JP2000311339A - Apparatus for production of magnetic recording medium - Google Patents

Apparatus for production of magnetic recording medium

Info

Publication number
JP2000311339A
JP2000311339A JP11928999A JP11928999A JP2000311339A JP 2000311339 A JP2000311339 A JP 2000311339A JP 11928999 A JP11928999 A JP 11928999A JP 11928999 A JP11928999 A JP 11928999A JP 2000311339 A JP2000311339 A JP 2000311339A
Authority
JP
Japan
Prior art keywords
evaporation source
thermal expansion
crucible
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11928999A
Other languages
Japanese (ja)
Inventor
Junji Nakada
純司 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP11928999A priority Critical patent/JP2000311339A/en
Publication of JP2000311339A publication Critical patent/JP2000311339A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To obviate the occurrence of cracks and fissures in an evaporation source assembly, such as a crucible, even in the stage of the initial period of heating of magnetic material with an apparatus for production of magnetic recording media. SOLUTION: A material 11b to be inductively heated is disposed between the refractory crucible 11a and high-frequency induction heating coil 12 constituting the evaporation source assembly 11. The relationship between the coefficient αc of thermal expansion of the refractory crucible 11a and the coefficient αi of thermal expansion of the material 11b to be inductively heated is specified to αc>αi. In heating by the high-frequency induction heating coil 12, the material 11b to be inductively heated is heated as well together with the magnetic material 10 in the crucible 11a, by which the crucible 11a is heated from both of the inner and outer sides and the occurrence of the cracks and fissures by the difference in the thermal expansion may be prevented. Further, the crucible 11a expands more largely than the material 11b to be inductively heated and, therefore, even if the inside and outside diameters are changed by the thermal expansion upon rising of the temperature of the crucible 11a to high temperature, the inside and outside diameters change to the direction where the spacing between the crucible 11a and the material 11b to be inductively heated is reduced and there is no more spacing. Since the circumference of the crucible 11a is protected by the material 11b to be inductively heated, its mechanical strength is improved and the occurrence of the fissure by the thermal expansion may be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体の製造
装置に関し、とくに詳細には、金属材料を加熱溶融せし
めてこれを蒸発させ、その蒸気流をベースフイルム等の
基板上に蒸着せしめることにより磁気記録層を形成する
ようにした磁気記録媒体の製造装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing a magnetic recording medium, and more particularly to a method for heating and melting a metal material, evaporating the metal material, and evaporating the vapor flow on a substrate such as a base film. The present invention relates to an apparatus for manufacturing a magnetic recording medium in which a magnetic recording layer is formed.

【0002】[0002]

【従来の技術】従来、磁気記録媒体としては、γ−Fe
2 3 、CoをドープしたFe3 4、γ−Fe2 3
とFe3 4 のベルトライド化合物、Coをドープした
ベルトライド化合物、CrO3 、Baフェライト等の酸
化物磁性体、あるいはFe、Co、Ni等を主成分とす
る合金磁性体等からなる磁性材料の粒子を、添加物とと
もに塩化ビニル−酢酸ビニル共重合体、スチレン−ブタ
ジエン共重合体、エポキシ樹脂、ポリウレタン樹脂等の
有機バインダー中に分散混合せしめ、この分散混合物を
ポリエチレンテレフタレート(PET)等のポリエステ
ルやポリプロピレン等のポリオレフィンからなるベース
フイルム(基板)上に塗布し、その後これを乾燥せしめ
て製造される、いわゆる塗布型の磁気テープが広く知ら
れている。
2. Description of the Related Art Conventionally, as a magnetic recording medium, γ-Fe
2 O 3 , Co-doped Fe 3 O 4 , γ-Fe 2 O 3
Magnetic material as a berthollide compound of Fe 3 O 4, berthollide compound doped with Co, from CrO 3, Ba oxide magnetic material such as ferrite, or Fe, Co, an alloy magnetic material mainly composed of Ni or the like Particles are dispersed and mixed together with additives in an organic binder such as a vinyl chloride-vinyl acetate copolymer, a styrene-butadiene copolymer, an epoxy resin, a polyurethane resin, and the dispersion mixture is mixed with a polyester such as polyethylene terephthalate (PET). 2. Description of the Related Art A so-called coating type magnetic tape is widely known, which is manufactured by coating a base film (substrate) made of polyolefin such as polypropylene or polypropylene and then drying the base film.

【0003】一方、近年、記録密度の高密度化の要求が
強くなり、磁気記録媒体の磁性層における磁性材料の高
密度化、保磁力の増大、周波数特性の短波長側へのシフ
ト、あるいは磁性層の薄層化、といった改良が行われて
いる。しかし、塗布型のテープでは、磁性層中にバイン
ダーが残存するため、高密度記録に要求される上述の諸
条件を満たすことが困難となっている。
On the other hand, in recent years, the demand for higher recording density has become stronger, and the density of the magnetic material in the magnetic layer of the magnetic recording medium has increased, the coercive force has increased, the frequency characteristics have shifted to shorter wavelengths, or Improvements such as thinning of the layers have been made. However, in the coating type tape, since the binder remains in the magnetic layer, it is difficult to satisfy the above-described conditions required for high-density recording.

【0004】そこで、真空蒸着、スパッタリング、イオ
ンプレーティング等の蒸着法、あるいは電気メッキ、無
電解メッキ等のメッキ法による磁気記録媒体の製造方法
が注目され、種々の提案もなされている。これらの方法
によれば、バインダーを介すことなく磁性材料を直接に
基板上に堆積・成長させて磁性層を形成することができ
るため、磁性層における磁性材料の充填密度を高め、さ
らに磁性層の膜厚も薄くすることができる。
Accordingly, attention has been paid to a method of manufacturing a magnetic recording medium by a vapor deposition method such as vacuum deposition, sputtering, or ion plating, or a plating method such as electroplating or electroless plating, and various proposals have been made. According to these methods, the magnetic layer can be formed by depositing and growing a magnetic material directly on a substrate without using a binder, so that the packing density of the magnetic material in the magnetic layer is increased, and Can also be made thinner.

【0005】さらに、これらの蒸着法等は、ベースフイ
ルム上に形成される膜厚の調整制御が容易であるととも
に、塗布型のテープの製造工程における磁性層塗布液の
調整作業や塗布後の乾燥等の磁性層形成に伴う処理工程
も不要となるなど実用上有用な利点を有する。
In addition, these vapor deposition methods and the like make it easy to control the adjustment of the film thickness formed on the base film, adjust the coating solution of the magnetic layer in the manufacturing process of the coating type tape, and perform drying after coating. This has practically useful advantages such as eliminating the need for processing steps associated with the formation of a magnetic layer.

【0006】特に、蒸着による方法では、メッキによる
方法において必要とされる廃液処理も不要であり、また
磁性膜の成長速度も早いという利点を有する。このよう
な蒸着法によってベースフイルム上に形成された磁性層
を記録層とする磁気テープは、従来の塗布型の磁気テー
プに比べて再生出力が格段に大きく、また記録信号の周
波数特性もより短波長側で向上する等、高密度磁気記録
媒体として有用なものとなっている。
In particular, the vapor deposition method has the advantages that the waste liquid treatment required in the plating method is unnecessary and that the growth rate of the magnetic film is high. A magnetic tape using a magnetic layer formed on a base film by such a vapor deposition method as a recording layer has a much higher reproduction output and a shorter frequency characteristic of a recording signal than a conventional coating type magnetic tape. It is useful as a high-density magnetic recording medium, for example, it is improved on the wavelength side.

【0007】蒸着法による磁気記録媒体の製造は、詳細
には、例えば図3に示す真空蒸着装置1により行うこと
ができる。図3に示すように、真空蒸着装置1は、略真
空状態とされた真空槽2の内部に、外形が円筒状で、か
つその円筒外周面上にポリエステルフイルム、ポリアミ
ドフイルム、ポリイミドフイルム等の非磁性材料からな
る長尺のベースフイルム3を長手方向に巻装する冷却キ
ャン4を備え、この冷却キャン4は、矢印Y方向に回転
してベースフイルム3を送出し軸5側から巻取り軸6側
へと搬送する。
The production of the magnetic recording medium by the vapor deposition method can be performed in detail by, for example, a vacuum vapor deposition apparatus 1 shown in FIG. As shown in FIG. 3, the vacuum deposition apparatus 1 has a cylindrical shape and a non-cylindrical outer surface such as a polyester film, a polyamide film, or a polyimide film on the outer peripheral surface of a vacuum chamber 2 in a substantially vacuum state. A cooling can 4 for winding a long base film 3 made of a magnetic material in the longitudinal direction is provided. The cooling can 4 rotates in the arrow Y direction to send out the base film 3 and take up the winding shaft 6 from the shaft 5 side. To the side.

【0008】真空槽2の内部は、仕切り板7により、ベ
ースフイルム3の送出しおよび巻取りを行う巻取り室8
と、ベースフイルム3に磁性材料を蒸着せしめる蒸着室
9とに分割されている。蒸着室9には、冷却キャン4の
図中下方にCoやCoNi合金、CoCr合金、CoC
rNi合金等の磁性材料10を備えた蒸発源11が配設さ
れ、電子銃加熱、抵抗加熱、高周波誘導加熱等の加熱手
段12により磁性材料10を加熱、蒸発させる。蒸発して上
昇する蒸気流たる磁性材料10の粒子は、冷却キャン4の
回転に伴なって矢印Y方向に搬送されるベースフイルム
3の表面に磁性層として連続的に蒸着する。
The inside of the vacuum chamber 2 is wound by a partition plate 7 into a winding chamber 8 for feeding and winding the base film 3.
And a deposition chamber 9 for depositing a magnetic material on the base film 3. In the vapor deposition chamber 9, Co, CoNi alloy, CoCr alloy, CoC
An evaporation source 11 provided with a magnetic material 10 such as an rNi alloy is provided, and the magnetic material 10 is heated and evaporated by heating means 12 such as electron gun heating, resistance heating, and high-frequency induction heating. The particles of the magnetic material 10, which evaporate and rise, are continuously deposited as a magnetic layer on the surface of the base film 3 conveyed in the direction of arrow Y with the rotation of the cooling can 4.

【0009】ここで、蒸発した磁性材料の粒子を効率良
く基板上に付着させて蒸着効率を高めるためには、この
蒸発した粒子が広く拡散しないようにすればよく、例え
ば特開昭63- 204513号、特開平2-56730号により開示さ
れた技術によれば、蒸発源と冷却キャンとの間であっ
て、この蒸発した粒子が通過する部分の回りをその周壁
が囲うように、円筒状の蒸気拡散防止手段15を設ければ
よい。
Here, in order to efficiently deposit the evaporated magnetic material particles on the substrate to increase the vapor deposition efficiency, it is sufficient to prevent the evaporated particles from diffusing widely. According to the technology disclosed in Japanese Patent Application Laid-Open No. 2-56730, a cylindrical shape is provided between the evaporation source and the cooling can so that the peripheral wall surrounds a portion through which the evaporated particles pass. What is necessary is just to provide the vapor diffusion prevention means 15.

【0010】また、このような円筒状の蒸気拡散防止手
段15を設けた場合、加熱手段として一般に利用される電
子銃加熱手段を用いるのは困難である。すなわち、この
場合はその電子銃から蒸発源11にある磁性材料10までの
電子ビームの通過軌道を確保する必要があるが、蒸発源
11の上方に蒸気拡散防止手段15を設けた場合、この電子
ビームの通過軌道を確保するのが困難だからである。し
たがって通常は加熱手段としては高周波誘導加熱手段を
用いるようにしている。
When such a cylindrical vapor diffusion preventing means 15 is provided, it is difficult to use an electron gun heating means generally used as a heating means. In other words, in this case, it is necessary to secure the trajectory of the electron beam from the electron gun to the magnetic material 10 in the evaporation source 11.
This is because, when the vapor diffusion preventing means 15 is provided above the electron beam 11, it is difficult to secure a passage trajectory of the electron beam. Therefore, high frequency induction heating means is usually used as the heating means.

【0011】[0011]

【発明が解決しようとする課題】上述したような磁気記
録媒体の製造装置においては、耐火物ルツボに磁性材料
を収容し、高周波誘導加熱手段を用いてルツボ内の磁性
材料を加熱するものである。この加熱の際、高周波誘導
電流はルツボ内の磁性材料の外周部に集中して流れるた
め、加熱初期の段階では磁性材料の外周部のみが加熱さ
れることとなる。この際、磁性材料を収容する耐火物ル
ツボも加熱されるが、加熱されるのはルツボの内壁のみ
であり、加熱初期の段階ではルツボの外周部には十分に
熱が伝導されていないため、ルツボの内壁部と外周部と
に温度差が生じる。この内壁部と外周部との温度差によ
りルツボの内壁部と外周部とに熱膨張の差が生じ、これ
によりルツボの機械的歪みを有する部分あるいは素材が
不均一な部分を核としてクラックが生じ、最悪の場合ル
ツボが割れてしまうこともある。
In the apparatus for manufacturing a magnetic recording medium as described above, a magnetic material is accommodated in a refractory crucible and the magnetic material in the crucible is heated using high-frequency induction heating means. . During this heating, the high-frequency induction current flows intensively on the outer peripheral portion of the magnetic material in the crucible, so that only the outer peripheral portion of the magnetic material is heated in the initial stage of heating. At this time, the refractory crucible containing the magnetic material is also heated, but only the inner wall of the crucible is heated, and heat is not sufficiently transmitted to the outer peripheral portion of the crucible at the initial stage of heating. A temperature difference occurs between the inner wall and the outer periphery of the crucible. Due to the temperature difference between the inner wall portion and the outer peripheral portion, a difference in thermal expansion occurs between the inner wall portion and the outer peripheral portion of the crucible, and as a result, cracks are generated around a portion of the crucible having mechanical distortion or a portion where the material is not uniform. In the worst case, the crucible may be broken.

【0012】本発明は上記事情に鑑み、磁性材料の加熱
初期の段階であってもルツボ等の蒸発源にクラックや割
れが生じることがない磁気記録媒体の製造装置を提供す
ることを目的とするものである。
In view of the above circumstances, it is an object of the present invention to provide an apparatus for manufacturing a magnetic recording medium in which a crack or a crack does not occur in an evaporation source such as a crucible even at an early stage of heating a magnetic material. Things.

【0013】[0013]

【課題を解決するための手段】本発明による磁気記録媒
体の製造装置は、上述したような磁性材料を高周波誘導
加熱により加熱する磁気記録媒体の製造装置において、
蒸発源と高周波誘導加熱手段との間に該蒸発源を取り囲
む被誘導加熱部材を設け、該蒸発源の熱膨張係数αcと
前記被誘導加熱部材の熱膨張係数αiとがαc>αiの
関係にあるようにしたことを特徴とするものである。
According to the present invention, there is provided an apparatus for manufacturing a magnetic recording medium for heating a magnetic material as described above by high-frequency induction heating.
An induced heating member surrounding the evaporation source is provided between the evaporation source and the high-frequency induction heating means, and a coefficient of thermal expansion αc of the evaporation source and a coefficient of thermal expansion αi of the induced heating member satisfy a relationship of αc> αi. It is characterized by having something like that.

【0014】また、前記蒸発源の加熱状態において、前
記蒸発源の熱膨張係数αc(1/K)、外径Dc(m
m)、内壁面温度Tci(K)、外壁面温度Tco
(K)、前記被誘導加熱部材の熱膨張係数αi(1/
K)、外径Di(mm)、内壁面温度Tii(K)、外
壁面温度Tio(K)の関係が t0 =Di・αi・(Tii+Tio)/2−Dc・α
c・(Tci+Tco)/2 であるとき、室温における前記蒸発源と前記被誘導加熱
部材との間隙tciが 0.5 ・tci≦t0 ≦2.0 ・tci の関係にあることが好ましい。
In the heating state of the evaporation source, the thermal expansion coefficient αc (1 / K) of the evaporation source and the outer diameter Dc (m
m), inner wall surface temperature Tci (K), outer wall surface temperature Tco
(K), the coefficient of thermal expansion αi (1 /
K), the outer diameter Di (mm), the inner wall surface temperature Tii (K), and the outer wall surface temperature Tio (K) are: t 0 = Di · αi · (Tii + Tio) / 2−Dc · α
When c · (Tci + Tco) / 2, the gap t ci between the evaporation source and the induced heating member at room temperature preferably has a relation of 0.5 · t ci ≦ t 0 ≦ 2.0 · t ci .

【0015】ここで、「室温」とは一般的な製造工場に
おける温度のことであり、概ね10〜30℃である。
Here, "room temperature" means a temperature in a general manufacturing factory, and is generally 10 to 30 ° C.

【0016】さらに、前記蒸発源と前記被誘導加熱材料
との間の隙間に、粒度0.3 mm以下の金属、酸化物、炭
化物、窒化物およびホウ化物の少なくとも一つからなる
パウダー状充填材を充填することが好ましい。
Further, a gap between the evaporation source and the induction-heated material is filled with a powder-like filler made of at least one of a metal, oxide, carbide, nitride, and boride having a particle size of 0.3 mm or less. Is preferred.

【0017】また、前記蒸発源と前記被誘導加熱材料と
の間の隙間に、融点1600K以上の耐熱性部材を充填する
ことが好ましい。
It is preferable that a gap between the evaporation source and the induction-heated material is filled with a heat-resistant member having a melting point of 1600 K or more.

【0018】[0018]

【発明の効果】本発明による磁気記録媒体の製造装置
は、蒸発源と高周波誘導加熱手段との間に蒸発源を取り
囲む被誘導加熱部材を設けるようにしたため、高周波誘
導加熱を行う際に、蒸発源内の磁性材料とともに被誘導
加熱部材も加熱されることとなる。このため蒸発源はそ
の内壁とともに外周部も同時に加熱され、これにより加
熱初期の段階においても蒸発源の内壁部と外周部との温
度差がなくなり、内壁部と外周部と熱膨張の差がなくな
る。したがって、蒸発源の内壁部と外周部との熱膨張の
差による蒸発源のクラックの発生および割れを防止する
ことができる。また、蒸発源の熱膨張係数αcと被誘導
加熱部材の熱膨張係数αiとがαc>αiの関係にある
ようにしたため、蒸発源が加熱された際に、蒸発源の方
が被誘導加熱部材と比較して熱により大きく膨張するこ
ととなる。したがって蒸発源の温度が高温となり、熱膨
張によって内外径が変化した場合に蒸発源と被誘導加熱
部材との隙間を小さくする方向に内外径が変化する。こ
れにより、蒸発源は被誘導加熱部材に近接してその周囲
を保護されるため、蒸発源の機械的強度が向上し、熱膨
張による割れの発生を防止することができる。
In the apparatus for manufacturing a magnetic recording medium according to the present invention, an induction heating member surrounding the evaporation source is provided between the evaporation source and the high frequency induction heating means. The induced heating member will be heated together with the magnetic material in the source. For this reason, the evaporation source is heated simultaneously with its inner wall as well as its outer peripheral portion, so that even at the initial stage of heating, the temperature difference between the inner wall portion and the outer peripheral portion of the evaporation source is eliminated, and the difference between the inner wall portion and the outer peripheral portion is not expanded. . Therefore, generation and cracking of the evaporation source due to a difference in thermal expansion between the inner wall portion and the outer peripheral portion of the evaporation source can be prevented. In addition, since the thermal expansion coefficient αc of the evaporation source and the thermal expansion coefficient αi of the guided heating member are set to have a relationship of αc> αi, when the evaporation source is heated, the evaporation source becomes closer to the guided heating member. As a result, it expands significantly due to heat. Therefore, when the temperature of the evaporation source becomes high and the inner and outer diameters change due to thermal expansion, the inner and outer diameters change in a direction to reduce the gap between the evaporation source and the induced heating member. This allows the evaporation source to be close to the guided heating member and protect its surroundings, so that the mechanical strength of the evaporation source is improved, and cracks due to thermal expansion can be prevented.

【0019】また、蒸発源の加熱状態において、蒸発源
の熱膨張係数αc(1/K)、外径Dc(mm)、内壁
面温度Tci(K)、外壁面温度Tco(K)、被誘導
加熱部材の熱膨張係数αi(1/K)、外径Di(m
m)、内壁面温度Tii(K)、外壁面温度Tio
(K)の関係が t0 =Di・αi・(Tii+Tio)/2−Dc・α
c・(Tci+Tco)/2 であるとき、室温における蒸発源と被誘導加熱材料との
間隙tciが 0.5 ・tci≦t0 ≦2.0 ・tci の関係にあるものとすることにより、蒸発源と被誘導加
熱部材との隙間が適切な寸法、すなわち、熱膨張により
蒸発源と被誘導加熱部材とが加熱されて膨張しても、蒸
発源と被誘導加熱部材との間に隙間ができない寸法とな
り、これにより熱膨張率の差により被誘導加熱部材によ
り蒸発源がその内径方向に圧縮されて割れが生じること
もなくなる。
In the heating state of the evaporation source, the thermal expansion coefficient αc (1 / K) of the evaporation source, the outer diameter Dc (mm), the inner wall surface temperature Tci (K), the outer wall surface temperature Tco (K), Coefficient of thermal expansion αi (1 / K) of heating member, outer diameter Di (m
m), inner wall surface temperature Tii (K), outer wall surface temperature Tio
The relation of (K) is t 0 = Di · αi · (Tii + Tio) / 2−Dc · α
When c · (Tci + Tco) / 2, the gap t ci between the evaporation source and the induction-heated material at room temperature has a relation of 0.5 · t ci ≦ t 0 ≦ 2.0 · t ci , whereby the evaporation source The gap between the heating source and the guided heating member has an appropriate dimension, that is, a dimension where there is no gap between the evaporation source and the guided heating member even if the evaporation source and the guided heating member are heated and expanded due to thermal expansion. As a result, the evaporation source is prevented from being compressed in the inner diameter direction by the induced heating member due to the difference in the coefficient of thermal expansion, so that cracking does not occur.

【0020】さらに、蒸発源と被誘導加熱材料との間の
隙間に、粒度0.3 mm以下の金属、酸化物、炭化物、窒
化物およびホウ化物の少なくとも一つからなるパウダー
状充填材を充填することにより、蒸発源および被誘導加
熱部材の熱膨張その他の歪みによる形状的なずれをある
程度吸収することができ、これにより蒸発源および被誘
導加熱部材が熱膨張した際に蒸発源および被誘導加熱部
材との間に隙間ができることを防止し、蒸発源のクラッ
クの発生および割れを防止することができる。
Further, a gap between the evaporation source and the induction-heated material is filled with a powder-like filler made of at least one of a metal, an oxide, a carbide, a nitride, and a boride having a particle size of 0.3 mm or less. By this, it is possible to absorb to some extent the geometrical deviation due to thermal expansion and other distortions of the evaporation source and the guided heating member, and thus, when the evaporation source and the guided heating member thermally expand, Can be prevented from occurring, and the generation and cracking of the evaporation source can be prevented.

【0021】また、蒸発源と被誘導加熱材料との間の隙
間に、融点1600K以上の例えばシート状の耐熱性部材を
充填することによっても、蒸発源および被誘導加熱部材
が熱膨張した際に蒸発源および被誘導加熱部材との間に
隙間ができることを防止し、蒸発源のクラックの発生お
よび割れを防止することができる。
Also, by filling the gap between the evaporation source and the induction-heated material with, for example, a sheet-like heat-resistant member having a melting point of 1600 K or more, the heat generation of the evaporation source and the induction-heated member can be reduced. It is possible to prevent a gap from being formed between the evaporation source and the induced heating member, and to prevent generation and cracking of the evaporation source.

【0022】[0022]

【発明の実施の形態】以下、本発明の磁気記録媒体製造
装置の実施形態について、図面を参照して説明する。図
1は本発明の磁気記録媒体製造装置である真空蒸着装置
1の概略構成を示すものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a magnetic recording medium manufacturing apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of a vacuum evaporation apparatus 1 which is a magnetic recording medium manufacturing apparatus of the present invention.

【0023】図示の真空蒸着装置1は真空槽2の内部
に、円筒状の冷却キャン4を備え、この冷却キャン4の
円筒面(外周面)には、磁気記録媒体の基板としてのベ
ースフイルム3が巻装される。ベースフイルム3は、ポ
リエチレンテレフタレート(PET)やポリエチレンナ
フタレート等のポリエステル、ポリプロピレン等のポリ
オレフィン、三酢酸セルロースや二酢酸セルロース等の
セルロース誘電体、ポリ塩化ビニル等のビニル系樹脂、
ポリカーボネート、ポリアミド、ポリフェニレンサルフ
ァイド等のプラスチックを長尺フイルム状に加工したも
のであり、その厚さは例えば3〜100 μmのものが使用
される。
The illustrated vacuum evaporation apparatus 1 has a cylindrical cooling can 4 inside a vacuum chamber 2, and a cylindrical film (outer peripheral surface) of the cooling can 4 has a base film 3 as a substrate of a magnetic recording medium. Is wound. The base film 3 is made of a polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate, a polyolefin such as polypropylene, a cellulose dielectric such as cellulose triacetate or cellulose diacetate, a vinyl resin such as polyvinyl chloride,
It is formed by processing a plastic such as polycarbonate, polyamide, or polyphenylene sulfide into a long film, and the thickness thereof is, for example, 3 to 100 μm.

【0024】また、このベースフイルム3の表面には必
要に応じてアンダーコートが施される。アンダーコート
はバインダー(メチルセルロース等のセルロース類、P
ET等の飽和ポリエステル、フェノキシ樹脂、ポリアミ
ド、ポリアクリレート等)とフィラー(シリカ、チタニ
ア、アルミナ、炭酸カルシウム等)を溶解して塗布した
ものであり、その厚さは5〜30nmで、密度500 万〜10
000 万個/mm2 の突起を有するものである。
An undercoat is applied to the surface of the base film 3 if necessary. The undercoat is made of a binder (cellulose such as methylcellulose, P
It is applied by dissolving saturated polyester such as ET, phenoxy resin, polyamide, polyacrylate, etc.) and filler (silica, titania, alumina, calcium carbonate, etc.), has a thickness of 5 to 30 nm, and a density of 5 million. ~Ten
It has projections of 10 million / mm 2 .

【0025】さらにこのベースフイルム3には、グロー
放電処理や電子線照射処理、イオン照射処理、熱処理、
薬品処理の前処理を施してもよい。
Further, the base film 3 is subjected to glow discharge treatment, electron beam irradiation treatment, ion irradiation treatment, heat treatment,
Pretreatment of chemical treatment may be performed.

【0026】ベースフイルム3は送出し軸5から冷却キ
ャン4の円筒面を介して巻取り軸6に掛け渡され、冷却
キャン4が矢印Y方向に回転することにより冷却キャン
4の円筒面上を例えば10〜100 m/分の速度で搬送さ
れ、巻取り軸6に巻き取られる。冷却キャン4は、直径
800 mm、幅400 mmの円筒状ドラムであり、表面はハ
ードクロムメッキを施し0.2 S以下に鏡面研磨され、内
部に冷却水、その他の冷媒(エチレングリコール)を循
環させた構造であり表面温度は例えば−35〜+25℃に維
持されている。
The base film 3 is wrapped around the take-up shaft 6 from the delivery shaft 5 through the cylindrical surface of the cooling can 4, and rotates on the cylindrical surface of the cooling can 4 by rotating the cooling can 4 in the direction of arrow Y. For example, it is conveyed at a speed of 10 to 100 m / min, and is taken up on a take-up shaft 6. The cooling can 4 has a diameter
This is a cylindrical drum of 800 mm and width of 400 mm. The surface is hard chrome plated and mirror-polished to 0.2 S or less. Cooling water and other refrigerant (ethylene glycol) are circulated inside. For example, it is maintained at -35 to + 25 ° C.

【0027】冷却キャン4の表面には冷却キャン4から
5mmの距離離間し、内部に20℃の冷却水を循環させ、
本体がSUS304 により形成されたマスク13および14が
配設されている。そして、ベースフイルム3の搬送方向
に関して上流側に位置するマスク13により最大入射角
(θmax )を下流側に位置するマスク14により最小入射
角(θmin )が規定されている。入射角は後述する耐火
物ルツボ11a内の溶融面の円中心を基準とし、この円中
心からマスク13およびマスク14のエッジに至る線分と冷
却キャン4上のそれぞれのマスクエッジ位置での法線と
のなす角度で定義され、マスク13により規制される最大
入射角(θmax )を90°、マスク14により規制される最
小入射角(θmin )を45°に設定した。マスク13および
14により形成されるマスク開口部18の幅方向(ベースフ
イルム3の移送方向に直角の方向)の開口幅は280 mm
に設定した。
The surface of the cooling can 4 is separated from the cooling can 4 by a distance of 5 mm, and cooling water of 20 ° C. is circulated therein.
Masks 13 and 14 whose main body is formed of SUS304 are provided. The maximum incident angle (θmax) is defined by the mask 13 located on the upstream side in the transport direction of the base film 3 and the minimum incident angle (θmin) is defined by the mask 14 located on the downstream side in the transport direction of the base film 3. The angle of incidence is based on the center of the circle of the melted surface in the refractory crucible 11a to be described later, and the line segment from the center of this circle to the edge of the mask 13 and the mask 14 and the normal line at each mask edge position on the cooling can 4. The maximum incident angle (θmax) regulated by the mask 13 was set to 90 °, and the minimum incident angle (θmin) regulated by the mask 14 was set to 45 °. Mask 13 and
The opening width of the mask opening 18 formed by 14 in the width direction (perpendicular to the transport direction of the base film 3) is 280 mm.
Set to.

【0028】またマスク13および14の前面には、各マス
ク13,14に沿って湾曲した形状であり、各マスク13,14
から10mmの距離離間し、磁性材料10の蒸発金属粒子が
前記基材3の表面に付着することを妨げる機能を有し、
内部に18℃の冷却水を循環させ、本体がSUS304 によ
り形成された可動式のシャッター装置が配設されている
(図示せず)。
On the front surfaces of the masks 13 and 14, each of the masks 13 and 14 has a curved shape.
Has a function of preventing the evaporated metal particles of the magnetic material 10 from adhering to the surface of the base material 3,
A movable shutter device in which cooling water of 18 ° C. is circulated and whose main body is formed of SUS304 is provided (not shown).

【0029】真空槽2は、仕切り板7によって、ベース
フイルム3の送出しおよび巻取りを行う巻取り室8と、
ベースフイルム3に磁性材料を蒸着する蒸着室9とに仕
切られている。巻取り室8と蒸着室9とは、各別に真空
排気するための排気系(図示せず)を備え、各室内の真
空度は各別に調整可能である。特に蒸着室9は、真空槽
2の外部から後述する酸化性ガスが導入されるため、室
内の真空度およびH2O,O2をはじめとする各種残留ガ
スの分圧が常時調整される。
The vacuum chamber 2 includes a winding chamber 8 for feeding and winding the base film 3 by a partition plate 7,
The base film 3 is partitioned into a deposition chamber 9 for depositing a magnetic material. The take-up chamber 8 and the vapor deposition chamber 9 are each provided with an exhaust system (not shown) for evacuating the vacuum, and the degree of vacuum in each chamber can be individually adjusted. In particular, since the oxidizing gas described later is introduced into the vapor deposition chamber 9 from outside the vacuum chamber 2, the degree of vacuum in the chamber and the partial pressure of various residual gases such as H 2 O and O 2 are constantly adjusted.

【0030】また、巻取り室8には、ベースフイルム3
に対する既述の前・後処理のための装置、例えば、グロ
ー放電処理装置、電子線照射処理装置、イオン照射処理
装置、熱処理装置、CVD処理装置等を配設してもよ
い。また、冷却キャン4は円筒状に限るものではなく、
蒸発源組体11に対して所定の斜面を形成し得るエンドレ
スベルト状の金属板であってもよい。
The take-up chamber 8 contains the base film 3.
For example, a device for the pre- and post-treatment described above, such as a glow discharge treatment device, an electron beam irradiation treatment device, an ion irradiation treatment device, a heat treatment device, and a CVD treatment device may be provided. Further, the cooling can 4 is not limited to a cylindrical shape.
An endless belt-shaped metal plate that can form a predetermined slope with respect to the evaporation source assembly 11 may be used.

【0031】蒸着室9には、冷却キャン4の下方に、磁
性材料10を備えた蒸発源組体11が配設されている。この
蒸発源組体11は、図2に示すように磁性材料10を収用す
るための耐火物ルツボ11aと、この耐火物ルツボ11aの
外側にこの耐火物ルツボ11aを取り囲むように間隙t0
をあけて配された被誘導加熱部材11bと、この被誘導加
熱部材11bの周囲に配された磁性材料10を加熱するため
の高周波誘導加熱コイル12が配設されている。さらに、
高周波誘導加熱コイル12に高周波電力を供給するための
高周波電源20および高周波誘導加熱コイル12に高周波電
力を伝達するための高周波電力供給用フィーダー21が配
設されている。なお、高周波誘導加熱コイル12および高
周波電力供給用フィーダー21の内部は冷却水が循環する
構造となっている。
An evaporation source assembly 11 provided with a magnetic material 10 is disposed below the cooling can 4 in the evaporation chamber 9. As shown in FIG. 2, the evaporation source assembly 11 includes a refractory crucible 11a for accommodating the magnetic material 10 and a gap t 0 outside the refractory crucible 11a so as to surround the refractory crucible 11a.
An induction heating member 11b arranged with a gap therebetween and a high-frequency induction heating coil 12 for heating the magnetic material 10 arranged around the induction heating member 11b are provided. further,
A high frequency power supply 20 for supplying high frequency power to the high frequency induction heating coil 12 and a high frequency power supply feeder 21 for transmitting high frequency power to the high frequency induction heating coil 12 are provided. The inside of the high-frequency induction heating coil 12 and the high-frequency power supply feeder 21 has a structure in which cooling water circulates.

【0032】磁性材料10は、例えばFe、Co、Ni、
CoNi、FeCo、FeCu、FeCr、CoCr、
CoCu、CoAu、CoPt、CoW、NiCr、C
oV、MnBi、MnAl、CoFeCr、CoNiC
r、CoRh、CoNiPt、CoNiFe、CoNi
FeB、FeCoNiCr、CiNiZn等の強磁性金
属や強磁性合金から適宜選択される。
The magnetic material 10 is made of, for example, Fe, Co, Ni,
CoNi, FeCo, FeCu, FeCr, CoCr,
CoCu, CoAu, CoPt, CoW, NiCr, C
oV, MnBi, MnAl, CoFeCr, CoNiC
r, CoRh, CoNiPt, CoNiFe, CoNi
It is appropriately selected from ferromagnetic metals and ferromagnetic alloys such as FeB, FeCoNiCr, and CiNiZn.

【0033】蒸発源組体11の構成要素である、磁性材料
10を収容する耐火物ルツボ11aは、例えばMgO、Zr
2 、Al2 3 、CaO、Y2 3 、ThO2 、B
N、BeOCaO安定化ZrO2 、Y2 3 安定化Zr
2 等のセラミックスや炭素または炭素化合物や他の耐
熱性のある材料から適宜選択する。またこの耐火物ルツ
ボ11aの形状は、底部を有する容器型であり、水平断面
形状は真円形、楕円形、長円形、正方形、長方形、その
他のいかなる形状であってもよく、垂直断面形状も正方
形、長方形、台形、その他のいかなる形状であってもよ
い。なお、本実施形態においては、耐火物ルツボ11aは
例えばカップ状(内径φ80mm、外径φ96mm、高さ10
0 mm、内部深さ90mm、熱膨張係数1.0 ×10-6)と
し、材質はCaO安定化ZrO2 (化学成分(wt%)
ZrO2 ;90.0%〜98.0%、CaO;2.0 %〜7.0 %)
を用いた。耐火物ルツボ11aの内部には蒸発用の強磁性
材料10としてCo100 を用いた。
Magnetic material which is a component of the evaporation source assembly 11
The refractory crucible 11a for containing 10 is, for example, MgO, Zr
O 2 , Al 2 O 3 , CaO, Y 2 O 3 , ThO 2 , B
N, BeOCaO stabilized ZrO 2 , Y 2 O 3 stabilized Zr
It is appropriately selected from ceramics such as O 2 , carbon or a carbon compound, and other heat-resistant materials. The shape of the refractory crucible 11a is a container shape having a bottom, and the horizontal cross-sectional shape may be a true circle, an ellipse, an oval, a square, a rectangle, or any other shape, and the vertical cross-section may be a square. , Rectangular, trapezoidal, or any other shape. In the present embodiment, the refractory crucible 11a is, for example, cup-shaped (inner diameter φ80 mm, outer diameter φ96 mm, height 10 mm).
0 mm, internal depth 90 mm, coefficient of thermal expansion 1.0 × 10 −6 ), and the material is CaO-stabilized ZrO 2 (chemical component (wt%)
ZrO 2; 90.0% ~98.0%, CaO; 2.0% ~7.0%)
Was used. Co 100 was used as the ferromagnetic material 10 for evaporation inside the refractory crucible 11a.

【0034】また、耐火物ルツボ11aの外周に配される
被誘導加熱部材11bとしてカップ状カーボン(例えば内
径φ98mm、外径φ110 mm、高さ115 mm、深さ110
mmを用いる。被誘導加熱部材11bであるカップ状カー
ボンの材質は黒鉛質カーボン(成形品)であり、熱膨張
係数は5.0 ×10-6/Kである。
Further, cup-like carbon (for example, an inner diameter of 98 mm, an outer diameter of 110 mm, a height of 115 mm, a depth of 110 mm) is used as the induction heating member 11b disposed on the outer periphery of the refractory crucible 11a.
mm. The material of the cup-shaped carbon serving as the induction heating member 11b is graphite carbon (molded product), and has a coefficient of thermal expansion of 5.0 × 10 −6 / K.

【0035】さらに、耐火物ルツボ11aと被誘導加熱部
材11bとの内には充填材11cが充填される。充填材11c
の材質は、パウダー状であり、粒径が0.3 μm〜1.0 m
mのCaO安定化ZrO2 (化学成分(wt%)ZrO
2 ;90.0%〜98.0%、CaO;2.0 %〜7.0 %)であ
る。これを底の部分から軽く突き固めながら充填する。
Further, a filler 11c is filled in the refractory crucible 11a and the induction-heated member 11b. Filling material 11c
The material is powdery, with a particle size of 0.3 μm to 1.0 m
m CaO-stabilized ZrO 2 (chemical component (wt%) ZrO
2 ; 90.0% to 98.0%, CaO; 2.0% to 7.0%). This is filled while squeezing lightly from the bottom.

【0036】ここで蒸発源組体11の加熱状態において、
耐火物ルツボ11aの熱膨張係数αc(1/K)、外径D
c(mm)、内壁面温度Tci(K)、外壁面温度Tc
o(K)、被誘導加熱部材11bの熱膨張係数αi(1/
K)、外径Di(mm)、内壁面温度Tii(K)、外
壁面温度Tio(K)の関係が t0 =Di・αi・(Tii+Tio)/2−Dc・α
c・(Tci+Tco)/2 であるとき、室温における耐火物ルツボ11aと被誘導加
熱部材11bとの間隙tciが 0.5 ・tci≦t0 ≦2.0 ・tci の関係にあるものとする。
Here, in the heating state of the evaporation source assembly 11,
Thermal expansion coefficient αc (1 / K), outer diameter D of refractory crucible 11a
c (mm), inner wall surface temperature Tci (K), outer wall surface temperature Tc
o (K), the coefficient of thermal expansion αi (1 /
K), the outer diameter Di (mm), the inner wall surface temperature Tii (K), and the outer wall surface temperature Tio (K) are: t 0 = Di · αi · (Tii + Tio) / 2−Dc · α
When c · (Tci + Tco) / 2, it is assumed that the gap t ci between the refractory crucible 11a and the inductively heated member 11b at room temperature has a relation of 0.5 · t ci ≦ t 0 ≦ 2.0 · t ci .

【0037】高周波誘導加熱コイル12は、内部に冷却水
が循環する直径φ12mmのCuパイプからなり、高周波
誘導加熱コイル12は5ターンで、内径φ120 mm、高さ
h110 mmである。発振周波数100 kHz、出力60kW
の高周波電源20は真空槽2の外部に2台設置し、高周波
フィーダー21と真空用フィードスルー(図示せず)を通
じて真空槽2の内部に配設された2つの高周波誘導加熱
コイル12に接続した。高周波フィーダー21はCu板製で
あり、また高周波誘導加熱コイル12の延長Cuパイプ部
は、それぞれAl2 3 製の絶縁管で囲い、互いに電気
的に絶縁されている。なお、高周波誘導加熱コイル12
は、耐火物ルツボ11aの側面に対応する形状とするのが
好ましい。
The high-frequency induction heating coil 12 is made of a Cu pipe having a diameter of φ12 mm in which cooling water circulates. The high-frequency induction heating coil 12 has five turns, an inner diameter of φ120 mm and a height h110 mm. Oscillation frequency 100 kHz, output 60 kW
The two high frequency power supplies 20 are installed outside the vacuum chamber 2 and connected to two high frequency induction heating coils 12 disposed inside the vacuum chamber 2 through a high frequency feeder 21 and a vacuum feedthrough (not shown). . The high-frequency feeder 21 is made of a Cu plate, and the extended Cu pipe portions of the high-frequency induction heating coil 12 are each surrounded by an insulating tube made of Al 2 O 3 and are electrically insulated from each other. The high-frequency induction heating coil 12
Is preferably in a shape corresponding to the side surface of the refractory crucible 11a.

【0038】さらに、蒸着室9には冷却キャン4と磁性
材料10を備えた蒸発源組体11との間であって、磁性材料
10が蒸発して生じる蒸気流が通過する経路を、その周壁
が囲うように蒸気の拡散を防止する手段としての円筒状
の壁(以下蒸気拡散防止壁とする)15が設けられ、また
冷却キャン4の近傍であってマスク13,14の近傍には酸
性化ガスまたは酸化性ガスと不活性ガスとの混合ガスを
ベースフイルム3に向けて噴射するための第1のガス導
入部17が設けられている。
Further, the evaporation chamber 9 is located between the cooling can 4 and the evaporation source assembly 11 having the magnetic material 10,
A cylindrical wall (hereinafter referred to as a vapor diffusion preventing wall) 15 is provided as a means for preventing the diffusion of the vapor so that the peripheral wall surrounds a path through which the vapor flow generated by evaporation of the vapor passes. In the vicinity of the mask 4 and in the vicinity of the masks 13 and 14, a first gas inlet 17 for injecting an acidified gas or a mixed gas of an oxidizing gas and an inert gas toward the base film 3 is provided. ing.

【0039】ガス導入部17は、ベースフイルム3の搬送
方向に関して下流側に位置し、最小入射角(θmin )を
規制するマスク14の近傍で、マスク14の冷却キャン4側
の面内に内蔵されている。なお、噴射ガスとしてはO2
ガスを用いた。ガス噴射スリット17aの噴射方向は最小
入射角(θmin )を定めている冷却キャン4上の基準点
における冷却キャン4上の接線にほぼ平行な向きであ
る。ガス導入部17からのO2 ガス導入により後述の蒸気
拡散防止壁15の開口部を通過してきた蒸発粒子の飛散方
向に対して、略斜め方向にO2 ガスが噴射され蒸発金属
粒子の一部を酸化する。
The gas introduction unit 17 is located downstream with respect to the transport direction of the base film 3 and is built in the surface of the mask 14 on the side of the cooling can 4 near the mask 14 that regulates the minimum incident angle (θmin). ing. The injection gas is O 2
Gas was used. The injection direction of the gas injection slit 17a is substantially parallel to the tangent line on the cooling can 4 at the reference point on the cooling can 4 which defines the minimum incident angle (θmin). O 2 gas is injected in a substantially oblique direction with respect to the scattering direction of the evaporating particles that have passed through the opening of the vapor diffusion preventing wall 15 described later by the O 2 gas introduction from the gas introduction part 17, and a part of the evaporating metal particles To oxidize.

【0040】蒸気拡散防止壁15の内周壁面は、高融点金
属やセラミックス等により形成され、耐火物ルツボ11a
と略連続した状態で略垂直方向に延びる規制面で囲まれ
る蒸発蒸気流路を構成するように配置されており、下面
および上面は磁性材料10の蒸発粒子の通過を許容すると
ともにその指向性を向上させるように開口し、周壁のみ
を有する筒型形状であり、水平断面形状は円形、楕円
形、長円形、正方形、長方形、その他のいかなる形状で
あってもよい。垂直断面形状も正方形、長方形、台形、
その他のいかなる形状であってもよい。
The inner peripheral wall surface of the vapor diffusion preventing wall 15 is formed of a high melting point metal, ceramics, or the like, and has a refractory crucible 11a.
Are arranged so as to constitute an evaporative vapor flow path surrounded by a regulating surface extending in a substantially vertical direction in a substantially continuous state, and the lower surface and the upper surface allow passage of evaporative particles of the magnetic material 10 and the directivity thereof. It has a cylindrical shape that is open to enhance and has only a peripheral wall, and the horizontal cross-sectional shape may be circular, elliptical, oval, square, rectangular, or any other shape. The vertical cross section is also square, rectangular, trapezoidal,
Any other shape may be used.

【0041】さらに、蒸気拡散防止壁15は開口部中心か
ら外側へ向かって同心円状に内壁部15aおよび外周部15
cの2層から構成されている。
Further, the vapor diffusion preventing wall 15 is concentrically formed from the center of the opening toward the outside to form an inner wall portion 15a and an outer peripheral portion 15a.
c).

【0042】また、蒸気拡散防止壁15の外周面側には例
えば抵抗加熱ヒーター、高周波誘導加熱用コイル等の加
熱源を含む加熱構造体、あるいは内部に冷却水や液体窒
素、液体ヘリウム、エチレングリコール等の冷媒を循環
させ、本体はFe、Cu、Al、Ni、Ti、Mg、Z
nおよびこれらの合金、ステンレス鋼等で形成された冷
却構造体等を備えた構成を採ることができる。
A heating structure including a heating source such as a resistance heater, a high-frequency induction heating coil or the like, or cooling water, liquid nitrogen, liquid helium, ethylene glycol is provided on the outer peripheral surface side of the vapor diffusion preventing wall 15. And the main body is made of Fe, Cu, Al, Ni, Ti, Mg, Z
A structure including a cooling structure formed of n, an alloy thereof, stainless steel, or the like can be employed.

【0043】蒸気拡散防止壁15は、耐火物ルツボ11aの
溶湯面内の中心を基準とし、この基準とされた点から蒸
発して上方に飛び出した磁性材料10の蒸発粒子が、後述
の最大入射角規制用のマスク13および最小入射角規制用
のマスク14によって規定される最大入射角θmax から最
小入射角θmin に亘る連続した範囲に付着するのを妨げ
ないように構成されているものとする。
The vapor diffusion preventing wall 15 is based on the center of the surface of the molten metal of the refractory crucible 11a. Evaporated particles of the magnetic material 10 that have evaporated from the reference point and jumped upward are subjected to the maximum incidence described later. It is configured so as not to prevent adhesion to a continuous range from the maximum incident angle θmax to the minimum incident angle θmin defined by the angle regulating mask 13 and the minimum incident angle regulating mask 14.

【0044】なお、耐火物ルツボ11a、高周波誘導加熱
コイル12、高周波電源20、高周波フィーダー21等は蒸発
源組体の一例にすぎず、ベースフイルム3が幅方向(ベ
ースフイルム3面内の搬送方向に直交する方向)に広い
場合は、ベースフイルム3の幅に応じて蒸発源組体11の
形状を変えるようにし(例えば蒸発源組体11の水平断面
形状が楕円形状であり、ベースフイルム3の幅が広い場
合には、蒸発源組体11の楕円形状の長軸方向をベースフ
イルム3の幅方向に合わせる)、蒸発源組体11をベース
フイルム3の幅方向に対応させて複数組配列した構成を
採ることもできる。この場合、蒸発源組体11(耐火物ル
ツボ11aを含む)、高周波誘導加熱コイル12、高周波電
源20、高周波フィーダー21をそれぞれ独立に複数組配設
した構成や、蒸発源組体11を複数組配設し、高周波誘導
加熱コイル12、高周波電源20、高周波フィーダー21を共
通にした構成を採用することもできる。
The refractory crucible 11a, the high-frequency induction heating coil 12, the high-frequency power supply 20, the high-frequency feeder 21 and the like are merely examples of the evaporation source assembly, and the base film 3 is moved in the width direction (the transport direction in the plane of the base film 3). In the case where the width of the evaporation source assembly 11 is large, the shape of the evaporation source assembly 11 is changed according to the width of the base film 3 (for example, the horizontal cross-sectional shape of the evaporation source assembly 11 is elliptical, When the width is wide, the major axis direction of the elliptical shape of the evaporation source assembly 11 is adjusted to the width direction of the base film 3), and a plurality of sets of the evaporation source assembly 11 are arranged corresponding to the width direction of the base film 3. A configuration can also be adopted. In this case, a plurality of sets of the evaporation source assembly 11 (including the refractory crucible 11a), the high-frequency induction heating coil 12, the high-frequency power supply 20, and the high-frequency feeder 21 are independently provided. It is also possible to adopt a configuration in which the high-frequency induction heating coil 12, the high-frequency power supply 20, and the high-frequency feeder 21 are provided in common.

【0045】次に本実施形態の磁気記録媒体の製造装置
の作用について説明する。
Next, the operation of the magnetic recording medium manufacturing apparatus of this embodiment will be described.

【0046】まず、蒸着室9および巻取り室8内部は図
示しない真空排気手段によりそれぞれ排気され、蒸着室
9および巻取り室8の内部の状態は、例えば5.0 ×10-5
〜4.0 ×10-4Torrの真空状態とされる。蒸着室9および
巻取り室8の内部をこのように略真空状態にした後、高
周波電源20を用いて高周波誘導加熱コイル12に電力を供
給し、これにより蒸発源組体11の磁性材料10を加熱、蒸
発させる。
First, the insides of the vapor deposition chamber 9 and the winding chamber 8 are evacuated by vacuum evacuation means (not shown), and the internal state of the vapor deposition chamber 9 and the winding chamber 8 is, for example, 5.0 × 10 −5.
A vacuum state of about 4.0 × 10 −4 Torr is set. After the insides of the vapor deposition chamber 9 and the winding chamber 8 are made substantially vacuum as described above, electric power is supplied to the high-frequency induction heating coil 12 using the high-frequency power supply 20, whereby the magnetic material 10 of the evaporation source assembly 11 is discharged. Heat and evaporate.

【0047】磁性材料10の加熱方法については、ベース
フイルム3の搬送速度80m/分、酸素導入量1000cc/
分、の条件で膜厚800 オングストロームとなる蒸発レー
トを保持するに十分な定常状態での投入パワーと、その
蒸発レートが得られるまでの保持時間について予備テス
トを行った。保持時間とは、一定電力を供給し始めてか
ら、磁性材料10が昇温、溶解し、かつ、一定の蒸発レー
トが維持できるまで蒸発源組体11全体が十分に加熱され
て熱平衡状態に達するまでの時間をいう。
The heating method of the magnetic material 10 is as follows: the conveying speed of the base film 3 is 80 m / min, and the oxygen introduction amount is 1000 cc / min.
Preliminary tests were conducted on the input power in a steady state sufficient to maintain the evaporation rate at which the film thickness was 800 angstrom under the above conditions and the holding time until the evaporation rate was obtained. The holding time means that after starting to supply a constant power, the temperature of the magnetic material 10 rises and melts, and until the entire evaporation source assembly 11 is heated sufficiently to reach a thermal equilibrium state until a constant evaporation rate can be maintained. Time.

【0048】保持時間が経過した後、送り出し軸5より
ベースフイルム3を80m/分の搬送速度、張力8.0 kgf/
300 mmの条件で送り出し、前処理室(図示せず)にお
いて、ベースフイルム3の磁性薄膜を形成する側をO2
ガスを用いたグロー放電処理を施した後、冷却キャン4
上を搬送させる。そして、シャッター装置を駆動して
『開』の状態とし、同時にガス導入部17から噴射量1000
cc/分でO2 ガスを噴射させつつベースフイルム3上
のCo−O磁性薄膜を形成した後、巻き取り軸6に巻き
取られる。金属磁性薄膜を形成した後、シャッター装置
を『閉』の状態にし、同時にガス導入部17からのO2
スの噴射と高周波電源20からの電力供給を停止し成膜を
終了する。
After the elapse of the holding time, the base film 3 was transported from the delivery shaft 5 at a transport speed of 80 m / min and a tension of 8.0 kgf / min.
The base film 3 is fed with O 2 in a pretreatment chamber (not shown).
After performing a glow discharge treatment using gas, the cooling can 4
Transport the top. Then, the shutter device is driven to the "open" state, and at the same time, the injection amount 1000
After forming a Co—O magnetic thin film on the base film 3 while injecting O 2 gas at cc / min, the film is wound around the winding shaft 6. After the formation of the metal magnetic thin film, the shutter device is set to the "closed" state, and at the same time, the injection of the O 2 gas from the gas introduction unit 17 and the power supply from the high frequency power supply 20 are stopped to terminate the film formation.

【0049】ベースフイルム3上に磁性薄膜を蒸着した
後、磁性薄膜表面にはリン酸系潤滑剤+パーフルオロポ
リエーテル潤滑材と防錆剤(ベンゾトリアゾール)の混
合剤を溶解して塗布する。バック面にはカーボンブラッ
クを主成分とする非磁性粉末とニトロセルロース、ポリ
エステル、ポリウレタンの混合材料とイソシアネート硬
化剤を溶解、分散し、0.5 μmの厚みで塗布する。以上
のようにして磁性材料の薄膜がベースフイルム3に蒸着
される。
After depositing the magnetic thin film on the base film 3, a mixture of a phosphoric acid-based lubricant + a perfluoropolyether lubricant and a rust inhibitor (benzotriazole) is dissolved and applied to the surface of the magnetic thin film. A non-magnetic powder containing carbon black as a main component, a mixed material of nitrocellulose, polyester, and polyurethane, and an isocyanate curing agent are dissolved and dispersed on the back surface, and applied with a thickness of 0.5 μm. As described above, the thin film of the magnetic material is deposited on the base film 3.

【0050】ここで被誘導加熱部材11bの外形110 mm
を固定し、内径を種々変化させてテストを行った。
Here, the outer shape of the inductive heating member 11b is 110 mm.
Was fixed, and the test was performed by changing the inner diameter in various ways.

【0051】評価方法は、耐火物ルツボ11a内に磁性材
料10としてCo100 を収用し、真空槽を排気して5.0 ×
10-5Torrに保持し、高周波電源20によって高周波誘導加
熱コイル12に10KWの一定電力を20分間にわたり供給し
て磁性材料10を加熱、溶融させた。その後供給電力を0
KWとして20分間にわたり放置した。この加熱、放置操
作を1サイクルとして、連続して加熱、放置を5回繰り
返した。その後、蒸発源組体を分解して耐火物ルツボ11
aのクラック発生状況および磁性材料10の流出状況を観
察した。
The evaluation method was as follows. Co. 100 was collected as the magnetic material 10 in the refractory crucible 11a, and the vacuum chamber was evacuated to 5.0 ×
The magnetic material 10 was heated and melted by supplying a constant power of 10 KW to the high frequency induction heating coil 12 by the high frequency power supply 20 for 20 minutes while maintaining the pressure at 10 -5 Torr. After that, supply power becomes 0
It was left as KW for 20 minutes. This heating and standing operation was defined as one cycle, and heating and standing were repeated 5 times continuously. Then, disassemble the evaporation source assembly and refractory crucible 11
The occurrence of cracks and the outflow of the magnetic material 10 were observed.

【0052】なお、本試験においては蒸発源組体の耐火
物ルツボ11a内壁温度Tciは、溶湯面を放射温度計に
より測定し、その温度を耐火物ルツボ内壁温度と推定し
た。ここで温度
In this test, the inner wall temperature Tci of the refractory crucible 11a of the evaporation source assembly was measured by measuring the molten metal surface with a radiation thermometer, and the temperature was estimated as the inner wall temperature of the refractory crucible. Where temperature

【0053】[0053]

【数1】 (Equation 1)

【0054】また、耐火物ルツボ11aの外壁および被誘
導加熱材料の内壁温度は熱電対により測定し、
The temperature of the outer wall of the refractory crucible 11a and the inner wall of the material to be heated are measured with a thermocouple.

【0055】[0055]

【数2】 (Equation 2)

【0056】被誘導加熱材料の外壁温度も同様に熱電対
により測定し、Tio=1900Kであった。
The outer wall temperature of the material to be heated was also measured with a thermocouple, and was found to be Tio = 1900K.

【0057】試験の結果を以下の表1に表す。The test results are shown in Table 1 below.

【0058】[0058]

【表1】 [Table 1]

【0059】表1に示すように耐火物ルツボ11aの外周
に被誘導加熱部材11bを設けることにより、耐火物ルツ
ボ11aにクラックが発生しても、このクラックから漏れ
る溶融磁性材料が蒸発源組体11から外部に漏れることは
なくなる。さらに、被誘導加熱部材11bの内径が97.0m
m〜100.0 mmの範囲にある場合は、クラックの発生を
大幅に減少させることができる。
As shown in Table 1, by providing an inductively heated member 11b on the outer periphery of the refractory crucible 11a, even if a crack occurs in the refractory crucible 11a, the molten magnetic material leaking from the crack is removed by the evaporation source assembly. It will not leak outside from 11. Further, the inner diameter of the induction-induced heating member 11b is 97.0 m.
When it is in the range of m to 100.0 mm, the occurrence of cracks can be greatly reduced.

【0060】また耐火物ルツボ11aと被誘導加熱部材11
bとの間隙が比較的大きい場合、この間隙に粒径0.3 m
m以下のパウダー材料を充填あるいはシート状の部材を
巻回することによりクラックの発生を低減させることが
できる。
The refractory crucible 11a and the induction heating member 11
When the gap with b is relatively large, the gap has a particle size of 0.3 m
The occurrence of cracks can be reduced by filling a powder material of m or less or winding a sheet-like member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態による磁気記録媒体の製造装
置の構成を表す図
FIG. 1 is a diagram showing a configuration of a magnetic recording medium manufacturing apparatus according to an embodiment of the present invention.

【図2】蒸発源組体の実施例を表す図FIG. 2 is a diagram illustrating an embodiment of an evaporation source assembly.

【図3】従来の磁気記録媒体の製造装置の構成を表す図FIG. 3 is a diagram illustrating a configuration of a conventional magnetic recording medium manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 真空蒸着装置 2 真空槽 3 ベースフイルム 4 冷却キャン 5 送出し軸 6 巻取り軸 7 仕切り板 8 巻取り室 9 蒸着室 10 磁性材料 11 蒸発源組体 11a 耐火物ルツボ 11b 被誘導加熱部材 11c 充填材 12 高周波誘導加熱コイル 13,14 マスク 15 蒸気拡散防止壁 17 第1のガス導入部 18 マスク開口部 DESCRIPTION OF SYMBOLS 1 Vacuum vapor deposition apparatus 2 Vacuum tank 3 Base film 4 Cooling can 5 Delivery axis 6 Winding axis 7 Partition plate 8 Winding chamber 9 Deposition chamber 10 Magnetic material 11 Evaporation source assembly 11a Refractory crucible 11b Induced heating member 11c Filling Material 12 High-frequency induction heating coil 13, 14 Mask 15 Wall for preventing vapor diffusion 17 First gas inlet 18 Mask opening

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 真空雰囲気中で所定の経路に沿って長尺
の基板を搬送する搬送手段と、該所定の経路の下方に配
設された磁性材料の蒸発源と、該蒸発源の外側にあって
該蒸発源を取り囲む高周波誘導加熱により加熱して前記
磁性材料を蒸発せしめる高周波誘導加熱手段とを備え、
前記基板を搬送しつつ前記基板に前記蒸気流を蒸着せし
めることにより該基板上に磁性薄膜を形成せしめる磁気
記録媒体の製造装置において、 前記蒸発源と前記高周波誘導加熱手段との間に該蒸発源
を取り囲む被誘導加熱部材を設け、該蒸発源の熱膨張係
数αcと前記被誘導加熱部材の熱膨張係数αiとがαc
>αiの関係にあることを特徴とする磁気記録媒体の製
造装置。
1. A transport means for transporting a long substrate along a predetermined path in a vacuum atmosphere, an evaporation source of a magnetic material disposed below the predetermined path, and an outer side of the evaporation source. High-frequency induction heating means for evaporating the magnetic material by heating by high-frequency induction heating surrounding the evaporation source,
An apparatus for manufacturing a magnetic recording medium for forming a magnetic thin film on a substrate by depositing the vapor stream on the substrate while transporting the substrate, wherein the evaporation source is disposed between the evaporation source and the high-frequency induction heating means. Is provided, and the thermal expansion coefficient αc of the evaporation source and the thermal expansion coefficient αi of the guided heating member are αc.
> Αi, a magnetic recording medium manufacturing apparatus.
【請求項2】 前記蒸発源の加熱状態において、前記蒸
発源の熱膨張係数αc(1/K)、外径Dc(mm)、
内壁面温度Tci(K)、外壁面温度Tco(K)、前
記被誘導加熱部材の熱膨張係数αi(1/K)、外径D
i(mm)、内壁面温度Tii(K)、外壁面温度Ti
o(K)の関係が t0 =Di・αi・(Tii+Tio)/2−Dc・α
c・(Tci+Tco)/2 であるとき、室温における前記蒸発源と前記被誘導加熱
部材との間隙tciが 0.5 ・tci≦t0 ≦2.0 ・tci の関係にあることを特徴とする請求項1記載の磁気記録
媒体の製造装置。
2. In the heating state of the evaporation source, the thermal expansion coefficient αc (1 / K) of the evaporation source, the outer diameter Dc (mm),
Inner wall surface temperature Tci (K), outer wall surface temperature Tco (K), coefficient of thermal expansion αi (1 / K) of the above-mentioned induced heating member, outer diameter D
i (mm), inner wall surface temperature Tii (K), outer wall surface temperature Ti
The relationship of o (K) is t 0 = Di · αi · (Tii + Tio) / 2−Dc · α
When c · (Tci + Tco) / 2, the gap t ci between the evaporation source and the induced heating member at room temperature has a relationship of 0.5 · t ci ≦ t 0 ≦ 2.0 · t ci. Item 2. An apparatus for manufacturing a magnetic recording medium according to Item 1.
【請求項3】 前記蒸発源と前記被誘導加熱材料との間
の隙間に、粒度0.3mm以下の金属、酸化物、炭化物、
窒化物およびホウ化物の少なくとも一つからなるパウダ
ー状充填材を充填することを特徴とする請求項1または
2記載の磁気記録媒体の製造装置。
3. A metal, oxide, carbide or the like having a particle size of 0.3 mm or less is provided in a gap between the evaporation source and the induced heating material.
3. The apparatus for manufacturing a magnetic recording medium according to claim 1, wherein a powdery filler comprising at least one of a nitride and a boride is filled.
【請求項4】 前記蒸発源と前記被誘導加熱材料との間
の隙間に、融点1600K以上の耐熱性部材が充填されてな
ることを特徴とする請求項1または2記載の磁気記録媒
体の製造装置。
4. The magnetic recording medium according to claim 1, wherein a gap between the evaporation source and the induction-heated material is filled with a heat-resistant member having a melting point of 1600 K or more. apparatus.
JP11928999A 1999-04-27 1999-04-27 Apparatus for production of magnetic recording medium Withdrawn JP2000311339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11928999A JP2000311339A (en) 1999-04-27 1999-04-27 Apparatus for production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11928999A JP2000311339A (en) 1999-04-27 1999-04-27 Apparatus for production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2000311339A true JP2000311339A (en) 2000-11-07

Family

ID=14757729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11928999A Withdrawn JP2000311339A (en) 1999-04-27 1999-04-27 Apparatus for production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2000311339A (en)

Similar Documents

Publication Publication Date Title
JP3555797B2 (en) Film forming apparatus and film forming method
US5679166A (en) Magnetic recording media, magnetic recording media fabrication method, and fabrication equipment
JP2003193220A (en) Method of vapor deposition onto film
JPH10154329A (en) Apparatus for production of magnetic recording medium
JP2000311339A (en) Apparatus for production of magnetic recording medium
JP2000311338A (en) Manufacturing device of magnetic recording medium
JP3516286B2 (en) Method and apparatus for manufacturing magnetic recording medium
JP2000339679A (en) Manufacturing device and manufacture of magnetic recording medium
JPH10112027A (en) Producing device of magnetic recording medium
JPH10124868A (en) Apparatus for production of magnetic recording medium
JPH10154327A (en) Device for producing magnetic recording medium
JPH10154325A (en) Apparatus for production of magnetic recording medium
JPH10124869A (en) Device for producing magnetic recording medium
JPH10154328A (en) Production of magnetic recording medium
JPH10124867A (en) Apparatus for production of magnetic recording medium
JP2000311337A (en) Apparatus for production of magnetic recording medium
JPH10154324A (en) Apparatus for production of magnetic recording medium
JP2000322738A (en) Apparatus for production of magnetic recording medium
JPH059849B2 (en)
JPH10154326A (en) Production of magnetic recording medium
JPH10124870A (en) Production of magnetic recording medium
JPH10143862A (en) Production of magnetic recording medium and apparatus therefor
JPH0562186A (en) Manufacture of magnetic recording medium
JPH09212858A (en) Production of magnetic recording medium and producing device therefor
JPH06215369A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704