provide extra equipment for treating the impermeable reformed gas.
In addition, since the reforming temperature and the pressure difference between both sides of the thin film can be reduced to a relatively low level by providing a high hydrogen gas permeation flow rate, the conversion rate of the carbonaceous fuel or hydrocarbon is increased, and the reforming temperature and the pressure across the thin film are increased. The overall reactor can be made of relatively inexpensive materials due to the reduced difference, which can reduce the heat energy, reduce the adverse effect on the mechanical strength and stability of the hydrogen gas permeable thin film, and especially reduce the volume of the equipment to a smaller size It can be connected to a fuel cell and applied to electric vehicles and factory power generation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のシングルジャケットチューブ形反応器
の縦断面図。
FIG. 1 is a longitudinal sectional view of a single-jacket tube reactor of the present invention.

【図2】本発明のダブルジャケットチューブ形反応器の
縦断面図。
FIG. 2 is a longitudinal sectional view of the double-jacketed tube reactor of the present invention.

【図3】本発明のマルチジャケットチューブ形反応器の
横断面図。
FIG. 3 is a cross-sectional view of the multi-jacket tube reactor of the present invention.

【図4】本発明のもう一種のマルチジャケットチューブ
形反応器の横断面図。
FIG. 4 is a cross-sectional view of another multi-jacketed tube reactor of the present invention.

【符号の説明】[Explanation of symbols]

10…シングルジャケットチューブ形反応器 11…外管 12…改質室 13…改質触媒ベッド 14…水素ガス透過性薄膜管 16…水素ガス隔離空間 21…外側ケーシング 22…酸化室 23…酸化触媒ベッド 10 ... Single-jacket tube reactor 11 ... Outer tube 12 ... Reforming chamber 13 ... Reforming catalyst bed 14 ... Hydrogen gas permeable thin film tube 16 ... Hydrogen gas isolation space 21 ... Outer casing 22 ... Oxidation chamber 23 ... Oxidation catalyst bed

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年7月25日(2000.7.2
5)
[Submission date] July 25, 2000 (2007.2
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 3/38 C01B 3/38 // H01M 8/06 H01M 8/06 G (72)発明者 レイ ミン−ホン 台湾,タイペイ シー,シン−ハイ ル ー,4トアン,101シアン,140ノン,64ハ ウツー8 Fターム(参考) 4D006 GA41 HA28 JA26A KA01 KA15 KB30 KE03P KE05P KE06R KE08P KE12P KE13P KE16R MA02 MA06 MA22 MA31 MB03 MB04 MC02X MC03 PA01 PB18 PB20 PB66 PC69 PC80 4G040 EA02 EA03 EA06 EB12 EB33 EB44 EB46 EC01 EC03 EC08 4G069 AA01 AA02 AA11 BA13A BA13B BA18 BB02A BB02B BC31A BC31B BC35B BC66A BC68A BC72A BC72B BC75A CC17 CC32 DA06 EA06 EA08 EB10 5H027 AA02 BA01 DD00 DD05 KK01 KK41 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C01B 3/38 C01B 3/38 // H01M 8/06 H01M 8/06 G (72) Inventor Ray Min-Hong Taiwan, Taipei, Thin-High, 4 Toan, 101 Cyan, 140 Non, 64 How to 8 F Term (Reference) 4D006 GA41 HA28 JA26A KA01 KA15 KB30 KE03P KE05P KE06R KE08P KE12P KE13P KE16R MA02 MA06 MA22 MA31 MB03 MB04 MC02X MC03 PA01 PB18 PB20 PB66 PC69 PC80 4G040 EA02 EA03 EA06 EB12 EB33 EB44 EB46 EC01 EC03 EC08 4G069 AA01 AA02 AA11 BA13A BA13B BA18 BB02A BB02B BC31A BC31B BC35B BC66A BC68A BC72A BC07A01 BC17A02 BC17B01A02

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 炭質燃料をその触媒作用により水蒸気改
質して水素ガスを生成させるための改質触媒ベッドを装
入した少なくとも一つの改質室と、 上記改質触媒ベッドに被覆されて水素ガス隔離空間を形
成するよう上記改質室に内装され、且つ該改質触媒ベッ
ドで生じた水素ガスを該水素ガス隔離空間内へ透過させ
得る少なくとも一つの水素ガス透過性薄膜管と、 上記改質触媒ベッドと密接して設けられ、内部に酸化触
媒ベッドを保持して改質触媒ベッドの少なくとも一部分
により上記薄膜管と隔離され、該薄膜管の不透過ガスを
燃焼させると共に熱を該改質室に供給する少なくとも一
つの酸化室と、を含んでなる高純度水素の製造装置。
At least one reforming chamber in which a reforming catalyst bed for generating hydrogen gas by steam reforming a carbonaceous fuel by the catalytic action thereof is provided; At least one hydrogen gas permeable thin film tube which is provided in the reforming chamber so as to form a gas isolation space and is capable of transmitting hydrogen gas generated in the reforming catalyst bed into the hydrogen gas isolation space; The reforming catalyst bed is provided in close contact with the porous catalyst bed, and is separated from the thin-film tube by at least a portion of the reforming catalyst bed while holding the oxidation catalyst bed therein. An apparatus for producing high-purity hydrogen, comprising: at least one oxidation chamber for supplying the chamber.
【請求項2】 外側ケーシング及び該外側ケーシング内
に同心設置される管状部材を具えて、該管状部材が改質
室を画成して改質触媒ベッドを収容し、上記薄膜管が該
管状部材内に同心設置されて該改質触媒ベッドにより被
覆され、上記酸化室が該外側ケーシングと該管状部材と
の間に設けられて酸化触媒ベッドを収容するようにして
なる請求項1に記載の高純度水素の製造装置。
2. An outer casing comprising: a tubular member concentrically disposed within the outer casing; the tubular member defining a reforming chamber and accommodating a reforming catalyst bed; 2. The height of claim 1, wherein the oxidizing chamber is provided between the outer casing and the tubular member to accommodate the oxidation catalyst bed. Purity hydrogen production equipment.
【請求項3】 外側ケーシング及び互いに所定間隔に該
外側ケーシング内の長手向きに延設される複数の管状部
材を具えて、該外側ケーシングが画成する改質室内に収
容された改質触媒ベッドが複数の薄膜管を被覆し、該複
数の薄膜管が互いに所定間隔を呈して該改質室内に長手
向きに延設され、該複数の管状部材が該複数の薄膜管と
適当な間隔で該改質触媒ベッドに被覆されて、該管状部
材が複数の酸化室を画成するようにしてなる請求項1に
記載の高純度水素の製造装置。
3. A reforming catalyst bed housed in a reforming chamber defined by an outer casing and a plurality of tubular members extending longitudinally in the outer casing at a predetermined distance from each other. Covers a plurality of thin-film tubes, the plurality of thin-film tubes extend longitudinally into the reforming chamber at a predetermined interval from each other, and the plurality of tubular members are arranged at appropriate intervals with the plurality of thin-film tubes. The apparatus for producing high-purity hydrogen according to claim 1, wherein the tubular member defines a plurality of oxidation chambers by being coated on the reforming catalyst bed.
【請求項4】 外側ケーシング及び互いに所定間隔に該
外側ケーシング内の長手向きに延設される複数の管状部
材を具えて、それら管状部材が複数の改質室を画成して
該外側ケーシングが酸化室を区画し、酸化触媒ベッドが
管状部材及び管状部材内の改質触媒ベッドを被覆して、
それぞれの管状部材が少なくとも一つの薄膜管を収容
し、各管状部材内の改質触媒が該薄膜管を被覆するよう
にしてなる請求項1に記載の高純度水素の製造装置。
4. An outer casing and a plurality of tubular members extending longitudinally in the outer casing at a predetermined distance from each other, the tubular members defining a plurality of reforming chambers, and the outer casing is Defining an oxidation chamber, the oxidation catalyst bed covering the tubular member and the reforming catalyst bed in the tubular member,
The apparatus for producing high-purity hydrogen according to claim 1, wherein each tubular member contains at least one thin-film tube, and the reforming catalyst in each tubular member covers the thin-film tube.
【請求項5】 上記水素ガス透過性薄膜管が多孔性基材
及び該多孔性表面に位置する薄い金属層を含んでなる請
求項1に記載の高純度水素の製造装置。
5. The apparatus for producing high-purity hydrogen according to claim 1, wherein the hydrogen gas-permeable thin-film tube includes a porous substrate and a thin metal layer located on the porous surface.
【請求項6】 上記多孔性基材が多孔性ステンレス材を
含んでなる請求項5に記載の高純度水素の製造装置。
6. The apparatus for producing high-purity hydrogen according to claim 5, wherein the porous substrate comprises a porous stainless steel.
【請求項7】 上記多孔性基材が多孔性セラミック材を
含んでなる請求項5に記載の高純度水素の製造装置。
7. The apparatus for producing high-purity hydrogen according to claim 5, wherein the porous substrate comprises a porous ceramic material.
【請求項8】 上記薄い金属層がパラジウムとパラジウ
ム合金からなる群から選ばれてなる請求項6に記載の高
純度水素の製造装置。
8. The apparatus for producing high-purity hydrogen according to claim 6, wherein the thin metal layer is selected from the group consisting of palladium and a palladium alloy.
【請求項9】 上記薄い金属層がパラジウムとパラジウ
ム合金からなる群から選ばれてなる請求項7に記載の高
純度水素の製造装置。
9. The apparatus for producing high-purity hydrogen according to claim 7, wherein the thin metal layer is selected from the group consisting of palladium and a palladium alloy.
【請求項10】 上記多孔性基材の厚さ範囲が0.5〜2
mmであって、上記薄い金属層の厚さ範囲が1〜20μmで
ある請求項5に記載の高純度水素の製造装置。
10. The thickness range of the porous substrate is 0.5-2.
The high-purity hydrogen producing apparatus according to claim 5, wherein the thickness of the thin metal layer is 1 to 20 µm.
【請求項11】 上記改質触媒ベッドが銅が主な触媒物
質、鉄が主な触媒物質及びニッケルが主な触媒物質であ
るものからなる群から選ばれてなる請求項1に記載の高
純度水素の製造装置。
11. The high-purity catalyst according to claim 1, wherein the reforming catalyst bed is selected from the group consisting of copper as a main catalyst material, iron as a main catalyst material and nickel as a main catalyst material. Hydrogen production equipment.
【請求項12】 上記酸化触媒ベッドをパラジウムと白
金からなる群から選んでなる請求項1に記載の高純度水
素の製造装置。
12. The apparatus for producing high-purity hydrogen according to claim 1, wherein the oxidation catalyst bed is selected from the group consisting of palladium and platinum.
【請求項13】 改質触媒ベッドを装着した改質室を設
けて、該改質室に該改質触媒ベッドに被覆されるよう水
素ガス透過性薄膜管を内装し、該薄膜管により水素ガス
隔離空間を区画させる工程と、 上記改質室に密接して酸化室を設け、該酸化室内に酸化
触媒ベッドを装設する工程と、 上記改質触媒ベッド内に炭質燃料を含んだ混合物を供給
して、水蒸気改質反応を行わせて水素ガス及びその他の
改質ガスを生じさせる工程と、 上記水素ガス隔離空間より水素ガスを抽出する工程と、 上記その他の改質ガスを該酸化室に導入して触媒酸化を
行い、該その他の改質ガスを無汚染ガスに変える工程
と、 を含んでなる高純度水素の製造方法。
13. A reforming chamber equipped with a reforming catalyst bed is provided, and a hydrogen gas permeable thin film tube is provided in the reforming chamber so as to be covered with the reforming catalyst bed. A step of partitioning an isolated space; a step of providing an oxidation chamber in close contact with the reforming chamber; and a step of installing an oxidation catalyst bed in the oxidation chamber; and supplying a mixture containing a carbonaceous fuel into the reforming catalyst bed. Performing a steam reforming reaction to generate hydrogen gas and other reformed gas; extracting hydrogen gas from the hydrogen gas isolation space; and supplying the other reformed gas to the oxidation chamber. Introducing a catalytic oxidation to convert the other reformed gas into a non-polluting gas.
【請求項14】 上記水素ガス透過性薄膜管が多孔性基
材及び該多孔性表面に位置する薄い金属層を含んでなる
請求項13に記載の高純度水素の製造方法。
14. The method for producing high-purity hydrogen according to claim 13, wherein the hydrogen gas-permeable thin-film tube comprises a porous substrate and a thin metal layer located on the porous surface.
【請求項15】 上記多孔性基材が多孔性ステンレス材
を含んでなる請求項14に記載の高純度水素の製造方法。
15. The method for producing high-purity hydrogen according to claim 14, wherein the porous substrate comprises a porous stainless steel material.
【請求項16】 上記多孔性基材が多孔性セラミック材
を含んでなる請求項14に記載の高純度水素の製造方法。
16. The method for producing high-purity hydrogen according to claim 14, wherein the porous substrate comprises a porous ceramic material.
【請求項17】 上記薄い金属層をパラジウムとパラジ
ウム合金からなる群から選ぶ請求項15に記載の高純度水
素の製造方法。
17. The method for producing high-purity hydrogen according to claim 15, wherein the thin metal layer is selected from the group consisting of palladium and a palladium alloy.
【請求項18】 上記薄い金属層をパラジウムとパラジ
ウム合金からなる群から選ぶ請求項16に記載の高純度水
素の製造方法。
18. The method for producing high-purity hydrogen according to claim 16, wherein the thin metal layer is selected from the group consisting of palladium and a palladium alloy.
【請求項19】 上記多孔性基材の厚さ範囲が 0.5〜2
mmであって、上記薄い金属層の厚さ範囲が1〜20μmで
ある請求項14に記載の高純度水素の製造方法。
19. The thickness range of the porous substrate is 0.5 to 2
15. The method for producing high-purity hydrogen according to claim 14, wherein the thickness of the thin metal layer is 1 mm to 20 mm.
【請求項20】 上記改質触媒ベッドを銅が主な触媒物
質、鉄が主な触媒物質及びニッケルが主な触媒物質であ
るものからなる群から選ぶ請求項13に記載の高純度水素
の製造方法。
20. The production of high-purity hydrogen according to claim 13, wherein the reforming catalyst bed is selected from the group consisting of copper as a main catalyst material, iron as a main catalyst material and nickel as a main catalyst material. Method.
【請求項21】 上記酸化触媒ベッドをパラジウムと白
金からなる群から選ぶ請求項13に記載の高純度水素の製
造方法。
21. The method for producing high-purity hydrogen according to claim 13, wherein the oxidation catalyst bed is selected from the group consisting of palladium and platinum.
【請求項22】 上記水蒸気改質反応を 250〜550 ℃の
温度範囲の下で行う請求項13に記載の高純度水素の製造
方法。
22. The method for producing high-purity hydrogen according to claim 13, wherein the steam reforming reaction is performed in a temperature range of 250 to 550 ° C.
【請求項23】 上記水素ガスを2〜20atm (0.20〜2.
0MPa)の範囲の透過圧力差で抽出する請求項13に記載の
高純度水素の製造方法。
23. The hydrogen gas is supplied at 2 to 20 atm (0.20 to 2.
14. The method for producing high-purity hydrogen according to claim 13, wherein the extraction is performed with a permeation pressure difference in the range of 0 MPa).
【請求項24】 上記炭質燃料をメタノール、エタノー
ル、ガソリン、石油及びこれら混合物からなる群の中か
ら選ぶ請求項13に記載の高純度水素の製造方法。
24. The method for producing high-purity hydrogen according to claim 13, wherein the carbonaceous fuel is selected from the group consisting of methanol, ethanol, gasoline, petroleum, and a mixture thereof.
【請求項25】 上記混合物がメタノール及び水蒸気を
含んで、該メタノールが 0.5〜30h-1の供給速度(WHSV)
で供給され、該水蒸気と該メタノールのモル比が1:2
である請求項24に記載の高純度水素の製造方法。
25. The mixture comprises methanol and water vapor, the methanol having a feed rate (WHSV) of 0.5 to 30 h -1.
And the molar ratio of the steam to the methanol is 1: 2
25. The method for producing high-purity hydrogen according to claim 24, wherein
JP11136872A 1999-05-18 1999-05-18 Method and apparatus for producing high-purity hydrogen Pending JP2000327302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11136872A JP2000327302A (en) 1999-05-18 1999-05-18 Method and apparatus for producing high-purity hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11136872A JP2000327302A (en) 1999-05-18 1999-05-18 Method and apparatus for producing high-purity hydrogen

Publications (1)

Publication Number Publication Date
JP2000327302A true JP2000327302A (en) 2000-11-28

Family

ID=15185513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11136872A Pending JP2000327302A (en) 1999-05-18 1999-05-18 Method and apparatus for producing high-purity hydrogen

Country Status (1)

Country Link
JP (1) JP2000327302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058823A (en) * 2003-08-13 2005-03-10 Ngk Insulators Ltd Selective permeation membrane type reactor
WO2005070519A1 (en) * 2004-01-26 2005-08-04 Ngk Insulators, Ltd. Selectively permeable membrane type reactor
JP2011526237A (en) * 2008-07-01 2011-10-06 リンデ アクチエンゲゼルシヤフト Hydrogen production method and apparatus
JP2014097443A (en) * 2012-11-13 2014-05-29 Tomyeng Corp Hydrogen separation membrane, hydrogen separator, and organic hydride system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058823A (en) * 2003-08-13 2005-03-10 Ngk Insulators Ltd Selective permeation membrane type reactor
WO2005070519A1 (en) * 2004-01-26 2005-08-04 Ngk Insulators, Ltd. Selectively permeable membrane type reactor
JPWO2005070519A1 (en) * 2004-01-26 2008-04-24 日本碍子株式会社 Permselective membrane reactor
US7622086B2 (en) 2004-01-26 2009-11-24 Ngk Insulators, Ltd. Selectively permeable membrane type reactor
JP4673223B2 (en) * 2004-01-26 2011-04-20 日本碍子株式会社 Permselective membrane reactor
JP2011526237A (en) * 2008-07-01 2011-10-06 リンデ アクチエンゲゼルシヤフト Hydrogen production method and apparatus
JP2014097443A (en) * 2012-11-13 2014-05-29 Tomyeng Corp Hydrogen separation membrane, hydrogen separator, and organic hydride system

Similar Documents

Publication Publication Date Title
US6207132B1 (en) Process for producing high purity hydrogen
Ledjeff-Hey et al. Compact hydrogen production systems for solid polymer fuel cells
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
JP3432892B2 (en) Method for removing CO from reformed gas
US4713234A (en) Process and apparatus for conversion of water vapor with coal or hydrocarbon into a product gas
US3198604A (en) Hydrogen generating system
US5525322A (en) Method for simultaneous recovery of hydrogen from water and from hydrocarbons
EP1024111A1 (en) Process and apparatus for producing high purity hydrogen
US3251652A (en) Process for producing hydrogen
JP4541484B2 (en) Autothermal steam reforming process under catalysis.
JP5390448B2 (en) Membrane separation reactor and method for producing hydrogen
US20090123364A1 (en) Process for Hydrogen Production
JP4995461B2 (en) Carbon dioxide reforming method of hydrocarbons by selectively permeable membrane reactor
CA2317396A1 (en) Use of a membrane reactor for hydrogen production via the direct cracking of hydrocarbons
KR20190143593A (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
JP3297246B2 (en) Cogeneration method
JP2000327302A (en) Method and apparatus for producing high-purity hydrogen
JP2755685B2 (en) Hydrogen production method for fuel cell
JPH08319101A (en) Electricity generation
JPH04325402A (en) Method and equipment for producing gaseous hydrogen for fuel cell and supply method therefor
JP2955054B2 (en) Method and apparatus for producing hydrogen for fuel cells and supply method
JP5037878B2 (en) Permselective membrane reactor and method for producing hydrogen gas
JP4319126B2 (en) Rapid hydrogen generation method and reactor module therefor
JP2002100388A (en) Hydrogen production method for fuel cell and manufacturing equipment
JPH08321321A (en) Fuel cell