JP2000319731A - Production of hot rolled steel sheet for working excellent in fatigue characteristic - Google Patents

Production of hot rolled steel sheet for working excellent in fatigue characteristic

Info

Publication number
JP2000319731A
JP2000319731A JP11125415A JP12541599A JP2000319731A JP 2000319731 A JP2000319731 A JP 2000319731A JP 11125415 A JP11125415 A JP 11125415A JP 12541599 A JP12541599 A JP 12541599A JP 2000319731 A JP2000319731 A JP 2000319731A
Authority
JP
Japan
Prior art keywords
steel sheet
ferrite
phase
hot
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11125415A
Other languages
Japanese (ja)
Other versions
JP3831146B2 (en
Inventor
Tatsuo Yokoi
龍雄 横井
Hiroyuki Tanahashi
浩之 棚橋
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12541599A priority Critical patent/JP3831146B2/en
Publication of JP2000319731A publication Critical patent/JP2000319731A/en
Application granted granted Critical
Publication of JP3831146B2 publication Critical patent/JP3831146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve both the fatigue characteristics and workability of the steel sheet by subjecting a slab having a specified compsn. to rough rolling, thereafter executing high pressure descaling, subjecting it to hot finish rolling under specified conditions, executing heating and cooling and forming its structure into a specified one. SOLUTION: A slab composed of, by mass, 0.03 to 0.20% C, 0.1 to 1.4% Si, 0.5 to 3.0% Mn, <=0.02% P, <=0.01% S, 0.005 to 1.0% Al, 0.2 to 2.0% Cu, 0.0002 to 0.0020% B, and the balance Fe with inevitable impurities is subjected to rough rolling, is thereafter subjected to high pressure descaling and is subjected to hot finish rolling at >=Ar3 point. Then, it is retained in a range from the Ar3 point to the Ar1 point for 1 to 10 sec, is thereafter cooled at >=20 deg.C/sec and is coiled at <=350 deg.C. As a result, the steel sheet whose microstructure is the composite one composed of ferrite as the main phase and martensite as a 2nd. phase, and in which Cu in the ferritic phase exists in the precipitated and/or solid solution state in which the size of particles composed of Cu alone is <=2 nm can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、疲労特性に優れた
加工用熱延鋼板の製造方法に関するものであり、特に、
自動車の足廻り部品やロードホイール等の耐久性と加工
性の両立が求められる素材として好適な疲労特性に優れ
た加工用熱延鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hot-rolled steel sheet for processing having excellent fatigue properties.
The present invention relates to a method for producing a hot-rolled steel sheet for processing excellent in fatigue characteristics, which is suitable as a material for which both durability and workability are required, such as undercarriage parts and road wheels of automobiles.

【0002】[0002]

【従来の技術】近年、自動車の燃費向上などのために軽
量化を目的として、Al合金等の軽金属や高強度鋼板の
自動車部材への適用が進められている。ただ、Al合金
等の軽金属は、比強度が高いという利点があるものの、
鋼に比較して著しく高価であるため、その適用は特殊な
用途に限られてきた。より広い範囲で自動車の軽量化を
推進するためには、安価な高強度鋼板の適用が強く求め
られている。一般に、材料は、高強度になるほど延性が
低下して加工性(成形性)が悪くなるばかりでなく、切
り欠き感受性も高くなる。そのため、複雑な形状をして
いる自動車の足廻り部品等への高強度鋼板の適用にあた
っては、その成形性だけでなく、疲労耐久性も重要な検
討課題となる。
2. Description of the Related Art In recent years, the application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of weight reduction in order to improve fuel efficiency of automobiles. However, light metals such as Al alloys have the advantage of high specific strength,
Due to their significant cost compared to steel, their application has been limited to special applications. In order to reduce the weight of automobiles in a wider range, there is a strong demand for the use of inexpensive high-strength steel sheets. In general, the higher the strength of a material, the lower the ductility and workability (formability) as well as the notch sensitivity. Therefore, when applying a high-strength steel plate to a vehicle undercarriage having a complicated shape, not only the formability but also the fatigue durability are important considerations.

【0003】加工性に優れた高強度熱延鋼板として、特
に、低降伏比でかつ延性の優れた高強度鋼板を、フェラ
イトとマルテンサイトを主体とするミクロ組織で得る発
明が、例えば、特開昭58−6937号公報や特開昭6
0−121225号公報等で開示されている。また、特
に、伸びフランジ性(穴拡げ性)の優れた高強度鋼板
を、フェライトとベイナイトを主体とするミクロ組織で
得る発明が、例えば、特開昭57−145965号公報
や特開昭61−96057号公報等で開示されている。
さらにまた、これらの特性を兼ね備えた高強度鋼板を、
フェライト、ベイナイトとマルテンサイトを主体とする
ミクロ組織で得る発明が、例えば、特開平3−2646
45号公報等で開示されている。
As a high-strength hot-rolled steel sheet having excellent workability, an invention for obtaining a high-strength steel sheet having a low yield ratio and excellent ductility in a microstructure mainly composed of ferrite and martensite has been disclosed, for example, in Japanese Patent Application Laid-Open No. H10-163,897. JP-A-58-6937 and JP-A-6-1983.
No. 0-112225. In particular, an invention for obtaining a high-strength steel sheet having excellent stretch flangeability (hole expanding property) with a microstructure mainly composed of ferrite and bainite has been disclosed in, for example, JP-A-57-145965 and JP-A-61-1986. It is disclosed in, for example, Japanese Patent No. 96057.
Furthermore, a high-strength steel sheet that combines these characteristics
The invention obtained with a microstructure mainly composed of ferrite, bainite and martensite is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 3-2646.
No. 45, for example.

【0004】また、疲労特性に優れた高強度熱延鋼板と
しては、特開平4−276016号公報、特開平5−3
31591号公報、特開平6−145792号公報、特
開平8−60240号公報等で、疲労特性を向上させる
ために特定の添加元素に注目して、Pの固溶強化および
/またはCuの析出強化を利用する発明が開示されてい
る。すなわち、上記の特開平4−276016号公報に
は、Pの固溶強化とCuの析出強化によって疲労強度を
向上させる技術が開示されている。
Further, high strength hot rolled steel sheets having excellent fatigue properties are disclosed in JP-A-4-276016 and JP-A-5-3.
In JP-A-31591, JP-A-6-145792, JP-A-8-60240, etc., attention is paid to a specific additive element in order to improve fatigue properties, and solid solution strengthening of P and / or precipitation strengthening of Cu are performed. Is disclosed. That is, Japanese Patent Application Laid-Open No. Hei 4-276016 discloses a technique for improving the fatigue strength by solid solution strengthening of P and precipitation strengthening of Cu.

【0005】また、特開平5−331591号公報で
は、ミクロ組織をフェライトとマルテンサイトまたはフ
ェライト、マルテンサイトおよび残留オーステナイトと
し、フェライト相にε−Cuを析出させて疲労強度と伸
びフランジ性を向上させる技術が開示されている。ま
た、特開平6−145792号公報では、ミクロ組織を
フェライト、ベイナイトおよびマルテンサイトの三相と
し、それぞれの相の体積分率を規定して強度と伸びフラ
ンジ性を確保するとともに、Cuの析出強化によって疲
労特性を向上させる技術が開示されている。
In Japanese Patent Application Laid-Open No. Hei 5-335991, the microstructure is made of ferrite and martensite or ferrite, martensite and retained austenite, and ε-Cu is precipitated in the ferrite phase to improve fatigue strength and stretch flangeability. Techniques are disclosed. In Japanese Patent Application Laid-Open No. 6-145792, the microstructure is made of three phases of ferrite, bainite and martensite, the strength and stretch flangeability are secured by defining the volume fraction of each phase, and precipitation strengthening of Cu is performed. Discloses a technique for improving fatigue characteristics.

【0006】さらに、特開平8−60240号公報で
は、ミクロ組織をフェライト、ベイナイトおよびマルテ
ンサイトの三相とし、それぞれの相の体積分率を規定し
て強度延性バランスを確保し、巻取温度を400℃以上
としてCuの析出強化によって疲労特性を向上させる技
術が開示されている。一方、特開平9−137349号
公報では、ミクロ組織をフェライト、ベイナイトおよび
マルテンサイトの三相とし、それぞれの相の体積分率を
特定するとともにTi、Nbの炭化物でフェライト相を
析出強化し、さらに表面近傍のフェライト粒径と鋼板表
面の粗さを規定して疲労特性を向上させる技術が開示さ
れている。
Further, in Japanese Patent Application Laid-Open No. H8-60240, the microstructure is made of three phases of ferrite, bainite and martensite, the volume fraction of each phase is defined, the strength-ductility balance is secured, and the winding temperature is reduced. A technique for improving fatigue characteristics by strengthening the precipitation of Cu at 400 ° C. or higher is disclosed. On the other hand, in Japanese Patent Application Laid-Open No. Hei 9-137349, the microstructure is made of three phases of ferrite, bainite and martensite, the volume fraction of each phase is specified, and the ferrite phase is precipitated and strengthened with carbides of Ti and Nb. A technique has been disclosed in which the ferrite grain size near the surface and the roughness of the steel sheet surface are specified to improve the fatigue properties.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、ロード
ホィールのディスク等の一部の部品においては、伸び、
低降伏比等の加工性とともに疲労耐久性が大変に重要で
あり、上記従来技術では、満足する特性が得られないと
いわざるを得ない。すなわち、上記特開平4−2760
16号公報に記載の発明では、結晶粒界に偏析し粒界脆
化を引き起こすPが0.05〜0.12%添加されるこ
とが必須であるため、疲労破壊の起点となる粒界破壊が
起こった場合、疲労特性が著しく劣化する可能性があ
る。
However, in some parts such as a disk of a road wheel, elongation,
Fatigue durability is very important together with workability such as a low yield ratio, and it cannot be said that satisfactory characteristics cannot be obtained with the above-mentioned conventional technology. That is, Japanese Patent Application Laid-Open No.
In the invention described in Japanese Patent Publication No. 16, since it is essential to add 0.05 to 0.12% of P which segregates at crystal grain boundaries and causes grain boundary embrittlement, the grain boundary fracture which is a starting point of fatigue fracture is required. If this occurs, the fatigue properties may be significantly degraded.

【0008】さらに、同文献には、Pによる粒界脆化等
を抑制するBの添加については何も記載されていない。
また、上記特開平5−331591号公報に記載の発明
では、フェライト相にε−Cuを析出させているため延
性が低下して加工性が悪くなる可能性がある。また、上
記特開平6−145792号公報に記載の発明では、熱
履歴等によりフェライト、ベイナイトおよびマルテンサ
イトの各相の体積分率が変動しやすく、それによって延
性等の特性が大きく影響されるため鋼板の長手方向や幅
方向の材質のばらつきを生じやすいという問題点があ
る。
Further, the document does not disclose the addition of B which suppresses grain boundary embrittlement due to P.
Further, in the invention described in the above-mentioned Japanese Patent Application Laid-Open No. 5-331591, since ε-Cu is precipitated in the ferrite phase, ductility may be reduced and workability may be deteriorated. Further, in the invention described in JP-A-6-145792, the volume fraction of each phase of ferrite, bainite and martensite is liable to fluctuate due to heat history and the like, so that properties such as ductility are greatly affected. There is a problem that the material tends to vary in the longitudinal direction and the width direction of the steel sheet.

【0009】また、上記特開平8−60240号公報に
記載の発明では、巻取温度を400℃以上と規定してい
るため、ミクロ組織に多量のベイナイトやパーライトが
生成し、十分なマルテンサイトを得られず低降伏比でな
いばかりか、十分な疲労限度比が得られない。さらに、
上記特開平9−137349号公報に記載の発明では、
析出強化に有効なTi、Nbの炭化物を得るために熱間
圧延前の加熱炉工程において高い溶体化温度での加熱が
必要なため操業コストや省エネルギーの観点から好まし
くない。そこで、本発明は、疲労特性と加工性を両立さ
せるための鋼板特性の製造方法を明らかにして、上記従
来技術の課題を有利に解決できる、疲労特性に優れた加
工用熱延鋼板の製造方法を提供することを目的とするも
のである。
Further, in the invention described in JP-A-8-60240, since the winding temperature is specified to be 400 ° C. or higher, a large amount of bainite or pearlite is generated in the microstructure, and sufficient martensite is formed. Not only is it not possible to obtain a low yield ratio, but also a sufficient fatigue limit ratio cannot be obtained. further,
In the invention described in JP-A-9-137349,
Heating at a high solution temperature is required in a heating furnace process before hot rolling in order to obtain Ti and Nb carbides effective for precipitation strengthening, which is not preferable from the viewpoint of operation cost and energy saving. Therefore, the present invention clarifies a method of manufacturing steel sheet characteristics for achieving both fatigue characteristics and workability, and can advantageously solve the above-mentioned problems of the prior art, and provides a method of manufacturing a hot-rolled steel sheet for processing excellent in fatigue characteristics. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明者らは、現在通常
に採用されている連続熱間圧延設備により工業的規模で
生産されている熱延鋼板の製造プロセスを念頭におい
て、熱延鋼板の疲労特性と加工性の両立を達成すべく鋭
意研究を重ねた。その結果、固溶しているCuもしくは
Cu単独で構成される粒子サイズが2nm以下のCu析
出物が疲労特性向上に非常に有効であり、かつ加工性も
損なわないことを見出し、本発明をなしたものである。
Means for Solving the Problems The present inventors considered the production process of a hot-rolled steel sheet produced on an industrial scale by a continuous hot-rolling equipment which is currently usually used, and considered the production process of the hot-rolled steel sheet. We conducted intensive research to achieve both fatigue characteristics and workability. As a result, they have found that a solid solution of Cu or a Cu precipitate composed of Cu alone and having a particle size of 2 nm or less is very effective in improving fatigue properties and does not impair workability, and the present invention has been achieved. It was done.

【0011】以下に、本発明に至った基礎研究結果につ
いて説明する。まず、フェライト相におけるCu単独で
構成される粒子サイズの疲労特性に及ぼす効果について
の調査を行った。そのための供試材は、次のようにして
準備した。すなわち、0.05%C−1.0%Si−
1.4%Mn−1.0%Cu−0.5%Ni−0.00
03%Bに成分調整し溶製した鋳片を熱間圧延して常温
で巻き取った鋼板を、100〜600℃で1時間等温保
持した後、炉冷する熱処理を施し、ミクロ組織が、フェ
ライトを主相とし、マルテンサイトを第二相とする複合
組織を有し、フェライト相におけるCu単独で構成され
る粒子のサイズを変化させた鋼板を得た。
The results of the basic research that led to the present invention will be described below. First, an investigation was made on the effect of the size of a particle composed of Cu alone in the ferrite phase on fatigue characteristics. The test material for that was prepared as follows. That is, 0.05% C-1.0% Si-
1.4% Mn-1.0% Cu-0.5% Ni-0.00
A steel sheet rolled at room temperature by hot-rolling a slab smelted and adjusted to a composition of 03% B is kept at 100-600 ° C. for 1 hour, and then subjected to a heat treatment of furnace cooling, and the microstructure becomes ferrite. And a steel sheet having a composite structure having martensite as a second phase and having a ferrite phase in which the size of particles composed solely of Cu was changed.

【0012】なお、ここでの第二相は、主としてマルテ
ンサイトであるが、一部残留オーステナイトを含むこと
も許容されるものである。これらの鋼板について疲労試
験を行った結果を、図1に示す。この結果より、フェラ
イトとマルテンサイトおよび一部残留オーステナイトを
含む複合組織からなる鋼板において、そのフェライト相
におけるCu単独で構成される粒子の平均サイズと疲労
限度比には強い相関があり、フェライト相におけるCu
単独で構成される粒子の平均サイズが2nm以下で疲労
限度比が著しく向上することを新規に知見した。
The second phase here is mainly martensite, but it is permissible to partially contain retained austenite. FIG. 1 shows the results of a fatigue test performed on these steel sheets. From this result, in the steel sheet having a composite structure including ferrite and martensite and partially retained austenite, there is a strong correlation between the average size of particles composed solely of Cu in the ferrite phase and the fatigue limit ratio. Cu
It has been newly found that the fatigue limit ratio is remarkably improved when the average size of a single particle is 2 nm or less.

【0013】このメカニズムは必ずしも明らかではない
が、固溶しているCuもしくはCu単独で構成される粒
子サイズが2nm以下のCu析出物はフェライト相にお
いて繰返し荷重下での交差すべりを抑制し、繰返し荷重
による表面のすべりステップの形態を粗で深い状態から
密で浅い状態に変化させ、そこでの応力集中が緩和され
るために疲労き裂の発生抵抗を向上させると推測され
る。また、熱間圧延条件等を制限することによって、フ
ェライト相におけるCu単独で構成される粒子の平均サ
イズが2nm以下という鋼板を製造できることも新たに
知見した。
Although this mechanism is not always clear, solid solution of Cu or Cu precipitates having a particle size of 2 nm or less consisting of Cu alone suppresses cross-slip under repeated load in the ferrite phase, and It is presumed that the form of the sliding step of the surface caused by the load is changed from a coarse and deep state to a dense and shallow state, and the stress concentration there is reduced, thereby improving the resistance to fatigue crack initiation. It has also been newly found that a steel sheet having an average size of particles of only Cu of 2 nm or less in the ferrite phase can be manufactured by limiting the hot rolling conditions and the like.

【0014】次に、B元素の疲労特性に及ぼす効果につ
いての調査を行った。そのための供試材は、次のように
して準備した。すなわち、0.05%C−1.0%Si
−1.4%Mn−0.5%Ni鋼をベースにして、1.
0%のCuを添加した鋼とCuを添加しない鋼に、さら
に、B含有濃度を変化させた鋼を成分調整し溶製した鋳
片を、熱間圧延して常温で巻き取り、ミクロ組織が、フ
ェライトを主相とし、マルテンサイトを第二相とする複
合組織を有する鋼板を得た。これらの鋼板について疲労
試験を行った結果を、図2に示す。この結果より、1.
0%のCuを添加した鋼に限り、B含有濃度と疲労限度
比に強い相関があり、さらに、Bの含有濃度が2ppm
以上で疲労限度比が著しく向上することを新規に知見し
た。
Next, the effect of the element B on the fatigue characteristics was investigated. The test material for that was prepared as follows. That is, 0.05% C-1.0% Si
Based on -1.4% Mn-0.5% Ni steel.
In addition to the steel containing 0% Cu and the steel containing no Cu, the slabs obtained by adjusting the composition of the steel with the changed B content are hot-rolled and rolled at room temperature to obtain a microstructure. Thus, a steel sheet having a composite structure including ferrite as a main phase and martensite as a second phase was obtained. FIG. 2 shows the results of a fatigue test performed on these steel sheets. From these results, 1.
Only for steel containing 0% Cu, there is a strong correlation between the B content concentration and the fatigue limit ratio.
From the above, it was newly found that the fatigue limit ratio was significantly improved.

【0015】なお、引張試験による機械的性質について
は、JIS Z 2201記載の5号試験片にて、JI
S Z 2241記載の試験方法で測定した。また、鋼
板の疲労特性は、図3に示すような板厚3.0mm、長
さ98mm、幅38mm、最小断面部の幅が20mm、
切り欠きの曲率半径が30mmである疲労試験片を用
い、完全両振りの平面曲げ疲労試験によって得られた2
×106 回での疲労強度σWを鋼板の引張り強さσBで
除した値(疲労限度比σW/σB)で評価した。
[0015] The mechanical properties obtained by the tensile test were measured using a No. 5 test piece described in JIS Z 2201 according to JI.
It was measured by the test method described in SZ2241. Further, the fatigue properties of the steel sheet are as shown in FIG.
Using a fatigue test piece having a notch with a radius of curvature of 30 mm, a two-sided flat bending fatigue test was performed using a full swing.
Evaluation was made by dividing the fatigue strength σW at × 10 6 times by the tensile strength σB of the steel sheet (fatigue limit ratio σW / σB).

【0016】また、フェライト相におけるCu単独で構
成される粒子は、供試鋼の1/4厚のところから透過型
電子顕微鏡サンプルを採取し、エネルギー分散型X線分
光(Energy Dispersive X−ray
Spectroscope:EDS)や電子エネルギ
ー損失分光(Electron Energy Los
s Spectroscope:EELS)の組成分析
機能を加えた、200kVの加速電圧の電界放射型電子
銃(Field Emission Gun:FEG)
を搭載した透過型電子顕微鏡によって観察した。観察さ
れる粒子の組成は、上記EDSおよびEELSによりC
u単独であることを確認した。また、本願で規定するフ
ェライト相におけるCu単独で構成される粒子のサイズ
は、観察される粒子のサイズをそれぞれ測定したものの
その一視野での平均の値である。本発明は、上記知見に
より構成したもので、その要旨は、以下の通りである。
In the case of particles composed solely of Cu in the ferrite phase, a transmission electron microscope sample was taken from a quarter of the thickness of the test steel and subjected to energy dispersive X-ray spectroscopy (Energy Dispersive X-ray).
Spectroscope (EDS) or electron energy loss spectroscopy (Electron Energy Loss)
Field emission type electron gun (Field Emission Gun: FEG) with an accelerating voltage of 200 kV, which has a composition analysis function of s Spectroscope (EELS).
Observed by a transmission electron microscope equipped with. The composition of the observed particles was determined by EDS and EELS.
u alone. Further, the size of a particle composed of Cu alone in the ferrite phase defined in the present application is an average value in one visual field of each of the measured particle sizes. The present invention has been made based on the above findings, and the gist thereof is as follows.

【0017】(1)質量%にて、C:0.03〜0.2
0%、Si:0.1〜1.4%、、Mn:0.5〜3.
0%、P:≦0.02%、S:≦0.01%、Al:
0.005〜1.0%、Cu:0.2〜2.0%、B:
0.0002〜0.0020%を含み、残部がFe及び
不可避的不純物からなる鋼片を粗圧延終了後、高圧デス
ケーリングを行ない、Ar3 変態点以上で熱間仕上圧延
を終了した後、Ar3 変態点からAr1 変態点までの温
度域で1〜10秒間滞留し、その後、20℃/s以上の
冷却速度で冷却して、350℃以下の巻取温度で巻き取
り、ミクロ組織が、フェライトを主相とし、マルテンサ
イトを第二相とする複合組織であり、フェライト相にお
けるCuの存在状態は、Cu単独で構成される粒子の大
きさが2nm以下の析出状態および/または固溶状態で
ある鋼板を得ることを特徴とする疲労特性に優れた加工
用熱延鋼板の製造方法。
(1) In mass%, C: 0.03 to 0.2
0%, Si: 0.1-1.4%, Mn: 0.5-3.
0%, P: ≦ 0.02%, S: ≦ 0.01%, Al:
0.005 to 1.0%, Cu: 0.2 to 2.0%, B:
After the rough rolling of a steel slab containing 0.0002 to 0.0020%, the balance being Fe and inevitable impurities, high-pressure descaling is performed, and after hot finish rolling at the Ar 3 transformation point or higher, Ar It stays in the temperature range from the 3 transformation point to the Ar 1 transformation point for 1 to 10 seconds, and then is cooled at a cooling rate of 20 ° C./s or more, and is wound up at a winding temperature of 350 ° C. or less. This is a composite structure having ferrite as a main phase and martensite as a second phase, and the presence state of Cu in the ferrite phase is defined as a precipitation state and / or a solid solution state in which the size of a particle composed of Cu alone is 2 nm or less. A method for producing a hot-rolled steel sheet for processing having excellent fatigue characteristics, characterized by obtaining a steel sheet which is a steel sheet.

【0018】(2)前記鋼が、さらに、質量%にて、N
i:0.1〜1.0%を含有することを特徴とする上記
(1)に記載の疲労特性に優れた加工用熱延鋼板の製造
方法。(3)前記鋼が、さらに、質量%にて、Ca:
0.005〜0.02%、REM=0.005〜0.2
%の一種または二種を含有することを特徴とする、上記
(1)または(2)に記載の疲労特性に優れた加工用熱
延鋼板の製造方法。(4)前記鋼が、さらに、質量%に
て、Mo:0.05〜1.0%、V:0.02〜0.2
%、Ti:0.01〜0.2%、Nb:0.01〜0.
1%、Cr:0.01〜1.0%、Zr:0.02〜
0.2%の一種または二種以上を含有することを特徴と
する、上記(1)ないし(3)いずれか1項に記載の疲
労特性に優れた加工用熱延鋼板の製造方法にある。
(2) The steel further comprises N
i: The method for producing a hot-rolled steel sheet for processing having excellent fatigue properties according to the above (1), which comprises 0.1 to 1.0%. (3) The steel further comprises, by mass%, Ca:
0.005 to 0.02%, REM = 0.005 to 0.2
(1) or (2), the method for producing a hot-rolled steel sheet for processing excellent in fatigue characteristics according to (1) or (2). (4) The steel further contains, by mass%, Mo: 0.05 to 1.0% and V: 0.02 to 0.2.
%, Ti: 0.01-0.2%, Nb: 0.01-0.
1%, Cr: 0.01-1.0%, Zr: 0.02-
The method for producing a hot-rolled steel sheet for processing according to any one of the above (1) to (3), characterized by containing 0.2% of one or more kinds.

【0019】[0019]

【発明の実施の形態】以下、本発明を詳細に説明する。
まず、本発明の鋼板のミクロ組織およびCuの存在状態
について説明する。鋼板のミクロ組織は、優れた加工性
を確保するために、フェライトを主相とし、マルテンサ
イトを第二相とする複合組織とする。ただし、第二相に
は一部残留オーステナイトを含むことを許容するもので
ある。なお、良好な加工性を保証する良好な延性や70
%以下の低降伏比を確保するためには、フェライトの体
積分率が50%以上でかつ残留オーステナイトの体積分
率が5%未満が好ましい。ここで、フェライト、マルテ
ンサイトおよび残留オーステナイトの体積率とは鋼板の
圧延方向断面厚みの1/4厚における光学顕微鏡で20
0〜500倍で観察されたミクロ組織中のそれらの組織
の面積分率で定義される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
First, the microstructure and the presence of Cu of the steel sheet of the present invention will be described. The microstructure of the steel sheet is a composite structure having ferrite as a main phase and martensite as a second phase in order to ensure excellent workability. However, the second phase permits the inclusion of partially retained austenite. It should be noted that good ductility and 70% to guarantee good workability.
%, The volume fraction of ferrite is preferably 50% or more and the volume fraction of retained austenite is less than 5%. Here, the volume fractions of ferrite, martensite and retained austenite are defined as 20% by an optical microscope at a thickness of 1/4 of the cross-sectional thickness in the rolling direction of the steel sheet.
Defined by the area fraction of those microstructures in the microstructure observed from 0 to 500 times.

【0020】また、フェライト相におけるCuの存在状
態は、Cu単独で構成される粒子の大きさが2nm以下
の析出状態および/または固溶状態とする。これによ
り、加工性の劣化につながる静的強度の上昇を抑えつ
つ、すなわち、フェライトとマルテンサイトの複合組織
鋼板の優れた加工性を損なうことなく、疲労特性を向上
させることができる。一方、フェライト相におけるCu
単独で構成される粒子の大きさが2nm超であると、C
uの析出強化により鋼板の静的強度が著しく上昇するた
め、加工性が著しく劣化することになる。また、このよ
うなCuの析出強化では、疲労限は静的強度の上昇ほど
には向上しないので疲労限度比が低下してしまう。その
ため、フェライト相におけるCu単独で構成される粒子
の大きさは、2nm以下とする必要がある。
The presence state of Cu in the ferrite phase is a precipitation state and / or a solid solution state in which the size of the particle composed of Cu alone is 2 nm or less. Thereby, it is possible to improve the fatigue properties while suppressing an increase in static strength that leads to deterioration in workability, that is, without impairing the excellent workability of the composite structure steel sheet of ferrite and martensite. On the other hand, Cu in the ferrite phase
If the size of a single particle exceeds 2 nm, C
Since the static strength of the steel sheet is significantly increased by the precipitation strengthening of u, the workability is significantly deteriorated. In addition, with such precipitation strengthening of Cu, the fatigue limit does not improve as much as the increase in static strength, so that the fatigue limit ratio decreases. Therefore, the size of the particle composed of Cu alone in the ferrite phase needs to be 2 nm or less.

【0021】次に、本発明の化学成分の限定理由につい
て説明する。Cは、0.20%超含有していると加工性
及び溶接性が劣化するので、0.20%以下とする。ま
た0.03%未満であると組織中のマルテンサイトの体
積率が減少し、強度が低下するので0.03%以上とす
る。Siは、フェライト変態の促進と未変態オーステナ
イト中のC濃度をあげて複合組織を生成する効果があ
る。ただし、0.1%以下では、その効果が失われ、
1.4%超添加してもその効果は飽和する。従って、S
iの含有量は0.1%超、1.4%以下とする。
Next, the reasons for limiting the chemical components of the present invention will be described. If the content of C exceeds 0.20%, the workability and the weldability deteriorate, so the content is set to 0.20% or less. If the content is less than 0.03%, the volume ratio of martensite in the structure is reduced, and the strength is reduced. Si has the effect of promoting ferrite transformation and increasing the C concentration in untransformed austenite to form a composite structure. However, below 0.1%, the effect is lost,
Even if added in excess of 1.4%, the effect is saturated. Therefore, S
The content of i is more than 0.1% and 1.4% or less.

【0022】Mnは、目的とする第二相であるマルテン
サイトを得るために、0.5%以上必要である。また、
3.0%超添加するとスラブ割れを生ずるため、3.0
%以下とする。Pは、0.02%超添加すると加工性や
溶接性に悪影響を及ぼすだけでなく、粒界に偏析して粒
界強度を低下させ粒界脆化を起こすので、0.02%以
下とする。
Mn is required to be 0.5% or more in order to obtain the desired second phase, martensite. Also,
If added in excess of 3.0%, slab cracks occur, so 3.0%
% Or less. If P is added in excess of 0.02%, it not only adversely affects the workability and weldability, but also segregates at the grain boundaries, lowering the grain boundary strength and causing grain boundary embrittlement. .

【0023】Sは、多すぎると熱間圧延時の割れを引き
起こすので極力低減させるべきであるが、0.01%以
下ならば許容できる範囲である。Alは、溶鋼脱酸のた
めに0.005%以上添加する必要があるが、コストの
上昇を招くため、その上限を1.0%とする。また、あ
まり多量に添加すると、非金属介在物を増大させ伸びを
劣化させるので好ましくは0.5%以下とする。
If the content of S is too large, it causes cracking during hot rolling, so it should be reduced as much as possible, but if it is 0.01% or less, it is in an acceptable range. Al needs to be added in an amount of 0.005% or more for deoxidation of molten steel. However, the cost is increased, so the upper limit is set to 1.0%. Further, if added in an excessively large amount, nonmetallic inclusions are increased and elongation is deteriorated, so that the content is preferably 0.5% or less.

【0024】Cuは、本発明の最も重要な元素一つであ
り、固溶もしくは2nm以下の粒子サイズに析出させる
ことにより疲労特性を改善する効果がある。ただし、
0.2%未満では、その効果は少なく、2.0%を超え
て添加しても効果が飽和するので、0.2〜2.0%と
添加範囲を限定する。Bは、本発明の最も重要な元素の
一つであり、Cuと複合添加されることによって疲労限
を上昇させる効果がある。ただし、0.0002%未満
ではその効果を得るために不十分であり、0.0020
%超添加するとスラブ割れが起こる。よって、Bの添加
は、0.0002%以上、0.0020%以下とする。
Cu is one of the most important elements of the present invention, and has the effect of improving the fatigue properties by forming a solid solution or a precipitate having a particle size of 2 nm or less. However,
If it is less than 0.2%, the effect is small, and even if it is added more than 2.0%, the effect is saturated. Therefore, the addition range is limited to 0.2 to 2.0%. B is one of the most important elements of the present invention, and has an effect of increasing the fatigue limit by being combined with Cu. However, if it is less than 0.0002%, it is insufficient to obtain the effect, and 0.0020%
%, Slab cracking occurs. Therefore, the addition of B is set to 0.0002% or more and 0.0020% or less.

【0025】Niは、Cu含有による熱間脆性防止のた
めに添加する。ただし、0.1%未満ではその効果が少
なく、1.0%を超えて添加してもその効果が飽和する
ので、0.1〜1.0%とする。CaおよびREMは、
破壊の起点となったり、加工性を劣化させる非金属介在
物の形態を変化させて無害化する元素である。ただし、
0.005%未満添加してもその効果がなく、Caなら
ば0.02%超、REMならば0.2%超添加してもそ
の効果が飽和するのでCa=0.005〜0.02%、
REM=0.005〜0.2%とする。
Ni is added to prevent hot brittleness due to the inclusion of Cu. However, if the content is less than 0.1%, the effect is small, and if the content exceeds 1.0%, the effect is saturated. Therefore, the content is set to 0.1 to 1.0%. Ca and REM are
It is an element that changes the form of non-metallic inclusions that become the starting point of destruction or deteriorates workability and renders them harmless. However,
Even if added less than 0.005%, there is no effect. If Ca is added more than 0.02%, and if REM is added more than 0.2%, the effect is saturated, so Ca = 0.005-0.02. %,
REM = 0.005 to 0.2%.

【0026】さらに、強度を付与するために、Mo、
V、Ti、Nb、Cr、Zrの析出強化もしくは固溶強
化元素の一種または二種以上を添加しても良い。ただ
し、それぞれ、0.05%、0.02%、0.01%、
0.01%、0.01%、0.02%未満ではその効果
を得ることができない。また、それぞれ、1.0%、
0.2%、0.2%、0.1%、1.0%、0.2%を
超え添加してもその効果は飽和する。
Further, in order to impart strength, Mo,
One or two or more elements of precipitation strengthening or solid solution strengthening of V, Ti, Nb, Cr and Zr may be added. However, 0.05%, 0.02%, 0.01%,
If it is less than 0.01%, 0.01% or 0.02%, the effect cannot be obtained. In addition, 1.0%,
Even if it exceeds 0.2%, 0.2%, 0.1%, 1.0% and 0.2%, the effect is saturated.

【0027】次に、本発明の製造方法の限定理由につい
て、以下に詳細に述べる。本発明では、目的の成分含有
量になるように成分調整した溶鋼を鋳込むことによって
得たスラブを、高温鋳片のまま熱間圧延機に直送しても
よいし、室温まで冷却後に加熱炉にて再加熱した後に熱
間圧延してもよい。再加熱温度については特に制限はな
いが、1350℃以上であると、スケールオフ量が多量
になり歩留まりが低下するので、再加熱温度は1350
℃未満が望ましい。
Next, the reasons for limiting the production method of the present invention will be described in detail below. In the present invention, a slab obtained by casting molten steel whose components have been adjusted so as to have a target component content may be directly sent to a hot rolling mill as a high-temperature slab, or a heating furnace after cooling to room temperature. And then hot-rolled. The reheating temperature is not particularly limited, but if it is 1350 ° C. or higher, the scale-off amount becomes large and the yield decreases, so the reheating temperature is 1350 ° C.
Desirably less than ° C.

【0028】熱間圧延工程は、粗圧延を終了後に高圧デ
スケーリングを行う。高圧デスケーリングの条件は、鋼
板表面での高圧水の衝突圧P(MPa)×流量L(リッ
トル/cm2)≧0.0025の条件を満たすことが好
ましい。鋼板表面での高圧水の衝突圧Pは以下のように
記述される。(「鉄と鋼」1991 vol.77 N
o.9 p1450参照) P(MPa)=5.64×P0×V/H2 ただし、 P0(MPa):液圧力 V(リットル/min):ノズル流液量 H(cm):鋼板表面とノズル間の距離
In the hot rolling step, high-pressure descaling is performed after rough rolling is completed. It is preferable that the condition of the high-pressure descaling satisfies the condition of collision pressure P (MPa) of high-pressure water on the steel sheet surface × flow rate L (liter / cm 2 ) ≧ 0.0025. The collision pressure P of the high-pressure water on the steel plate surface is described as follows. ("Iron and Steel" 1991 vol. 77 N
o. 9 P1450) P (MPa) = 5.64 × P 0 × V / H 2 where P 0 (MPa): liquid pressure V (liter / min): nozzle flow H (cm): steel sheet surface and nozzle Distance between

【0029】流量Lは以下のように記述される。 L(リットル/cm2)=V/(W×v) ただし、 V(リットル/min):ノズル流液量 W(cm):ノズル当たり噴射液が鋼板表面に当たって
いる幅 v(cm/min):通板速度
The flow rate L is described as follows. L (liter / cm 2 ) = V / (W × v), where V (liter / min): Nozzle flow amount W (cm): Width of jet liquid per nozzle hitting steel sheet surface v (cm / min): Stripping speed

【0030】さらに、仕上げ圧延後の鋼板の最大高さR
yが15μm(15μmRy,l2.5mm,ln1
2.5mm)以下であることが好ましい。これは、例え
ば金属材料疲労設計便覧、日本材料学会編、84ページ
に記載されている通り熱延または酸洗ままの鋼板の疲労
強度は鋼板表面の最大高さRyと相関があることから明
らかである。また、その後の仕上げ圧延はデスケーリン
グ後に再びスケールが生成してしまうのを防ぐために5
秒以内に行うのが望ましい。続く仕上げ圧延は、最終パ
ス温度(FT)がAr3 変態点以上の温度域で終了する
必要がある。これは、熱間圧延中に圧延温度がAr3
態点を切るとフェライト粒にひずみが残留して延性が低
下するためである。
Further, the maximum height R of the steel sheet after the finish rolling is performed.
y is 15 μm (15 μm Ry, 12.5 mm, ln1
2.5 mm) or less. This is apparent from the fact that the fatigue strength of a hot-rolled or pickled steel sheet is correlated with the maximum height Ry of the steel sheet surface, as described in, for example, Handbook of Fatigue Design for Metallic Materials, edited by The Society of Materials Science, Japan, page 84. is there. Further, the subsequent finish rolling is performed in order to prevent scale from being formed again after descaling.
It is desirable to do this within seconds. The subsequent finish rolling needs to be completed in a temperature range where the final pass temperature (FT) is equal to or higher than the Ar 3 transformation point. This is because if the rolling temperature falls below the Ar 3 transformation point during hot rolling, strain remains in the ferrite grains and ductility decreases.

【0031】仕上圧延を終了した後の工程は、まず、A
3 変態点からAr1 変態点までの温度域(フェライト
とオーステナイトの二相域)で1〜10秒間滞留する。
ここでの滞留は、二相域でフェライト変態を促進させる
ために行うが、1秒未満では、二相域におけるフェライ
ト変態が不十分なため、十分な延性が得られない。一
方、10秒超では、パーライトが生成し、目的とするフ
ェライトを主相とし、マルテンサイトを第二相とするミ
クロ組織が得られない。また、1〜10秒間の滞留をさ
せる温度域はフェライト変態を容易に促進させるためA
1 変態点以上800℃以下が望ましく、そのために
は、仕上げ圧延終了後20℃/s以上の冷却速度で当該
温度域に迅速に到達させることが好ましい。
After finishing the finish rolling, the process
It stays for 1 to 10 seconds in the temperature range from the r 3 transformation point to the Ar 1 transformation point (two-phase region of ferrite and austenite).
The retention here is performed to promote ferrite transformation in the two-phase region, but if it is less than 1 second, sufficient ductility cannot be obtained because the ferrite transformation in the two-phase region is insufficient. On the other hand, if it exceeds 10 seconds, pearlite is generated, and a microstructure having the target ferrite as the main phase and martensite as the second phase cannot be obtained. In addition, the temperature range in which the retention is performed for 1 to 10 seconds is performed in order to facilitate the ferrite transformation.
Desirably, the temperature is from the r 1 transformation point to 800 ° C., and for that purpose, it is preferable to quickly reach the temperature range at a cooling rate of 20 ° C./s or more after finish rolling.

【0032】次に、その温度域から巻取温度(CT)ま
では20℃/s以上の冷却速度で冷却するが、20℃/
s未満の冷却速度では、パーライトもしくはベイナイト
(ベイニティックフェライトを含む、以下同じ)が生成
してしまい十分なマルテンサイトが得られず目的とする
フェライトを主相とし、マルテンサイトを第二相とする
ミクロ組織が得られない。巻取温度が350℃超では、
ベイナイトが生成して十分なマルテンサイトが得られず
目的とするフェライトを主相とし、マルテンサイトを第
二相とするミクロ組織が得られないだけでなく、巻き取
り後に静的強度における析出強化能が大きいサイズのC
uの析出が起こる恐れがあるため、巻取温度は、350
℃以下と限定する。また、巻取温度の下限値は特に限定
する必要はないが、コイルが長時間水濡れの状態にある
と錆による外観不良が懸念されるため、50℃以上が望
ましい。
Next, cooling is performed at a cooling rate of 20 ° C./s or more from the temperature range to the winding temperature (CT).
At a cooling rate of less than s, pearlite or bainite (including bainitic ferrite, the same applies hereinafter) is generated, and sufficient martensite cannot be obtained, and the desired ferrite is used as the main phase, and the martensite becomes the second phase. Microstructure is not obtained. If the winding temperature exceeds 350 ° C,
The formation of bainite does not provide sufficient martensite and the desired microstructure with ferrite as the main phase and martensite as the second phase cannot be obtained. Is large size C
Since the precipitation of u may occur, the winding temperature is 350
Limit to below ° C. The lower limit of the winding temperature is not particularly limited, but if the coil is in a wet state for a long time, the appearance may be poor due to rust.

【0033】[0033]

【実施例】以下に、実施例により本発明をさらに説明す
る。表1に示す化学成分を有するA〜Zの鋼は、転炉に
て溶製して、連続鋳造後、表2に示す加熱温度(SR
T)で再加熱し、粗圧延後に高圧デスケーリング(条
件:衝突圧P=2.7MPa,流量L=0.001リッ
トル/cm2)を行い、同じく表2に示す仕上げ圧延温
度(FT)で1.2〜5.4mmの板厚に圧延した後、
表2に示す時間で滞留後、表2に示す冷却速度(CR)
で冷却し巻取温度(CT)でそれぞれ巻き取った。ただ
し、表中の化学組成についての表示は質量%である。こ
のようにして得られた熱延板の引張試験は、供試材を、
まず、JISZ 2201記載の5号試験片に加工し、
JIS Z 2241記載の試験方法に従って行った。
表2に鋼板の組織の体積率とその試験結果を示す。鋼板
圧延方向断面厚みの1/4厚を光学顕微鏡で200〜5
00倍で観察した組織の体積率を合わせて表2に示す。
The present invention will be further described below with reference to examples. The steels A to Z having the chemical components shown in Table 1 were melted in a converter and continuously cast, and then heated at a temperature shown in Table 2 (SR
T), high-pressure descaling (condition: collision pressure P = 2.7 MPa, flow rate L = 0.001 liter / cm 2 ) is performed after rough rolling, and at the finishing rolling temperature (FT) shown in Table 2 as well. After rolling to a plate thickness of 1.2 to 5.4 mm,
After staying for the time shown in Table 2, the cooling rate (CR) shown in Table 2
And wound up at a winding temperature (CT). However, the indication of the chemical composition in the table is% by mass. The tensile test of the hot rolled sheet obtained in this way
First, it was processed into No. 5 test piece described in JISZ 2201.
It carried out according to the test method of JISZ2241.
Table 2 shows the volume ratio of the structure of the steel sheet and the test results. 1/4 thickness of the cross-section thickness in the rolling direction of the steel sheet is 200-5
Table 2 also shows the volume ratio of the tissue observed at × 00.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】さらに、図3に示すような長さ98mm、
幅38mm、最小断面部の幅が20mm、切り欠きの曲
率半径が30mmである平面曲げ疲労試験片にて、完全
両振りの平面曲げ疲労試験を行った。鋼板の疲労特性
は、2×106回での疲労強度σWを鋼板の引張り強さ
σBで除した値(疲労限度比σW/σB)で評価した。
また、フェライト相におけるCu単独で構成される粒子
は、供試鋼の1/4厚のところから透過型電子顕微鏡サ
ンプルを採取し、エネルギー分散型X線分光(EDS)
や電子エネルギー損失分光(EELS)の組成分析機能
を加えた、200kVの加速電圧の電界放射型電子銃
(FEG)を搭載した透過型電子顕微鏡によって観察し
た。観察される粒子の組成は、上記EDSおよびEEL
SによりCu単独であることを確認した。また、本願で
規定するフェライト相におけるCu単独で構成される粒
子のサイズは、観察される粒子のサイズをそれぞれ測定
したもののその一視野での平均の値である。
Further, as shown in FIG.
A plane bending fatigue test of complete swinging was performed on a plane bending fatigue test piece having a width of 38 mm, a minimum cross section width of 20 mm, and a notch with a radius of curvature of 30 mm. The fatigue properties of the steel sheet were evaluated by the value obtained by dividing the fatigue strength σW at 2 × 10 6 times by the tensile strength σB of the steel sheet (fatigue limit ratio σW / σB).
For particles composed of Cu alone in the ferrite phase, a transmission electron microscope sample was taken from a quarter of the thickness of the test steel and subjected to energy dispersive X-ray spectroscopy (EDS).
Observation was made with a transmission electron microscope equipped with a field emission electron gun (FEG) with an accelerating voltage of 200 kV and a function of composition analysis of electron energy loss spectroscopy (EELS). The observed particle composition was determined by the EDS and EEL described above.
It was confirmed by S that Cu was solely Cu. Further, the size of a particle composed of Cu alone in the ferrite phase defined in the present application is an average value in one visual field of each of the measured particle sizes.

【0037】本発明に沿うものは、鋼A−1、A−4、
B−1、C−1、D−1、F−1、H−1、I−1、J
−1、J−2、J−4、K−1、L−2、N−1、P−
1、R−1、S−1、T−1、W−1、X−1、Z−1
の21鋼であり、主相であるフェライト相におけるCu
単独で構成される粒子の大きさが2nm以下である疲労
特性に優れた加工用熱延鋼板が得られている。
According to the present invention, steels A-1, A-4,
B-1, C-1, D-1, F-1, H-1, I-1, J
-1, J-2, J-4, K-1, L-2, N-1, P-
1, R-1, S-1, T-1, W-1, X-1, Z-1
No. 21 steel and Cu in the ferrite phase which is the main phase
A hot-rolled steel sheet for processing excellent in fatigue characteristics in which the size of a single particle is 2 nm or less has been obtained.

【0038】上記以外の鋼は、以下の理由によって本発
明の範囲外である。すなわち、鋼A−2は、仕上圧延終
了温度(FT)が本発明の範囲外であるのでフェライト
粒にひずみが残留して延性が低下するたけでなく低降伏
比(YR)も得られていない。鋼A−3は、熱間圧延後
の巻取温度(CT)が本発明の範囲外であるので目的と
する第二相のマルテンサイトを十分に得られない。ま
た、Cu単独で構成される粒子の大きさが2nm以上に
なる。そのため十分な疲労限度比(σW/σB)が得ら
れていない。
Other steels are outside the scope of the present invention for the following reasons. That is, since the finishing rolling temperature (FT) of the steel A-2 is out of the range of the present invention, not only the strain remains in the ferrite grains and the ductility is reduced, but also the low yield ratio (YR) is not obtained. . In steel A-3, the desired second phase martensite cannot be sufficiently obtained because the winding temperature (CT) after hot rolling is out of the range of the present invention. Further, the size of the particle composed of Cu alone becomes 2 nm or more. Therefore, a sufficient fatigue limit ratio (σW / σB) has not been obtained.

【0039】鋼A−5は、滞留後の冷却速度(CR)が
本発明の範囲外であるのでパーライトが生成してしまい
目的とするフェライトを主相とし、マルテンサイトを第
二相とするミクロ組織が得られず低降伏比(YR)で十
分な疲労限度比も得られていない。鋼E−1は、Pの含
有量が本発明の範囲外であるのでPが粒界に偏析して粒
界強度を低下させるため十分な疲労限度比が得られてい
ない。鋼G−1は、Cuの含有量が本発明の範囲外であ
るので疲労特性を改善する効果が少なく十分な疲労限度
比が得られていない。
Since the cooling rate (CR) of the steel A-5 after the stagnation is out of the range of the present invention, pearlite is generated and the target ferrite is the main phase and martensite is the second phase. No structure was obtained, and a sufficient fatigue limit ratio was not obtained at a low yield ratio (YR). In steel E-1, the content of P is out of the range of the present invention, so that P segregates at the grain boundary to lower the grain boundary strength, so that a sufficient fatigue limit ratio is not obtained. In steel G-1, the content of Cu is out of the range of the present invention, so that the effect of improving the fatigue characteristics is small and a sufficient fatigue limit ratio is not obtained.

【0040】鋼J−3および鋼L−1は、仕上圧延後の
滞留時間が本発明の範囲外であるので目的とするフェラ
イトを主相とし、マルテンサイトを第二相とするミクロ
組織が得られず低降伏比で十分な疲労限度比も得られて
いない。鋼M−1は、Bの含有量が本発明の範囲外であ
るのでCuと複合添加されることで発現する疲労特性向
上効果を得ることができず十分な疲労限度比も得られて
いない。鋼O−1、鋼Q−1は、Si含有量が本発明の
上限を超えているのでスケールの性状が悪くなり表面性
状が劣化するため十分な疲労限度比が得られていない。
Since steel J-3 and steel L-1 have a residence time after finish rolling outside the range of the present invention, a microstructure having the intended ferrite as the main phase and martensite as the second phase is obtained. No sufficient yield limit ratio was obtained at a low yield ratio. Since the content of B in steel M-1 is out of the range of the present invention, the effect of improving the fatigue properties, which is manifested by being combined with Cu, cannot be obtained, and a sufficient fatigue limit ratio has not been obtained. Since the steel O-1 and the steel Q-1 have a Si content exceeding the upper limit of the present invention, the properties of the scale deteriorate and the surface properties deteriorate, so that a sufficient fatigue limit ratio cannot be obtained.

【0041】鋼U−1は、Siの含有量が本発明の下限
を割っているのでフェライト変態の促進効果と未変態オ
ーステナイト中へのC元素の濃化による複合組織の生成
効果が得られず目的とするフェライトを主相とし、マル
テンサイトを第二相とするミクロ組織が得られず十分な
疲労限度比も得られていない。鋼V−1は、Mnの含有
量が本発明の範囲外であるので目的とする第二相のマル
テンサイトを十分に得られず低降伏比も得られていな
い。鋼Y−1は、Cの含有量が本発明の範囲外であるの
でミクロ組織中のマルテンサイトの体積率が十分でなく
低降伏比で十分な疲労限度比も得られていない。
In steel U-1, since the Si content is below the lower limit of the present invention, the effect of promoting ferrite transformation and the effect of forming a composite structure by enriching the C element in untransformed austenite cannot be obtained. A microstructure having the target ferrite as the main phase and martensite as the second phase was not obtained, and a sufficient fatigue limit ratio was not obtained. In steel V-1, the content of Mn is out of the range of the present invention, so that the desired martensite of the second phase is not sufficiently obtained, and a low yield ratio is not obtained. In steel Y-1, the content of C is out of the range of the present invention, so that the volume fraction of martensite in the microstructure is not sufficient, and a low yield ratio and a sufficient fatigue limit ratio are not obtained.

【0042】[0042]

【発明の効果】以上詳述したように、本発明は、疲労特
性に優れた加工用熱延鋼板の製造方法を提供するもので
あり、これらの熱延鋼板を用いることにより、伸びを始
めとする加工性を十分に確保しつつ疲労特性の大幅な改
善が期待できるため、本発明は、工業的価値が高い発明
であると言える。
As described in detail above, the present invention provides a method for producing a hot-rolled steel sheet for processing having excellent fatigue properties. Therefore, the present invention can be said to be an invention having high industrial value, since it is possible to expect a great improvement in fatigue characteristics while sufficiently securing workability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に至る予備実験の結果を、Cu単独で構
成される粒子の大きさと疲労限度比の関係で示す図であ
る。
FIG. 1 is a diagram showing the results of preliminary experiments leading to the present invention in the relationship between the size of particles composed of Cu alone and the fatigue limit ratio.

【図2】本発明に至る予備実験の結果を、B元素の濃度
と疲労限度比の関係で示す図である。
FIG. 2 is a diagram showing the results of preliminary experiments leading to the present invention in the relationship between the concentration of B element and the fatigue limit ratio.

【図3】疲労試験片の形状を説明する図である。FIG. 3 is a diagram illustrating the shape of a fatigue test piece.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 学 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA15 AA16 AA17 AA19 AA22 AA23 AA27 AA29 AA31 AA32 AA35 AA36 AA39 AA40 BA01 CC03 CD03 CE01 4K037 EA01 EA02 EA04 EA05 EA06 EA09 EA11 EA13 EA15 EA16 EA17 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EA35 EA36 EB07 EB09 EB11 EC04 FC03 FC07 FD03 FD04 FE01 GA08 HA02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor: Manabu Takahashi 20-1 Shintomi, Futtsu-shi, Chiba F-term in the Technology Development Division, Nippon Steel Corporation 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA15 AA16 AA17 AA19 AA22 AA23 AA27 AA29 AA31 AA32.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%にて、 C:0.03〜0.20%、 Si:0.1〜1.4%、 Mn:0.5〜3.0%、 P:≦0.02%、 S:≦0.01%、 Al:0.005〜1.0%、 Cu:0.2〜2.0%、 B:0.0002〜0.0020% を含み、残部がFe及び不可避的不純物からなる鋼片を
粗圧延終了後、高圧デスケーリングを行ない、Ar3
態点以上で熱間仕上圧延を終了した後、Ar3 変態点か
らAr1 変態点までの温度域で1〜10秒間滞留し、そ
の後、20℃/s以上の冷却速度で冷却して、350℃
以下の巻取温度で巻き取り、ミクロ組織が、フェライト
を主相とし、マルテンサイトを第二相とする複合組織で
あり、フェライト相におけるCuの存在状態は、Cu単
独で構成される粒子の大きさが2nm以下の析出状態お
よび/または固溶状態である鋼板を得ることを特徴とす
る疲労特性に優れた加工用熱延鋼板の製造方法。
1. In mass%, C: 0.03 to 0.20%, Si: 0.1 to 1.4%, Mn: 0.5 to 3.0%, P: ≦ 0.02% , S: ≦ 0.01%, Al: 0.005 to 1.0%, Cu: 0.2 to 2.0%, B: 0.0002 to 0.0020%, the balance being Fe and inevitable After the rough rolling of the slab made of impurities, high-pressure descaling is performed, and after hot finish rolling is completed at the Ar 3 transformation point or higher, the temperature range from the Ar 3 transformation point to the Ar 1 transformation point is 1 to 10 seconds. Stay, and then cooled at a cooling rate of 20 ° C./s or more,
Winding at the following winding temperature, the microstructure is a composite structure having ferrite as a main phase and martensite as a second phase, and the presence state of Cu in the ferrite phase is determined by the size of a particle composed of Cu alone. A method for producing a hot-rolled steel sheet for processing having excellent fatigue properties, characterized in that a steel sheet having a precipitation state and / or a solid solution state having a thickness of 2 nm or less is obtained.
【請求項2】 前記鋼が、さらに、質量%にて、 Ni:0.1〜1.0% を含有することを特徴とする、請求項1に記載の疲労特
性に優れた加工用熱延鋼板の製造方法。
2. The hot-rolling process according to claim 1, wherein the steel further contains, by mass%, Ni: 0.1 to 1.0%. Steel plate manufacturing method.
【請求項3】 前記鋼が、さらに、質量%にて、 Ca:0.005〜0.02%、 REM:0.005〜0.2% の一種または二種を含有することを特徴とする、請求項
1または請求項2に記載の疲労特性に優れた加工用熱延
鋼板の製造方法。
3. The steel according to claim 1, further comprising one or two of Ca: 0.005 to 0.02% and REM: 0.005 to 0.2% by mass%. The method for producing a hot-rolled steel sheet for processing according to claim 1 or 2, which is excellent in fatigue properties.
【請求項4】 前記鋼が、さらに、質量%にて、 Mo:0.05〜1.0%、 V:0.02〜0.2%、 Ti:0.01〜0.2%、 Nb:0.01〜0.1%、 Cr:0.01〜1.0%、 Zr:0.02〜0.2% の一種または二種以上を含有することを特徴とする、請
求項1ないし請求項3のいずれか1項に記載の疲労特性
に優れた加工用熱延鋼板の製造方法。
4. The steel further comprises, by mass%: Mo: 0.05 to 1.0%, V: 0.02 to 0.2%, Ti: 0.01 to 0.2%, Nb : 0.01 to 0.1%, Cr: 0.01 to 1.0%, Zr: 0.02 to 0.2%, one or more of the following: A method for producing a hot-rolled steel sheet for processing having excellent fatigue properties according to claim 3.
JP12541599A 1999-05-06 1999-05-06 Manufacturing method of hot-rolled steel sheet for processing with excellent fatigue characteristics Expired - Fee Related JP3831146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12541599A JP3831146B2 (en) 1999-05-06 1999-05-06 Manufacturing method of hot-rolled steel sheet for processing with excellent fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12541599A JP3831146B2 (en) 1999-05-06 1999-05-06 Manufacturing method of hot-rolled steel sheet for processing with excellent fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2000319731A true JP2000319731A (en) 2000-11-21
JP3831146B2 JP3831146B2 (en) 2006-10-11

Family

ID=14909548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12541599A Expired - Fee Related JP3831146B2 (en) 1999-05-06 1999-05-06 Manufacturing method of hot-rolled steel sheet for processing with excellent fatigue characteristics

Country Status (1)

Country Link
JP (1) JP3831146B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338667A1 (en) * 2000-11-28 2003-08-27 Kawasaki Steel Corporation Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
JP2007191747A (en) * 2006-01-18 2007-08-02 Kobe Steel Ltd Low-yield-ratio fire-resistant steel material
CN100422372C (en) * 2005-10-10 2008-10-01 燕山大学 Hot-rolling double-phase weather-resistant steel plate and mfg. method thereof
US7503984B2 (en) * 2001-10-04 2009-03-17 Nippon Steel Corporation High-strength thin steel sheet drawable and excellent in shape fixation property and method of producing the same
JP2011052293A (en) * 2009-09-03 2011-03-17 Nippon Steel Corp Steel sheet with composite structure having excellent formability and fatigue property and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338667A1 (en) * 2000-11-28 2003-08-27 Kawasaki Steel Corporation Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
EP1338667A4 (en) * 2000-11-28 2005-08-17 Jfe Steel Corp Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
US7503984B2 (en) * 2001-10-04 2009-03-17 Nippon Steel Corporation High-strength thin steel sheet drawable and excellent in shape fixation property and method of producing the same
CN100422372C (en) * 2005-10-10 2008-10-01 燕山大学 Hot-rolling double-phase weather-resistant steel plate and mfg. method thereof
JP2007191747A (en) * 2006-01-18 2007-08-02 Kobe Steel Ltd Low-yield-ratio fire-resistant steel material
JP4656417B2 (en) * 2006-01-18 2011-03-23 株式会社神戸製鋼所 Low yield ratio refractory steel
JP2011052293A (en) * 2009-09-03 2011-03-17 Nippon Steel Corp Steel sheet with composite structure having excellent formability and fatigue property and method for producing the same

Also Published As

Publication number Publication date
JP3831146B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP5786316B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP5825189B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and low-temperature toughness, and method for producing the same
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JP5699860B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
WO2012002565A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP4445095B2 (en) Composite structure steel plate excellent in burring workability and manufacturing method thereof
JP5394306B2 (en) High-strength steel plate with excellent plating properties and manufacturing method thereof
JP4205853B2 (en) Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP3769143B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JPH0657375A (en) Ultrahigh tensile strength cold-rolled steel sheet and its production
CN115087756A (en) Hot rolled steel plate
JP3831146B2 (en) Manufacturing method of hot-rolled steel sheet for processing with excellent fatigue characteristics
JP3771747B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP3752071B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3790357B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP3781344B2 (en) Manufacturing method of hot-rolled steel sheet with excellent burring workability and fatigue characteristics
JPH11199973A (en) High strength cold rolled steel sheet with composite structure excellent in fatigue characteristic and its production
CN116601315A (en) High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing same
JP3296591B2 (en) Low yield ratio high strength hot rolled steel sheet and method for producing the same
JP3769146B2 (en) High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees