JP2000309893A - Electrolytic refining method for copper - Google Patents

Electrolytic refining method for copper

Info

Publication number
JP2000309893A
JP2000309893A JP11113848A JP11384899A JP2000309893A JP 2000309893 A JP2000309893 A JP 2000309893A JP 11113848 A JP11113848 A JP 11113848A JP 11384899 A JP11384899 A JP 11384899A JP 2000309893 A JP2000309893 A JP 2000309893A
Authority
JP
Japan
Prior art keywords
copper
anode
slime
bottom plate
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11113848A
Other languages
Japanese (ja)
Inventor
Koji Ando
孝治 安藤
Hiroshi Furumi
廣志 古味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11113848A priority Critical patent/JP2000309893A/en
Publication of JP2000309893A publication Critical patent/JP2000309893A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic refining method for copper which executes processing without converting soluble components, such as of Cu powder, settled without being eluted in an electrolyte to slime in electrolytic refining of copper and reduces the processing load in a slime processing stage. SOLUTION: In the electrolytic refining of the copper which electrodeposits the copper on a cathode by using blister copper as an anode in an electrolytic cell and dissolving the blister copper in the electrolyte by energization, the bottom of the electrolytic cell is formed by using a bottom plate which is substantially composed of material which can be the insoluble anode. By the constitution described above, the electrolytic slime is deposited on the bottom plate and the bottom plate is electrically connected to the anode and is energized as the anode, by which the slime is dissolved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は銅の電解精製方法に
関する。
[0001] The present invention relates to a method for electrolytically refining copper.

【0002】[0002]

【従来の技術】銅などの金属の電解精製は、不純物を含
んだ粗金属からなるアノードと、目的とする金属を電析
させようとするカソードを、電解液を満たした電解槽に
装入し、これに通電することによって行われる。通電に
よってアノードから目的金属が溶出し、溶出した目的金
属がカソード上に電析する。一方、アノード中の不純物
は、アノードから電解液へ溶出し、電解液中に蓄積され
るものと、銅電解時の貴金属のように電解槽の底にスラ
イムとして沈積するものがある。
2. Description of the Related Art In the electrolytic refining of metals such as copper, an anode made of a crude metal containing impurities and a cathode for depositing a target metal are charged into an electrolytic cell filled with an electrolytic solution. This is done by energizing this. The target metal is eluted from the anode by energization, and the eluted target metal is deposited on the cathode. On the other hand, impurities in the anode are eluted from the anode into the electrolytic solution and are accumulated in the electrolytic solution, and others are deposited as slime on the bottom of the electrolytic cell like noble metals during copper electrolysis.

【0003】金銀等の貴金属は、ほとんどがスライム化
するため、これを別工程で処理することにより製品とし
て回収される。また、貴金属以外のスライムとなる不純
物でもなんらかの方法で回収可能であり、電解液に溶出
させるよりもスライムとする方が回収方法においては、
有利である場合が多い。
Most precious metals such as gold and silver are converted into slime, and are recovered as products by treating them in a separate process. In addition, even impurities that become slimes other than noble metals can be recovered by some method.
Often it is advantageous.

【0004】しかし、Asのようにスライム化する方法
よりも、電解排液からの電解採取等で容易に除去できる
成分や、Cuのように本来溶出しカソードに電析すべき
ものが、何らかの理由でスライム化している場合もあ
り、必ずしもスライム化し、別工程で処理することが有
利ではない。本来の可溶成分は電解液から直接回収する
ことが可能で、かつ安価であるため、無理にスライム化
する必要はない。これらの可溶成分をスライム化させた
場合、スライム中の可溶性分は、貴金属を回収するに先
立って酸溶解し、電解液へ還流することが行われる。こ
のため、工程が増えることとなり、また、貴金属仕掛か
りの増加原因にもなっていた。
However, for some reason, components which can be easily removed by electrowinning from an electrolytic wastewater or the like, such as Cu, which should be eluted and should be deposited on the cathode, for some reason, than the slime-forming method such as As. In some cases, it may be slimeed, and it is not always advantageous to slime it and treat it in a separate step. The original soluble component can be directly recovered from the electrolytic solution and is inexpensive, so that it is not necessary to forcibly convert it into slime. When these soluble components are converted into slime, the soluble components in the slime are dissolved in an acid prior to the recovery of the noble metal, and refluxed to the electrolyte. For this reason, the number of processes is increased, and this is also a cause of an increase in the amount of in-process precious metals.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、電解
液に溶出せずに沈降するCu粉等の可溶成分をスライム
化せずに処理を行い、スライム処理工程での処理負荷を
低減する銅の電解精製方法を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the processing load in a slime treatment step by treating a soluble component such as Cu powder which does not elute in an electrolyte solution and does not slime. The present invention provides a method for electrolytically refining copper.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明ではスライムとして電槽内に沈降している
間に可溶成分の溶出を行なわせることとした。本発明
は、電解槽中で粗銅をアノードとして通電し、電解液中
に溶解させ、カソードに銅を電析させる銅の電解精製に
おいて、電解槽の底部を不溶性アノードとなり得る材質
で実質的に構成する底板を使用する。具体的には、底部
に鉛、チタンなどのシート上の金属を敷き込むことが実
用的である。前述のように構成し、電解スライムを前記
底板上に堆積させ、前記底板をアノードと電気的に接続
させ、陽極として通電することにより、スライムを溶解
させることができる。
In order to solve the above-mentioned problems, in the present invention, a soluble component is eluted while settling in a battery case as slime. In the present invention, in the electrolytic refining of copper in which electrolytic copper is supplied with blister copper as an anode, dissolved in an electrolytic solution, and copper is deposited on a cathode, the bottom of the electrolytic cell is substantially made of a material that can be an insoluble anode. Use the bottom plate to do. Specifically, it is practical to lay a metal on a sheet such as lead or titanium at the bottom. The slime can be dissolved by forming as described above, depositing electrolytic slime on the bottom plate, electrically connecting the bottom plate to the anode, and supplying electricity as the anode.

【0007】さらに、底板の上方に、不溶性アノードと
なり得る材質からなる網を取り付け、粗大スライムを前
記網上に堆積させ、前記網を電気的に陽極として通電す
ることによって、より溶解を促進させることができる。
Further, a mesh made of a material that can be an insoluble anode is attached above the bottom plate, and coarse slime is deposited on the mesh, and the mesh is electrically supplied as an anode to further promote dissolution. Can be.

【0008】[0008]

【発明の実施の形態】アノードから溶出すべきCuで
も、何らかの理由により電槽に沈降するものが有る。こ
れらを溶解するには、チタンボックス等に入れてアノー
ドとして再度電解するか、エアーの存在下で浸出するこ
とが効果的であると考えられる。しかし、別の容器に移
し替えるならば最初からスライムとして処理することと
同じであり意味はない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Some of the Cu to be eluted from the anode may settle in the battery case for some reason. In order to dissolve them, it is considered effective to place them in a titanium box or the like and conduct electrolysis again as an anode, or to leaching them in the presence of air. However, if it is transferred to another container, it is the same as treating it as slime from the beginning, and it is meaningless.

【0009】一方、電解精製の実操業においては、スラ
イムは10〜20日の通電期間中は槽底に沈降したまま
であることが多い。この時間を有効に利用して徐々にス
ライム中の可溶性金属を浸出することができれば、スラ
イム処理にかかるコストを削減できる。しかし、槽底に
エアーを吹込むことは、沈降したスライムを浮遊させ、
製品電気銅への不純物の混入や、あるいはエアーによる
ピンホールの発生等製品の外観品質低下の原因となる。
On the other hand, in the actual operation of electrolytic refining, slime often remains settled at the bottom of the tank during the energization period of 10 to 20 days. If the soluble metal in the slime can be gradually leached by effectively utilizing this time, the cost for the slime treatment can be reduced. However, blowing air into the tank bottom floats the settled slime,
This may cause deterioration of the appearance quality of the product such as mixing of impurities into the product copper or generation of pinholes due to air.

【0010】これに対して、本発明者らは、電解槽の底
に不溶性の材質からなる底板を置き、その上にスライム
が沈降することで、Cu等可溶成分を浸出出来ることを
見出した。この底板の材質は、例えば銅電解の場合には
鉛やチタンなどが適当である。この材質を電気的にアノ
ードとして接続する。電槽の底にアノードが存在して
も、粗銅アノードの方はカソードとの距離や過電圧等で
優位であるため、ほとんどの電流は粗銅アノードの方へ
流れる。したがって、底板からのガス発生とその影響は
無視出来る程度であるにもかかわらず、底板アノード表
面での電位は高く、充分な浸出が可能である。さらに、
底板の上方に、不溶性アノードとなり得る材質からなる
網を取り付け、粗大スライムを前記網上に堆積させ、前
記網を電気的に陽極として通電することによって、より
溶解を促進させることができる。この網の位置は、底板
から上方に離れるほど、溶解が促進されるが、あまりア
ノード、カソードに近づけると、網を通過する電流量が
多くなり、本来の電解精製操業を阻害することとなる。
On the other hand, the present inventors have found that a bottom plate made of an insoluble material is placed on the bottom of an electrolytic cell, and slime is settled on the bottom plate, so that soluble components such as Cu can be leached out. . For the material of the bottom plate, for example, in the case of copper electrolysis, lead or titanium is appropriate. This material is electrically connected as an anode. Even if the anode is present at the bottom of the battery case, most of the current flows toward the blister copper anode because the blister copper anode is superior in terms of distance to the cathode and overvoltage. Therefore, although the gas generation from the bottom plate and its influence are negligible, the potential on the anode surface of the bottom plate is high and sufficient leaching is possible. further,
By disposing a net made of a material that can be an insoluble anode above the bottom plate, depositing coarse slime on the net, and electrically passing the net as an anode, dissolution can be further promoted. Dissolution is promoted as the position of the mesh is increased upward from the bottom plate. However, if the mesh is too close to the anode and the cathode, the amount of current passing through the mesh increases, and the original electrolytic refining operation is hindered.

【0011】[0011]

【実施例】(従来例)アノードとして、電極面積が幅1
40mm、長さ140mm、重量4.4Kgの大きさに
鋳造した粗銅を用いた。鋳造時の組成は、Cu:99.
2wt%、As:0.07wt%、Sb:0.04wt
%、Bi:0.02wt%、Pb:0.05wt%であ
った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Conventional example) As an anode, the electrode area is 1 width.
Bronze cast to a size of 40 mm, a length of 140 mm, and a weight of 4.4 kg was used. The composition at the time of casting was Cu: 99.
2 wt%, As: 0.07 wt%, Sb: 0.04 wt
%, Bi: 0.02 wt%, and Pb: 0.05 wt%.

【0012】カソードには、厚さ0.7mmの電解銅板
を電極面積が140mm*140mmの大きさになるよ
う切断して使用した。
For the cathode, an electrolytic copper plate having a thickness of 0.7 mm was cut so as to have an electrode area of 140 mm * 140 mm.

【0013】アノード1枚とカソード2枚を面間距離が
20mmになるように電解槽に装入した。
One anode and two cathodes were placed in an electrolytic cell so that the distance between the surfaces was 20 mm.

【0014】電解槽は幅200mm、長さ260mm、
深さ260mmのポリ塩化ビニル製のものを使用した。
この電槽の排液に容量5リットルの貯液槽をつなぎ、貯
液槽の排液を定量ポンプを使用して電解液を50ml/
minで循環した。
The electrolytic cell has a width of 200 mm, a length of 260 mm,
A thing made of polyvinyl chloride with a depth of 260 mm was used.
A drainage tank having a capacity of 5 liters was connected to the drainage of the battery tank, and the drainage of the storage tank was discharged at a rate of 50 ml / ml using a constant volume pump.
circulated in min.

【0015】電解液は、Cu45g/l、硫酸190g
/lの組成とし、液温は60℃とした。なお、添加剤は
使用しなかった。
The electrolytic solution is Cu 45 g / l, sulfuric acid 190 g
/ L and a liquid temperature of 60 ° C. Note that no additives were used.

【0016】電流密度250A/m2で240時間通電
した。
Electric current was applied at a current density of 250 A / m 2 for 240 hours.

【0017】通電終了後、槽底のスライムを採取し、洗
浄ならびに乾燥して分析した。分析結果を表1に示す。 (実施例1)従来例と同様の電解条件で通電した。ただ
し、電槽の底全面(200mm*260mm)に厚さ4
mmのPb製の板を敷き、電気的にアノードと接続し
た。電解中に底板に流れた電流は、全体の約10%であ
った。通電終了後、槽底のスライムを採取し、洗浄なら
びに乾燥して分析した。分析結果を表1に示す。 (実施例2)従来例と同様の電解条件で通電した。ただ
し、底板の上部10mmとなる位置に200メッシュの
チタン製の網を取り付け、粗大なスライムがチタン網上
に引っかかるようにした。網も電気的に底板ならびにア
ノードに接続した。電解中に底板ならびに網に流れた電
流は全体の約10%であった。通電後チタン網ならびに
底板上のスライムを回収して分析した。分析結果を表1
に示す。
After the completion of the current supply, the slime at the bottom of the tank was collected, washed, dried and analyzed. Table 1 shows the analysis results. (Example 1) Electricity was supplied under the same electrolysis conditions as in the conventional example. However, a thickness of 4 mm is applied to the entire bottom of the battery case (200 mm * 260 mm).
mm Pb plate was spread and electrically connected to the anode. The current flowing to the bottom plate during electrolysis was about 10% of the whole. After the completion of the energization, the slime at the bottom of the tank was collected, washed, dried and analyzed. Table 1 shows the analysis results. (Example 2) Electricity was supplied under the same electrolysis conditions as in the conventional example. However, a titanium mesh of 200 mesh was attached at a position 10 mm above the bottom plate, so that coarse slime was caught on the titanium mesh. The mesh was also electrically connected to the bottom plate as well as the anode. The current flowing through the bottom plate and the net during electrolysis was about 10% of the whole. After energization, the titanium net and the slime on the bottom plate were collected and analyzed. Table 1 shows the analysis results
Shown in

【0018】表1に従来例、各実施例で得られたスライ
ムの組成を示す。なお各成分の品位は重量%である。本
発明による実施例1、2では、通常の場合である従来例
と比べて、スライム中に存在するCuならびにAsを約
70〜90%除去できた。
Table 1 shows the composition of the slime obtained in the conventional example and each example. The quality of each component is% by weight. In Examples 1 and 2 according to the present invention, about 70 to 90% of Cu and As present in the slime could be removed as compared with the conventional example which is a normal case.

【0019】[0019]

【発明の効果】本発明により、アノードスライムが槽底
に沈降している間に効果的にCu等可溶成分の浸出を行
なうことが出来、スライム処理工程での負荷を減少でき
るようになった。
According to the present invention, soluble components such as Cu can be effectively leached while the anode slime is settling at the bottom of the tank, and the load in the slime treatment step can be reduced. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解槽中で粗銅をアノードとして通電
し、電解液中に溶解させ、カソードに銅を電析させる銅
の電解精製において、電解槽の底部を不溶性アノードと
なり得る材質で実質的に底板を構成し、電解スライムを
前記底板上に堆積させ、前記底板を電気的に陽極として
通電することにより、スライムの溶解を促進させること
を特徴とする銅の電解精製方法。
In the electrolytic refining of copper, which is energized by using crude copper as an anode in an electrolytic cell, is dissolved in an electrolytic solution, and deposits copper on a cathode, the bottom of the electrolytic cell is made of a material which can be an insoluble anode. A method for electrolytically refining copper, comprising forming a bottom plate, depositing electrolytic slime on the bottom plate, and energizing the bottom plate as an anode to promote dissolution of the slime.
【請求項2】 底板の上方に、不溶性アノードとなり得
る材質からなる網を取り付け、粗大スライムを前記網上
に堆積させ、前記網を電気的に陽極として通電すること
を特徴とする請求項1記載の銅の電解方法。
2. The method according to claim 1, wherein a net made of a material that can be an insoluble anode is attached above the bottom plate, and coarse slime is deposited on the net, and the net is electrically used as an anode to conduct electricity. Copper electrolysis method.
JP11113848A 1999-04-21 1999-04-21 Electrolytic refining method for copper Pending JP2000309893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11113848A JP2000309893A (en) 1999-04-21 1999-04-21 Electrolytic refining method for copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11113848A JP2000309893A (en) 1999-04-21 1999-04-21 Electrolytic refining method for copper

Publications (1)

Publication Number Publication Date
JP2000309893A true JP2000309893A (en) 2000-11-07

Family

ID=14622587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11113848A Pending JP2000309893A (en) 1999-04-21 1999-04-21 Electrolytic refining method for copper

Country Status (1)

Country Link
JP (1) JP2000309893A (en)

Similar Documents

Publication Publication Date Title
JP4723579B2 (en) System and method for producing copper powder by electrowinning in a once-through electrowinning cell
JP3135000B2 (en) Method for producing copper metal powder, copper oxide and copper foil
CN101575715B (en) Method for extracting valuable metals from electronic waste
JP4298712B2 (en) Method for electrolytic purification of copper
Cooper Advances and future prospects in copper electrowinning
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
CN107177865A (en) Process for separating lead and bismuth from high-bismuth lead alloy
JPS6323274B2 (en)
US4612093A (en) Method and apparatus for purification of gold
PL111879B1 (en) Method of recovery of copper from diluted acid solutions
JPH1180986A (en) Removing copper from nickel chloride solution containing copper
KR101844771B1 (en) A method recovered of high purity copper and valuable metal from the crude copper
AU701369B2 (en) Silver electrolysis method in moebius cells
US5948140A (en) Method and system for extracting and refining gold from ores
AU663798B2 (en) Process for continuous electrochemical lead refining
JP2000309893A (en) Electrolytic refining method for copper
JP4323297B2 (en) Method for producing electrolytic copper powder
RU2181780C2 (en) Method for extracting gold from gold containing polymetallic materials
JPH07243081A (en) Method for recovering rhodium from copper sulfate solution
JPH09176887A (en) Electrorefining method of copper
CN108914157B (en) A kind of technique that high antimonial lead separates lead, antimony, silver
JP3875548B2 (en) Electrolyte purification method
RU2553319C1 (en) Method of metal powder manufacturing by electrolysis
JP2570076B2 (en) Manufacturing method of high purity nickel
RU2743195C1 (en) Method of extraction of gold and regeneration of cathodes