JP2000323275A - Method for improving characteristic of organic electroluminescent element by heating after gamma ray irradiation - Google Patents

Method for improving characteristic of organic electroluminescent element by heating after gamma ray irradiation

Info

Publication number
JP2000323275A
JP2000323275A JP11129544A JP12954499A JP2000323275A JP 2000323275 A JP2000323275 A JP 2000323275A JP 11129544 A JP11129544 A JP 11129544A JP 12954499 A JP12954499 A JP 12954499A JP 2000323275 A JP2000323275 A JP 2000323275A
Authority
JP
Japan
Prior art keywords
interface
heat treatment
heat
light emitting
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11129544A
Other languages
Japanese (ja)
Inventor
Masao Tamada
正男 玉田
Hiroshi Koshikawa
博 越川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP11129544A priority Critical patent/JP2000323275A/en
Publication of JP2000323275A publication Critical patent/JP2000323275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress exfoliation of an interface and crystallization of polymer generated during heat treatment by bridging action and to improve the interface and a film quality by irradiating an EL element with gamma rays before the heat treatment, slightly introducing a bridge between polymers, and treating them by heat. SOLUTION: A polymer thin film of thickness 100 nm formed by dispersing tris-(8-hydroxyquinolinats) aluminum to polyvinylcarbazole at the ratio 25:4 is prepared on an indium-tin oxide transparent electrode substrate by a pull method and an Mg/Ag electrode is laminated thereon so that an EL element is constructed. The device has gamma rays irradiated thereon, is treated by heat of 230 deg.C a little higher than the glass transition point of the polyvinylcarbazole for 10 minutes, and is impressed with a voltage so as to evaluate its light emitting characteristic. As the irradiation quantity is increased, the light emitting efficiency decrease by the heat treatment is reduced and if being heat treated after irradiated at, for example, 5 kGy, the interface is improved and the light emitting efficiency is improved by approximately 20%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】有機エレクトロルミネッセン
ス(EL)素子は100nm程度の厚さの有機薄膜で構
成され、アノード及びカソード電極から薄膜に正孔及び
電子を注入し、発光させる。有機EL素子は自ら発光す
る素子であるため薄膜ディスプレイとして有望である。
しかし、発光時の発熱により正孔輸送層/アノード電極
間、正孔輸送層/発光かつ電子輸送層界面の剥離や乱れ
により、輝度の低下など素子の劣化が問題となってい
る。
BACKGROUND OF THE INVENTION An organic electroluminescence (EL) device is composed of an organic thin film having a thickness of about 100 nm, and holes and electrons are injected from an anode and a cathode electrode into the thin film to emit light. Organic EL devices are promising as thin-film displays because they emit light by themselves.
However, heat generation during light emission causes separation or disorder of the interface between the hole transport layer / anode electrode and the interface between the hole transport layer / light emission and the electron transport layer, which causes a problem of deterioration of the element such as reduction in luminance.

【0002】この劣化を本発明の方法で克服することに
より、より劣化の少ない、また、高い温度でも、使用で
きる長寿命の素子が作製可能である。
[0002] By overcoming this deterioration by the method of the present invention, it is possible to produce a device with less deterioration and a long life which can be used even at a high temperature.

【0003】[0003]

【従来の技術】有機EL素子は積層型、単層型を含む。
また、有機EL素子には、その少なくとも一層に図1に
示す(高分子AとBの組み合わせた)ホール輸送能を有
する高分子の薄膜を使用した素子、および、そのホール
輸送層に発光剤、電子輸送剤を分散させた素子がある。
2. Description of the Related Art Organic EL devices include a stacked type and a single layer type.
Further, the organic EL element has at least one layer using a polymer thin film having a hole transporting ability (combined of the polymers A and B) shown in FIG. There is an element in which an electron transport agent is dispersed.

【0004】即ち、従来、図1に示されるような化学式
を有する高分子化合物が有機EL素子のホール輸送層を
構成するための高分子化合物として使用されている。こ
のホール輸送層を有する有機EL素子は、図2(1)に
示されるように、ガラス基板上に形成されたインジュウ
ム−スズ酸化物(ITO)電極上に、図1に示される高
分子化合物A、Bからなるホール輸送層を形成し、この
輸送層の上に、順次、発光かつ電子輸送層、及び背面電
極を形成することにより構成される。又は、有機EL素
子は、図2(2)に示されるように、ガラス基板上に形
成されたITO電極上に、図1に示される高分子化合物
に発光剤、電子輸送剤を分散させたものをホール輸送層
として形成し、この輸送層の上に背面電極を形成するこ
とにより構成される。
That is, conventionally, a polymer compound having a chemical formula as shown in FIG. 1 has been used as a polymer compound for forming a hole transport layer of an organic EL device. As shown in FIG. 2A, the organic EL device having this hole transport layer is formed on an indium-tin oxide (ITO) electrode formed on a glass substrate, and the polymer compound A shown in FIG. , B, and a light-emitting and electron-transporting layer and a back electrode are sequentially formed on the hole-transporting layer. Alternatively, as shown in FIG. 2 (2), the organic EL element is obtained by dispersing a luminescent agent and an electron transporting agent in the polymer compound shown in FIG. 1 on an ITO electrode formed on a glass substrate. Is formed as a hole transport layer, and a back electrode is formed on the transport layer.

【0005】又、ホール輸送層に関しては、多結晶薄膜
にならないようホール輸送能を有する有機分子の大型化
(具体的には、ガラス転移点の高いトリフェニルアミン
誘導体を合成:第58回応用物理学会学術講演会講演予
稿集、1998.10.秋田大学)が行われた。即ち、
有機EL素子の信頼性を向上させるためにはホール(正
孔)輸送材の耐熱性を向上させることが必要であるの
で、ホール輸送材として高耐熱性のトリフエニルアミン
4量体を用いることにより、駆動寿命を大幅に向上させ
ることが行われた。
As for the hole transport layer, the size of an organic molecule having a hole transport ability is increased so as not to form a polycrystalline thin film (specifically, a triphenylamine derivative having a high glass transition point is synthesized: 58th Applied Physics) Proceedings of Academic Lecture Meeting of the Society, 1998.10.Akita University) was held. That is,
Since it is necessary to improve the heat resistance of the hole (hole) transport material in order to improve the reliability of the organic EL element, by using a high heat-resistant triphenylamine tetramer as the hole transport material. The drive life was greatly improved.

【0006】更に又、真空蒸着によりインジュウム−ス
ズ酸化物透明電極基板の上に薄膜を作製し、さらに発光
かつ電子輸送層を作製し、ガラス転移点より少し高い温
度で熱処理することにより、界面や膜質を改善し、EL
素子の長寿命化を図ることが行われた(第59回応用物
理学会学術会講演予稿集、1998.9.広島大学)。
即ち、ホール輸送層として高耐熱性正孔輸送材料である
トリフエニルアミン4量体を用い、これを真空中で熱処
理を行うことにより、長寿命の有機EL素子が得ること
が行われた。
Furthermore, a thin film is formed on an indium-tin oxide transparent electrode substrate by vacuum evaporation, a light emitting and electron transporting layer is further formed, and a heat treatment is performed at a temperature slightly higher than the glass transition point to obtain an interface or a thin film. Improve film quality and improve EL
The longevity of the element was attempted (59th Annual Meeting of the Japan Society of Applied Physics, 1998.9. Hiroshima University).
That is, a long-life organic EL device was obtained by using a triphenylamine tetramer, which is a highly heat-resistant hole transporting material, as a hole transporting layer and performing a heat treatment in a vacuum.

【0007】[0007]

【発明が解決しようとする課題】高分子薄膜を構成要素
とするEL素子では、ガラス転移点より少し高い温度で
熱処理を行い、界面や膜質の改善を試みると、熱処理に
伴い、界面の剥離や高分子薄膜の構造安定性が失われて
しまい、EL素子の特性の改善が不可能であった。即
ち、ホール輸送層/アノード電極間、ホール輸送層/発
光かつ電子輸送層界面の剥離や乱れにより、輝度の低下
などの素子の劣化が生じた。
In an EL device comprising a polymer thin film as a component, heat treatment is carried out at a temperature slightly higher than the glass transition point, and if an attempt is made to improve the interface or film quality, the peeling of the interface, The structural stability of the polymer thin film was lost, and it was impossible to improve the characteristics of the EL element. That is, the separation or disorder of the interface between the hole transport layer / anode electrode and the interface between the hole transport layer / light emission and the electron transport layer caused deterioration of the element such as reduction in luminance.

【0008】[0008]

【課題を解決するための手段】本発明者は、既に、EL
素子にガンマー線を照射し、EL素子の使用の際におけ
る高分子薄膜の多結晶化を防ぐ方法を出願したが(特願
平11−28151号)、本発明では、EL素子に熱処
理を行う前に、ガンマー線を照射し、高分子間にわずか
に架橋を導入した後に、さらに熱処理を行うことによ
り、かかる架橋作用により熱処理中に生じる界面の剥離
や高分子の結晶化を抑制しながら、界面や膜質を改善
し、EL素子の特性を改善する方法である。EL素子の
照射には電子線を使用することも可能である。
Means for Solving the Problems The present inventor has already proposed EL
A method for irradiating the device with gamma rays to prevent polycrystallization of the polymer thin film when the EL device is used has been filed (Japanese Patent Application No. 11-28151). Gamma rays to introduce a slight cross-link between the polymers, and then perform a heat treatment to suppress the separation of the interface and the crystallization of the polymer during the heat treatment due to the cross-linking action. This is a method for improving the characteristics of the EL element by improving the quality of the EL element. An electron beam can be used for irradiating the EL element.

【0009】[0009]

【発明の実施の形態】ガンマー線の照射により、EL素
子の構成要素である高分子薄膜内に架橋が生じ、更にこ
の架橋後の熱処理に際して、高分子薄膜の発泡や結晶化
により引き起される界面の剥離や乱れが抑制される。結
果として、EL素子をガンマー線の照射後、ガラス転移
点直上の温度で加熱することにより、界面や膜質が改善
され、EL素子の特性が向上する。
BEST MODE FOR CARRYING OUT THE INVENTION Irradiation of gamma rays causes cross-linking in a polymer thin film which is a component of an EL element, and is caused by foaming and crystallization of the polymer thin film during heat treatment after the cross-linking. Separation and turbulence at the interface are suppressed. As a result, the interface and the film quality are improved by heating the EL element at a temperature just above the glass transition point after the irradiation of the gamma ray, thereby improving the characteristics of the EL element.

【0010】[0010]

【実施例】以下に、本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0011】[0011]

【実施例1】ポリビニルカルバゾールにトリス−(8−
ヒドロキシキノリナト)アルミニウムを25:4の割合
で分散した100nmの厚さの高分子薄膜をインジュウ
ム−スズ酸化物透明電極基板上に引き上げ法で作製し、
その上にMg/Ag電極を積層してEL素子を構築し
た。この素子にガンマー線を照射し、ポリビニルカルバ
ゾールのガラス転移点より、少し高い230℃で10分
間熱処理し、その後、電圧を印加して、発光特性を評価
した。
Example 1 Tris- (8-
(Hydroxyquinolinato) aluminum is dispersed in a ratio of 25: 4, and a polymer thin film having a thickness of 100 nm is formed on an indium-tin oxide transparent electrode substrate by a pull-up method.
An EL element was constructed by laminating Mg / Ag electrodes thereon. The device was irradiated with gamma rays, heat-treated at 230 ° C. slightly higher than the glass transition point of polyvinyl carbazole for 10 minutes, and then a voltage was applied to evaluate the light emission characteristics.

【0012】ガンマー線を照射しない場合、熱処理によ
り、発光効率0.9cd/Aは20%にまで低下し、
0.18cd/Aとなった。照射線量を増加させるにし
たがい、熱処理による発光効率低下は減少し、5kGy
照射することで、熱処理により、界面が改善され、発光
効率は約20%増加して1.1cd/Aに達した(図
3)。
When gamma rays are not irradiated, the heat treatment reduces the luminous efficiency of 0.9 cd / A to 20%,
It was 0.18 cd / A. As the irradiation dose was increased, the decrease in the luminous efficiency due to the heat treatment was reduced to 5 kGy.
By the irradiation, the interface was improved by the heat treatment, and the luminous efficiency increased by about 20% to reach 1.1 cd / A (FIG. 3).

【0013】[0013]

【実施例2】60nmの厚さにN−フェニル−N’−ポ
リアクリロイルオキシメチレン−NN’−ビス(3−メ
チルフェニル)−1,1’−ビフェニル−4,4−ジア
ミンの薄膜をインジュウム−スズ酸化物透明電極基板上
に作製し、その上に、真空蒸着によりトリス−(8−ヒ
ドロキシキノリナト)アルミニウムを60nm堆積し、
さらにMg/Ag電極を積層してEL素子を構築した。
ガンマー線を5Kgy照射後、140℃で10分間熱処
理することにより、発光効率は0.6cd/Aから2.
3cd/Aまで上昇した。
EXAMPLE 2 A thin film of N-phenyl-N'-polyacryloyloxymethylene-NN'-bis (3-methylphenyl) -1,1'-biphenyl-4,4-diamine was indium-coated to a thickness of 60 nm. Prepared on a tin oxide transparent electrode substrate, tris- (8-hydroxyquinolinato) aluminum was deposited thereon by vacuum evaporation to a thickness of 60 nm,
Further, an EL element was constructed by laminating Mg / Ag electrodes.
After irradiating 5 Kgy with gamma rays, heat treatment is performed at 140 ° C. for 10 minutes, so that the luminous efficiency is 0.6 cd / A to 2.
Increased to 3 cd / A.

【0014】[0014]

【発明の効果】ガンマー線の照射により、EL素子を構
成する高分子薄膜内に架橋が導入され、ガラス転移点直
上の温度で熱処理を行うことで、加熱に伴う高分子薄膜
の結晶化や発泡が抑制された状態で、高分子薄膜と接す
る電極や他の有機薄膜層間の界面の密着性が向上し、結
果として、EL素子の特性が向上して長寿命化を行うこ
とができる。本法により、より高い温度環境で連続発光
可能なEL素子の開発を行うことができるため、EL素
子の用途が拡大される。
According to the present invention, crosslinking is introduced into the polymer thin film constituting the EL element by irradiation with gamma rays, and heat treatment is performed at a temperature just above the glass transition point, whereby crystallization or foaming of the polymer thin film due to heating is performed. In this state, the adhesion of the interface between the electrode and the other organic thin film layer in contact with the polymer thin film is improved, and as a result, the characteristics of the EL element are improved and the life of the EL element can be extended. According to this method, an EL element capable of continuous light emission in a higher temperature environment can be developed, so that the use of the EL element is expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ホール輸送能を有する高分子の例を示す図であ
る。
FIG. 1 is a diagram showing an example of a polymer having a hole transporting ability.

【図2】EL素子の概略を示す図である。図2(1)で
は、ITO電極上にホール輸送層と発光かつ電子輸送層
が設けられ、図2(2)では、ITO電極上にホール輸
送層かつ発光かつ電子輸送層が設けられている。
FIG. 2 is a diagram schematically showing an EL element. In FIG. 2A, a hole transporting layer and a light emitting and electron transporting layer are provided on the ITO electrode. In FIG. 2B, a hole transporting layer and a light emitting and electron transporting layer are provided on the ITO electrode.

【図3】EL素子の熱処理に対するガンマ−線照射効果
を示す図である。
FIG. 3 is a diagram showing a gamma-ray irradiation effect on heat treatment of an EL element.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 33/14 H05B 33/14 A // C08L 39:04 Fターム(参考) 3K007 AB00 AB15 CA01 CB01 DA00 DB03 FA00 FA01 FA03 4F073 AA05 BA18 BA34 BB01 CA41 GA01 HA04 HA05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) H05B 33/14 H05B 33/14 A // C08L 39:04 F term (reference) 3K007 AB00 AB15 CA01 CB01 DA00 DB03 FA00 FA01 FA03 4F073 AA05 BA18 BA34 BB01 CA41 GA01 HA04 HA05

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機エレクトロルミネッセンス素子をガ
ンマー線で照射後、加熱することにより、その特性を向
上させる方法。
1. A method for improving the characteristics of an organic electroluminescence device by irradiating the device with gamma rays and then heating the device.
JP11129544A 1999-05-11 1999-05-11 Method for improving characteristic of organic electroluminescent element by heating after gamma ray irradiation Pending JP2000323275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11129544A JP2000323275A (en) 1999-05-11 1999-05-11 Method for improving characteristic of organic electroluminescent element by heating after gamma ray irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11129544A JP2000323275A (en) 1999-05-11 1999-05-11 Method for improving characteristic of organic electroluminescent element by heating after gamma ray irradiation

Publications (1)

Publication Number Publication Date
JP2000323275A true JP2000323275A (en) 2000-11-24

Family

ID=15012149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11129544A Pending JP2000323275A (en) 1999-05-11 1999-05-11 Method for improving characteristic of organic electroluminescent element by heating after gamma ray irradiation

Country Status (1)

Country Link
JP (1) JP2000323275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428336B1 (en) * 2001-06-04 2004-04-27 주식회사 미뉴타텍 Preparation of organic and inorganic layers-structured electronic device having improved thermal stability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428336B1 (en) * 2001-06-04 2004-04-27 주식회사 미뉴타텍 Preparation of organic and inorganic layers-structured electronic device having improved thermal stability

Similar Documents

Publication Publication Date Title
JP3016896B2 (en) Organic electroluminescence device
JP3334408B2 (en) Organic electroluminescent device and method of manufacturing the same
JPH0753953A (en) Organic electroluminescent element
JP2003031371A (en) Organic electroluminescent element and blue light emitting element
JPH10106748A (en) Organic electroluminescent element having exciplex
JPH08325564A (en) Organic thin film el device
JP3552317B2 (en) Manufacturing method of organic electroluminescent device
JPH1036832A (en) Organic electroluminescence element
JP2001297883A (en) Organic electric-field light emission element
US7040943B2 (en) Method for producing an organic electroluminescence display element
JP3050066B2 (en) Light emitting element
JPH08199161A (en) Organic electroluminescence element
JP3227784B2 (en) Organic electroluminescent device
JP4030608B2 (en) Organic electroluminescent device and manufacturing method thereof
JPH05114486A (en) Electroluminescent element
JP3284766B2 (en) Organic electroluminescent device
JP3296042B2 (en) Organic electroluminescent device
JPH0860144A (en) Organic electroluminescent element
JP3243887B2 (en) Organic electroluminescent device
JPH1140352A (en) Organic el element and manufacture thereof
JPH08288064A (en) Manufacture of organic electroluminescent element
JPH09120890A (en) Organic electric field fluorescent element and its manufacture
JP2000323275A (en) Method for improving characteristic of organic electroluminescent element by heating after gamma ray irradiation
JP4385503B2 (en) Organic electroluminescence device
JPH1012381A (en) Organic electroluminescent element