JP2000319763A - HIGH Cr STEEL PIPE FOR LINE PIPE - Google Patents

HIGH Cr STEEL PIPE FOR LINE PIPE

Info

Publication number
JP2000319763A
JP2000319763A JP11123697A JP12369799A JP2000319763A JP 2000319763 A JP2000319763 A JP 2000319763A JP 11123697 A JP11123697 A JP 11123697A JP 12369799 A JP12369799 A JP 12369799A JP 2000319763 A JP2000319763 A JP 2000319763A
Authority
JP
Japan
Prior art keywords
toughness
less
pipe
steel pipe
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11123697A
Other languages
Japanese (ja)
Inventor
Yukio Miyata
由紀夫 宮田
Mitsuo Kimura
光男 木村
Takaaki Toyooka
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11123697A priority Critical patent/JP2000319763A/en
Publication of JP2000319763A publication Critical patent/JP2000319763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the low temp. toughness of a line pipe by allowing it to have a compsn. contg. C, Si, Mn, P, Cr, Ni and N, and the balance Fe with inevitable impurities. SOLUTION: This steel pipe is composed of, by mass, <=0.02% C, <=0.5% Si, 0.2 to 3.0% Mn, <0.010% P, 10.0 to 14.0% Cr, 0.2 to 3.0% Ni and <=0.02% N, and the balance Fe with inevitable impurities. Among the componential elements, P exerts remarkable influence on the toughness of high Cr steel of about >=600 MPa yield strength. For example, by reducing the content of P from 0.010 to <0.010%, the absorbed energy (vE-40) at -40 deg.C is remarkably improved from about 100 J to about 200 to 250 J. Moreover, the amt. of P to be concentrated in the boundary is stepwise reduced in accordance with the change of the P content from 0.010 to <0.010%. Moreover, by reducing the P content preferably to <0.005%, vE-40 is exceedingly improved and reaches about 300 J.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石油・天然ガス輸
送用に用いて好適な低温靱性に優れるラインパイプ用高
Cr鋼管に関する。本発明において、組成に係る%は、特
にことわらない限りmass%を意味する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature line pipe having excellent low-temperature toughness suitable for transportation of oil and natural gas.
Cr steel pipe. In the present invention, “%” related to the composition means “mass%” unless otherwise specified.

【0002】[0002]

【従来の技術】近年、石油・天然ガスは、掘削が容易な
ものは掘り尽くされ、腐食が厳しい、深度が深い、寒冷
地や海底といった掘削環境が厳しい坑井にも手をつけざ
るを得なくなっている。このような坑井から生産される
石油・天然ガスの中には、炭酸ガスを多量に含む場合が
多く、このような環境では、炭素鋼あるいは低合金鋼で
は著しく腐食されるので、従来、その防食手段としてイ
ンヒビタを添加することが行われてきた。しかし、イン
ヒビタの使用は、高コストとなることや、高温では効果
が不十分なことから、近年ではインヒビタを用いる必要
のない耐食材料を用いる傾向にある。このような耐食材
料として油井管では、Crを13%含有するマルテンサイト
系ステンレス鋼が広く用いられている。
2. Description of the Related Art In recent years, oil and natural gas, which are easily drilled, have been exhausted, and well-drilled environments such as severely corroded, deep, cold regions and the sea floor have to be modified. Is gone. Oil and natural gas produced from such wells often contain a large amount of carbon dioxide gas. In such an environment, carbon steel or low alloy steel is significantly corroded. Inhibitors have been added as anticorrosion measures. However, since the use of inhibitors is expensive and the effect is insufficient at high temperatures, there is a tendency in recent years to use corrosion-resistant materials that do not require the use of inhibitors. As such a corrosion-resistant material, a martensitic stainless steel containing 13% of Cr is widely used in oil country tubular goods.

【0003】一方、ラインパイプでは、API規格中に
C量を低減した12%Crマルテンサイト系ステンレス鋼が
規定されている。この鋼は、円周溶接に予熱、後熱が必
要であり高コストとなることや、溶接部の靱性に劣ると
いう欠点があることから、ラインパイプとして一般には
ほとんど採用されていない。このため、耐食性ラインパ
イプ用材料としては、溶接性と耐食性に優れているとの
理由で、Crを高めNi、Moを含有する二相ステンレス鋼が
用いられてきた。しかし、二相ステンレス鋼は坑井によ
っては過剰品質となり高コストとなるという問題があっ
た。
[0003] On the other hand, for line pipes, 12% Cr martensitic stainless steel with a reduced C content is specified in the API standard. This steel is hardly generally used as a line pipe because it requires preheating and post-heating for girth welding, resulting in high cost and poor toughness of a welded portion. For this reason, as a material for corrosion-resistant line pipe, duplex stainless steel containing Cr and containing Ni and Mo has been used because of its excellent weldability and corrosion resistance. However, the duplex stainless steel has a problem that the quality is excessive and the cost is high in some wells.

【0004】この問題を解決すべく、特開平8−295939
号公報には、C、Nをそれぞれ0.03%以下、0.02%以下
に低減し、Cuを0.2 〜1.0 %に調整した10〜14%Cr鋼を
造管後、特定条件で熱処理するというラインパイプ用高
Crマルテンサイト鋼管の製造方法が提案され、特に二相
域熱処理により靱性が向上することが開示されている。
これにより、炭酸ガス環境下での耐食性、溶接性、溶接
熱影響部(HAZ)靱性に優れた鋼管が得られるとして
いる。
In order to solve this problem, Japanese Patent Application Laid-Open No. 8-295939
Japanese Patent Application Publication No. JP-A-2005-115122 discloses a line pipe for 10 to 14% Cr steel with C and N reduced to 0.03% or less and 0.02% or less and Cu adjusted to 0.2 to 1.0%, and then heat-treated under specific conditions. High
A method for producing a Cr martensitic steel pipe has been proposed, and it is disclosed that the toughness is improved by heat treatment in the two-phase region.
It is described that a steel pipe having excellent corrosion resistance, weldability, and heat affected zone (HAZ) toughness in a carbon dioxide gas environment is thereby obtained.

【0005】しかしながら、上記方法では主として熱処
理により靱性を改善しているので、低温靱性に自ずと限
界があり、より高い靱性要求に対しては対応しきれない
という問題があった。
However, in the above-mentioned method, since the toughness is mainly improved by heat treatment, the low-temperature toughness is naturally limited, and there is a problem that it is not possible to cope with a higher toughness requirement.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記従来技
術の問題点に鑑み、成分系の変更により低温靱性を一段
と向上させたラインパイプ用高Cr鋼管を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high Cr steel pipe for line pipes in which the low temperature toughness is further improved by changing the component system in view of the problems of the prior art.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記目的
達成に向けて鋭意検討した結果、従来材のシャルピー衝
撃試験後の破面は粒界破壊の様相を呈しており、粒界に
はPが濃縮していることを確認した。このことから、従
来材で低温靱性が不十分なのは、粒界強度が低いためで
あり、粒界強度を低下させる原因は粒界でのP濃縮にあ
ると考えた。この考えに基づいて、高Cr鋼について低温
靱性におよぼすP含有量の影響を実験により調べた結
果、例えば図2に示すように、同じ強度レベルにおい
て、極低P化した高Cr鋼では、通常の焼入れ(Q)−焼
戻し(T)処理でも、P量が通常レベルの従来材を焼入
れ(Q)−二相域熱処理(Q’)−焼戻し(T)処理し
た際に得られる靱性向上よりもはるかに大きい靱性向上
が得られることがわかった。なお、図2は、図中記載の
組成の鋼管素材を加熱し、φ273mm ×t 13mmの継目無鋼
管に造管したのち室温まで空冷し、Q−T処理あるいは
Q−Q’−T処理したサンプルの引張試験およびシャル
ピー衝撃試験結果を整理して得た降伏強さ(YS)と-4
0 ℃での吸収エネルギー( vE-40 )の関係を示したも
のである。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, the fracture surface of the conventional material after the Charpy impact test shows the appearance of grain boundary fracture. Confirmed that P was concentrated. From this, it is considered that the low temperature toughness of the conventional material is insufficient because the grain boundary strength is low, and the cause of the decrease in the grain boundary strength is P enrichment at the grain boundary. Based on this idea, the effect of the P content on the low-temperature toughness of high-Cr steels was examined by experiments. As shown in FIG. 2, for example, at the same strength level, in a high-Cr steel with extremely low P, The quenching (Q) -tempering (T) treatment also improves the toughness obtained by quenching (Q) -two-phase region heat treatment (Q ')-tempering (T) treatment of a conventional material having a normal level of P. It has been found that a much greater improvement in toughness can be obtained. FIG. 2 is a sample obtained by heating a steel pipe material having the composition shown in the figure, forming the pipe into a seamless steel pipe having a diameter of 273 mm × t 13 mm, air cooling to room temperature, and performing QT or QQ′-T processing. Strength (YS) obtained by organizing the tensile test and Charpy impact test results of
It shows the relationship between the absorbed energy at 0 ° C. (vE -40 ).

【0008】本発明は、かかる知見に基づきさらに検討
を重ねて成されたものであり、その要旨とするところ
は、この知見に基づきさらに検討を重ねたなされた本発
明は、ラインパイプ用高Cr鋼管であって、その組成が、 C:0.02%以下(0.015 %以下)、 Si:0.5 %以下(0.3 %以下)、 Mn:0.2 〜3.0 %(1.0 〜2.0 %)、 P:0.010 %未満(0.005 %未満)、 Cr:10.0〜14.0%、 Ni:0.2 〜3.0 %(2.0 〜3.0 %)、 N:0.02%以下(0.015 %以下)、 残部Feおよび不可避的不純物であることを特徴とするラ
インパイプ用高Cr鋼管である。
The present invention has been further studied based on such knowledge, and the gist of the present invention is that the present invention, which has been further studied based on this knowledge, has a high Cr content for line pipes. A steel pipe having the following composition: C: 0.02% or less (0.015% or less), Si: 0.5% or less (0.3% or less), Mn: 0.2 to 3.0% (1.0 to 2.0%), P: less than 0.010% ( The line is characterized by being Cr: 10.0-14.0%, Ni: 0.2-3.0% (2.0-3.0%), N: 0.02% or less (0.015% or less), the balance being Fe and inevitable impurities. High Cr steel pipe for pipe.

【0009】本発明では、前記組成に、Cu:1.0 %以下
(0.2 〜1.0 %)が付加されてもよい。また、本発明で
は、前記組成に、V:0.3 %以下(0.03〜0.15%)が付
加されてもよい。なお、()内はさらなる好適範囲を示
す。
In the present invention, Cu: 1.0% or less (0.2 to 1.0%) may be added to the composition. In the present invention, V: 0.3% or less (0.03 to 0.15%) may be added to the composition. In addition, the inside of () shows a further preferable range.

【0010】[0010]

【発明の実施の形態】本発明鋼管の組成限定理由を以下
に述べる。 C:0.02%以下 Cは、HAZの硬さ低減、靱性向上、耐溶接割れ性の向
上、炭酸ガスおよび塩化物を含む環境下での耐全面腐食
性、耐孔食性の向上などの点からできるだけ低減するこ
とが望ましい。とくに、予熱なしでの溶接を可能とする
には、C量は0.02%以下とすることが必要であり、その
ためC量の上限を0.02%とした。なお、より良好な溶接
性確保の点から0.015 %以下が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the composition of the steel pipe of the present invention will be described below. C: 0.02% or less C can be reduced as much as possible from the viewpoints of HAZ hardness reduction, toughness improvement, weld cracking resistance improvement, general corrosion resistance in an environment containing carbon dioxide and chloride, and pitting corrosion resistance. It is desirable to reduce it. In particular, in order to enable welding without preheating, the C content needs to be 0.02% or less, and therefore the upper limit of the C content is set to 0.02%. The content is preferably 0.015% or less from the viewpoint of ensuring better weldability.

【0011】Si:0.5 %以下 Siは、脱酸剤として添加されるが、フェライト生成元素
であるので、多量に含有するとフェライトが生成しやす
くなり、母材およびHAZの靱性を劣化させる。また、
フェライトが存在すると熱間加工性が低下し製造に支障
をきたすおそれがある。このためSi量は0.5 %以下に限
定した。好ましくは0.3 %以下である。
Si: 0.5% or less Si is added as a deoxidizing agent. However, since it is a ferrite-forming element, if it is contained in a large amount, ferrite is likely to be formed, and the toughness of the base material and HAZ is deteriorated. Also,
If ferrite is present, hot workability may be reduced, which may hinder production. For this reason, the amount of Si was limited to 0.5% or less. It is preferably at most 0.3%.

【0012】Mn:0.2 〜3.0 % Mnは、脱酸剤として作用し、さらに強度を増加させる元
素である。さらにオーステナイト生成元素であるためフ
ェライト生成を抑制し、母材およびHAZの靱性を向上
させる働きもある。このような効果を得るためには、0.
2 %以上必要であるが、3.0 %を超えて添加しても効果
は飽和するため、Mn量は0.2 〜3.0 %に限定する。好ま
しくは1.0 〜2.0 %である。
Mn: 0.2-3.0% Mn is an element that acts as a deoxidizing agent and further increases the strength. Further, since it is an austenite forming element, it also has the function of suppressing ferrite formation and improving the toughness of the base material and HAZ. In order to obtain such an effect, 0.
The content of Mn is limited to 0.2 to 3.0% because the effect is saturated even if added over 3.0%. Preferably it is 1.0 to 2.0%.

【0013】P:0.010 %未満 Pは、本発明におけるようなYS600MPa程度以上の強度
レベルの高Cr鋼の靱性に大きく影響する。例えば図1に
示すように、YS600MPa程度の強度レベルの高Cr鋼(Q
−T材)で、P量を0.010 %以上から0.010 %未満へと
低減することにより、 vE-40 が100J程度から200 〜25
0J程度へと飛躍的に向上する。また、粒界でのP濃縮量
は、P量が0.010 %以上から0.010 %未満へ変化するに
伴い階段状に低減する。このため、本発明では、Pを0.
010 %未満に限定した。なお、図2より、Pを0.005 %
未満まで低減すれば vE-40 がさらに一段と向上して30
0J程度に達する。このことから、Pは0.005 %未満とす
るのがより好ましい。
P: less than 0.010% P greatly affects the toughness of a high Cr steel having a strength level of about YS600 MPa or more as in the present invention. For example, as shown in FIG. 1, a high Cr steel (Q
-T material) to reduce the amount of P from 0.010% or more to less than 0.010%, so that vE- 40 is reduced from about 100 J to 200 to 25.
Dramatically improved to about 0J. The amount of P enrichment at the grain boundaries decreases stepwise as the amount of P changes from 0.010% or more to less than 0.010%. Therefore, in the present invention, P is set to 0.
Limited to less than 010%. From FIG. 2, P is 0.005%.
If it is reduced to less than 30, vE -40 will be further improved and 30
It reaches about 0J. For this reason, it is more preferable that P is less than 0.005%.

【0014】Cr:10.0〜14.0% Crは、マルテンサイト組織を確保し、かつ炭酸ガスを含
む腐食環境における耐全面腐食性および耐孔食性を高め
るために必要な基本元素である。これらの効果を得るた
めには10.0%以上の添加が必要である。また、14.0%を
超えて含有するとフェライトの生成が容易となり、マル
テンサイト組織の安定確保または熱間加工性の低下防止
のために多量のオーステナイト生成元素の添加が必要と
なり、コスト高となる。よってCr量は10.0〜14.0%とす
る。
Cr: 10.0 to 14.0% Cr is a basic element required to secure a martensitic structure and to enhance the overall corrosion resistance and pitting corrosion resistance in a corrosive environment containing carbon dioxide gas. In order to obtain these effects, it is necessary to add 10.0% or more. On the other hand, when the content exceeds 14.0%, the formation of ferrite becomes easy, and a large amount of austenite-forming element must be added in order to secure a stable martensite structure or to prevent a decrease in hot workability, resulting in an increase in cost. Therefore, the Cr content is set to 10.0 to 14.0%.

【0015】Ni:0.2 〜3.0 % Niは、オーステナイト生成元素であり、フェライトの生
成を抑制し、母材およびHAZの靱性を向上させ、熱間
加工性の低下を抑制する働きがある。また、炭酸ガスを
含む腐食環境における耐全面腐食性および耐孔食性を向
上させる。この効果は0.2 %以上の添加で顕現する。し
かし、3.0 %を超える添加は靱性や熱間加工性、耐食性
の向上の効果が飽和し、いたずらにコスト高を招く結果
となって不利である。このためNi量は0.2 〜3.0 %とす
る。なお、より安定した特性を得るためには、2.0 〜3.
0 %が好ましい。
Ni: 0.2-3.0% Ni is an austenite-forming element, and functions to suppress the formation of ferrite, improve the toughness of the base material and HAZ, and suppress the decrease in hot workability. Further, the corrosion resistance and the pitting corrosion resistance in a corrosive environment containing carbon dioxide are improved. This effect is evident with additions above 0.2%. However, the addition of more than 3.0% is disadvantageous in that the effects of improving toughness, hot workability and corrosion resistance are saturated, resulting in unnecessarily high costs. Therefore, the amount of Ni is set to 0.2 to 3.0%. To obtain more stable characteristics, 2.0 to 3.
0% is preferred.

【0016】N:0.02%以下 Nは、Cと同様、溶接割れの回避、HAZの靱性向上、
およびHAZの硬さ低減のためにできるだけ低減するこ
とが望ましく、0.02%を超えるとこれらの効果が十分得
られないため、0.02%以下に限定した。なお、好ましく
は0.015 %以下である。
N: 0.02% or less N is the same as C, avoiding welding cracks, improving the toughness of HAZ,
In order to reduce the hardness of HAZ and HAZ, it is desirable to reduce the hardness as much as possible. If it exceeds 0.02%, these effects cannot be sufficiently obtained. Incidentally, the content is preferably 0.015% or less.

【0017】Cu:1.0 %以下 Cuは、Ni、Mn同様、オーステナイト生成元素であり、フ
ェライトの生成を抑制し、HAZの靱性向上、耐全面腐
食性向上に効果があり、また、熱間加工性の低下を抑制
する効果、ならびに炭酸ガスおよび塩化物を含有する環
境で不働態皮膜を安定化させ耐孔食性の向上させる効果
があるので、適宜添加してよいが、1.0%を超えると一
部が固溶せず析出するようになり、HAZの靱性に悪影
響を及ぼすので、Cu量は1.0 %以下とするのがよい。な
お、前記種々の効果の面で好ましい範囲は0.2 〜1.0 %
である。
Cu: 1.0% or less Cu, like Ni and Mn, is an austenite forming element, suppresses the formation of ferrite, has an effect on improving the toughness of HAZ, improving the overall corrosion resistance, and has the hot workability. Can be added as appropriate because it has the effect of suppressing the decrease in the amount of carbon dioxide and the effect of stabilizing the passive film and improving the pitting corrosion resistance in an environment containing carbon dioxide and chloride. Is not dissolved and precipitates, which adversely affects the toughness of the HAZ. Therefore, the Cu content is preferably set to 1.0% or less. The preferred range in terms of the various effects is 0.2 to 1.0%.
It is.

【0018】V:0.3 %以下 Vは、高温強度の改善に有用な元素で、適宜添加してよ
いが、0.3 %を超える添加では靱性の劣化を伴う強度上
昇をもたらすため、V量は0.3 %以下の範囲に止めるの
がよい。なお高温強度改善の面から、0.03〜0.15%が好
ましい。その他元素は、不可避的に含有するが、母材靱
性確保の面からできるだけ低減するのが望ましい。な
お、S、Oについてはともに0.01%までは許容できる。
V: not more than 0.3% V is an element useful for improving the high-temperature strength, and may be added as appropriate. However, if added more than 0.3%, the strength increases with deterioration in toughness. It is better to stay in the following range. In addition, from a viewpoint of high temperature strength improvement, 0.03 to 0.15% is preferable. Other elements are inevitably contained, but are desirably reduced as much as possible from the viewpoint of ensuring base material toughness. In addition, both S and O can be allowed up to 0.01%.

【0019】次に、本発明鋼管の好ましい製造プロセス
について説明する。上記組成になる鋼を転炉あるいは電
気炉で溶製し、連続鋳造法あるいは造塊法により凝固さ
せて鋼管素材とする。その過程で溶鋼の取鍋精錬、真空
脱ガス等は必要に応じて実施する。前記鋼管素材をAc3
点以上に加熱し、プラグミル方式、マンドレルミル方式
等の熱間圧延により継目無鋼管とし、あるいはさらにサ
イザ、ストレッチレデューサにより熱間のまま所望の寸
法の鋼管に造管する。
Next, a preferred manufacturing process of the steel pipe of the present invention will be described. The steel having the above composition is melted in a converter or an electric furnace, and solidified by a continuous casting method or an ingot forming method to obtain a steel pipe material. In the process, ladle refining of molten steel, vacuum degassing, etc. are performed as necessary. Ac 3
It is heated to a point or more, and a seamless steel pipe is formed by hot rolling using a plug mill method, a mandrel mill method, or the like, or further formed into a steel pipe having a desired size while being hot using a sizer and a stretch reducer.

【0020】造管後は、所望の強度−靱性バランスを得
るために熱処理を行う。この熱処理は、焼入れ−焼戻し
(Q−T)、焼入れ−二相域熱処理−焼戻し(Q−Q’
−T)、焼入れ−二相域熱処理(Q−Q’)、二相域熱
処理−焼戻し(Q’−T)の中から目標の機械的性質に
適合するものを採用すればよい。焼入れ(Q)は、造管
後の熱間状態から直ちにMs 点以下(200 ℃程度以下)
まで冷却する直接焼入れ(DQ)、造管後γ域に再加熱
後Ms 点以下(200 ℃程度以下)まで冷却する再加熱焼
入れ(RQ)のいずれで行ってもよい。また、DQ後に
RQを行ってもよい。本発明に係る組成では、Qを通常
の空冷で行ってもマルテンサイト組織が得られるが、衝
風冷却、水冷等により空冷よりも速く冷却する方が、変
態開始までのオーステナイト粒の成長を抑制することが
でき、変態後の組織が微細化し靱性が向上する。
After pipe formation, heat treatment is performed to obtain a desired strength-toughness balance. This heat treatment includes quenching-tempering (QT), quenching-two-phase region heat treatment-tempering (QQ ').
-T), quenching-two-phase region heat treatment (QQ '), and two-phase region heat treatment-tempering (Q'-T) may be employed that suits the target mechanical properties. The quenching (Q) is immediately below the Ms point (about 200 ° C or less) from the hot state after pipe making.
Direct quenching (DQ) for cooling to a temperature below the Ms point (about 200 ° C. or less) after reheating to the γ region after pipe formation may be performed. RQ may be performed after DQ. In the composition according to the present invention, a martensite structure can be obtained even if Q is performed by ordinary air cooling, but cooling faster than air cooling by blast cooling, water cooling, etc. suppresses the growth of austenite grains until the start of transformation. After the transformation, the structure becomes finer and the toughness is improved.

【0021】二相域熱処理(Q’)は、Ac1点〜(Ac1
点+50℃)の温度域に加熱する熱処理をいう。Ac1点以
上の加熱により、マルテンサイトとオーステナイトの微
細な二相組織となる。C、Nは、マルテンサイト相中溶
解度がオーステナイト相中溶解度よりも低いため、マル
テンサイト相からオーステナイト相へ拡散、濃縮する。
したがって、Q’中は、C、Nが濃縮したオーステナイ
ト相とC、Nが希釈された焼戻しマルテンサイト相が形
成され、Q’後の焼戻し(T)により、炭窒化物を多量
に含む焼戻しマルテンサイト相と、炭窒化物の非常に少
ない粒界強度の非常に高い焼戻しマルテンサイト相が形
成され、この粒界強度の高い焼戻しマルテンサイト相の
形成により、高靱性を有する鋼管となる。
The two-phase region heat treatment (Q ') is performed from the point of Ac 1 to the point of (Ac 1
Point + 50 ° C). By heating at one or more points of Ac, a fine two-phase structure of martensite and austenite is formed. C and N diffuse and concentrate from the martensite phase to the austenite phase because the solubility in the martensite phase is lower than the solubility in the austenite phase.
Therefore, in Q ′, an austenite phase in which C and N are concentrated and a tempered martensite phase in which C and N are diluted are formed, and the tempered martensite containing a large amount of carbonitride is formed by tempering (T) after Q ′. A site phase and a tempered martensite phase having a very small grain boundary strength of carbonitride are formed, and the formation of the tempered martensite phase having a high grain boundary strength results in a steel pipe having high toughness.

【0022】しかし、Q’温度が(Ac1点+50℃)を超
えると、最終的に粒界強度の高い焼戻しマルテンサイト
相になりゆくC、Nが希釈された焼戻しマルテンサイト
相の比率が下がり、靱性向上効果が減少する。また、粒
が粗大化することも靱性の低下につながる。Q’の保持
時間は10〜60min とするのが好ましい。保持後の冷却は
空冷以上の冷却速度で行うのがよい。
However, when the Q ′ temperature exceeds (Ac 1 point + 50 ° C.), the ratio of the tempered martensite phase diluted with C and N, which eventually becomes a tempered martensite phase having a high grain boundary strength, decreases. , The effect of improving toughness is reduced. Further, coarsening of the grains also leads to a decrease in toughness. The holding time of Q ′ is preferably 10 to 60 min. The cooling after the holding is preferably performed at a cooling rate higher than the air cooling.

【0023】焼戻し(T)は、Ac1点未満(好ましくは
550 ℃以上)で行う。この温度に加熱保持後空冷以上の
冷却速度で冷却する。これにより炭窒化物の少ない粒界
強度の高い焼戻しマルテンサイト相を含んだ組織となる
ため、高靱性を有する鋼管となる。Tの保持時間は10〜
60min とするのが好ましい。
The tempering (T) is less than Ac 1 point (preferably
(550 ° C or higher). After maintaining the temperature at this temperature, cooling is performed at a cooling rate higher than air cooling. This results in a structure including a tempered martensite phase with a low carbonitride and high grain boundary strength, and thus a steel pipe having high toughness. The retention time of T is 10 ~
Preferably, it is 60 min.

【0024】[0024]

【実施例】表1に示す組成になる鋼を転炉で溶製し、真
空脱ガス処理を行い、連続鋳造法により凝固させて得た
鋳片をビレット圧延して鋼管素材とした。これら鋼管素
材をマンネスマン−プラグミル方式の製造設備によりφ
273mm ×t 13mmの継目無鋼管に造管し、造管疵の発生状
況を調査するとともに、造管後の鋼管を表1に示す条件
で熱処理し、YSを600MPa前後に調整した鋼管母材から
試験片を採取し、引張特性、低温靱性、耐食性(耐孔食
性)を調査した。また、鋼管母材を用い、二相ステンレ
ス鋼を溶接材料としたTIG溶接(電圧15V 、電流200
A、溶接速度10cm/min、入熱18kJ/cm )にて鋼管継手を
作製し、HAZ(ボンドから1mm )の低温靱性を調査し
た。なお、表1ではRQをQと表示した。
EXAMPLES Steel having the composition shown in Table 1 was melted in a converter, subjected to vacuum degassing, solidified by a continuous casting method, and billets were rolled into cast pieces to obtain steel pipe blanks. These steel pipe materials are converted to φ by the Mannesmann-Plug Mill type manufacturing equipment.
A 273 mm × t 13 mm seamless steel pipe was piped, the occurrence of pipe flaws was investigated, and the pipe was heat-treated under the conditions shown in Table 1 and YS was adjusted to about 600 MPa from a steel pipe base material. Test specimens were collected and investigated for tensile properties, low-temperature toughness, and corrosion resistance (pitting corrosion resistance). In addition, TIG welding using a duplex stainless steel as a welding material, using a steel pipe base material (voltage 15 V, current 200
A, a steel pipe joint was produced at a welding speed of 10 cm / min and a heat input of 18 kJ / cm 2, and the low temperature toughness of the HAZ (1 mm from the bond) was investigated. In Table 1, RQ is indicated as Q.

【0025】引張試験は、ASTM A370に準拠し
て行った。低温靱性は、シャルピー衝撃試験を行い、−
40℃の吸収エネルギー(vE-40)で評価した。腐食試験
は、炭酸ガス腐食試験法(オートクレーブ中で3.0MPaの
炭酸ガスを飽和させた20%NaCl水溶液中に3.0mm ×25mm
×50mmの試験片を浸漬し、80℃で7日間保持する)によ
り行った。試験前後の重量測定から腐食速度を求め、腐
食速度0.1mm/year以上を×、0.1mm/year未満を○と評価
した。
The tensile test was performed according to ASTM A370. The low temperature toughness was determined by conducting a Charpy impact test,
Evaluation was made based on the absorption energy (vE -40 ) at 40 ° C. The corrosion test was performed in a carbon dioxide gas corrosion test method (3.0 mm × 25 mm in a 20% NaCl aqueous solution saturated with 3.0 MPa of carbon dioxide in an autoclave).
A test piece of × 50 mm was immersed and kept at 80 ° C. for 7 days). The corrosion rate was determined from the weight measurement before and after the test, and the corrosion rate of 0.1 mm / year or more was evaluated as x, and the corrosion rate of less than 0.1 mm / year was evaluated as o.

【0026】結果を表1に示す。The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】本発明例は、孔食の発生はみられず耐孔食
性に優れ実用的に使用可能なレベルであり、母材の低温
靱性はもとよりHAZの低温靱性にも優れ、ラインパイ
プ用として十分な特性である。P量の高い比較例では、
とくに母材とHAZの低温靱性の面で本発明例に比べて
劣っている。また、Ni量の低い比較例では腐食速度が高
くなった。
The examples of the present invention show no pitting corrosion, are excellent in pitting corrosion resistance, and are at a practically usable level. They are excellent not only in the low-temperature toughness of the base material but also in the low-temperature toughness of HAZ. Sufficient properties. In the comparative example having a high P amount,
In particular, the low-temperature toughness of the base material and HAZ is inferior to those of the present invention. Further, the corrosion rate was high in the comparative example having a low Ni content.

【0029】[0029]

【発明の効果】かくして本発明鋼管は、炭酸ガスおよび
塩化物を含有する環境で優れた耐食性を示し、かつ母材
靱性、HAZ靱性に優れるため、石油・天然ガス輸送用
のラインパイプ材として安価に提供でき、産業の発展に
寄与するところが大きい。
As described above, the steel pipe of the present invention exhibits excellent corrosion resistance in an environment containing carbon dioxide gas and chloride, and is excellent in base metal toughness and HAZ toughness, so that it is inexpensive as a line pipe material for oil and natural gas transportation. To contribute to industrial development.

【図面の簡単な説明】[Brief description of the drawings]

【図1】P量と vE-40 との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of P and vE- 40 .

【図2】極低P化による低温靱性改善効果を示すグラフ
である。
FIG. 2 is a graph showing an effect of improving low-temperature toughness due to extremely low P.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊岡 高明 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takaaki Toyooka 1-1-1 Kawasaki-cho, Handa-shi, Aichi Prefecture Kawasaki Steel Corporation Chita Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ラインパイプ用高Cr鋼管であって、その
組成が、 C:0.02%以下、 Si:0.5 %以下、 Mn:0.2 〜3.0 %、 P:0.010 %未満、 Cr:10.0〜14.0%、 Ni:0.2 〜3.0 %、 N:0.02%以下、 残部Feおよび不可避的不純物であることを特徴とするラ
インパイプ用高Cr鋼管。
1. A high Cr steel pipe for a line pipe, wherein the composition is as follows: C: 0.02% or less, Si: 0.5% or less, Mn: 0.2 to 3.0%, P: less than 0.010%, Cr: 10.0 to 14.0% , Ni: 0.2 to 3.0%, N: 0.02% or less, with the balance being Fe and unavoidable impurities.
【請求項2】 前記組成に、 Cu:1.0 %以下 が付加された請求項1記載のラインパイプ用高Cr鋼管。2. The high Cr steel pipe for a line pipe according to claim 1, wherein Cu: 1.0% or less is added to the composition. 【請求項3】 前記組成に、 V:0.3 %以下 が付加された請求項1または2に記載のラインパイプ用
高Cr鋼管。
3. The high Cr steel pipe for a line pipe according to claim 1, wherein V: 0.3% or less is added to the composition.
JP11123697A 1999-04-30 1999-04-30 HIGH Cr STEEL PIPE FOR LINE PIPE Pending JP2000319763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11123697A JP2000319763A (en) 1999-04-30 1999-04-30 HIGH Cr STEEL PIPE FOR LINE PIPE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11123697A JP2000319763A (en) 1999-04-30 1999-04-30 HIGH Cr STEEL PIPE FOR LINE PIPE

Publications (1)

Publication Number Publication Date
JP2000319763A true JP2000319763A (en) 2000-11-21

Family

ID=14867107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11123697A Pending JP2000319763A (en) 1999-04-30 1999-04-30 HIGH Cr STEEL PIPE FOR LINE PIPE

Country Status (1)

Country Link
JP (1) JP2000319763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120954A (en) * 2008-12-19 2009-06-04 Sumitomo Metal Ind Ltd Martensitic stainless steel and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120954A (en) * 2008-12-19 2009-06-04 Sumitomo Metal Ind Ltd Martensitic stainless steel and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP4978073B2 (en) High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
JP4484123B2 (en) High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness
JP2009007658A (en) Martensitic stainless seamless steel pipe for oil well pipe, and method for producing the same
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP5915818B2 (en) Seamless steel pipe for line pipe used in sour environment
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP2011241477A (en) Cr-CONTAINING STEEL PIPE FOR LINE PIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE AT WELDING-HEAT-AFFECTED PORTION
JP2010209402A (en) High-strength stainless steel pipe having high toughness and excellent corrosion resistance for oil well
JP2000192196A (en) Martensitic stainless steel for oil well
JP4529269B2 (en) High Cr martensitic stainless steel pipe for line pipe excellent in corrosion resistance and weldability and method for producing the same
JP5640777B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP2006016637A (en) High-strength stainless steel pipe for oil well superior in corrosion resistance to carbon dioxide gas
JP3879723B2 (en) High-strength seamless steel pipe excellent in hydrogen-induced crack resistance and method for producing the same
JP5857914B2 (en) Welding material for duplex stainless steel
JP3509604B2 (en) High Cr steel pipe for line pipe
JP3620319B2 (en) Martensitic stainless steel with excellent corrosion resistance and weldability
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP3491148B2 (en) High strength and high toughness seamless steel pipe for line pipe
JP7469616B2 (en) Electric resistance welded steel pipe for oil wells and its manufacturing method
JP3588380B2 (en) Method for producing martensitic stainless steel sheet for line pipe
JP7109333B2 (en) Resource-saving duplex stainless steel with excellent corrosion resistance
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
JP2000319763A (en) HIGH Cr STEEL PIPE FOR LINE PIPE
JP7498416B1 (en) Cr-Ni alloy tube