JP2000301294A - PRODUCTION OF HYPER-EUTECTIC Al-Fe BASE ALLOY CONTINUOUSLY CAST AND ROLLED COIL - Google Patents

PRODUCTION OF HYPER-EUTECTIC Al-Fe BASE ALLOY CONTINUOUSLY CAST AND ROLLED COIL

Info

Publication number
JP2000301294A
JP2000301294A JP10928699A JP10928699A JP2000301294A JP 2000301294 A JP2000301294 A JP 2000301294A JP 10928699 A JP10928699 A JP 10928699A JP 10928699 A JP10928699 A JP 10928699A JP 2000301294 A JP2000301294 A JP 2000301294A
Authority
JP
Japan
Prior art keywords
less
rolling
thickness
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10928699A
Other languages
Japanese (ja)
Inventor
Takenobu Doko
武宜 土公
Akio Niikura
昭男 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10928699A priority Critical patent/JP2000301294A/en
Publication of JP2000301294A publication Critical patent/JP2000301294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a coil obtd. by continuously casting a hyper-eutectic Al-Fe base alloy to be made extremely thin in thickness to a specified thickness or below by further applying cold-rolling, and to prevent the occurrence of defect such as pin hole. SOLUTION: In this producing method, the hyper-eutectic Al-Fe base alloy containing 1.7-3.2 wt.% Fe is continuously cast and rolled to 2 mm-4.5 mm thickness under condition of 680-780 deg.C molten metal temp. and >=7 KN/mm of the width. Further, the cold-rolling is applied to obtain the continuously cast and rolled coil for producing the aluminum alloy thin sheet having <=100 μm thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧延性に優れた過
共晶Al−Fe系合金連続鋳造圧延コイルの製造方法に
関するものであり、さらに詳しくは、100μm以下の
厚さまで冷間圧延可能な過共晶Al−Fe系合金連続鋳
造圧延コイルを得るための製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a continuously cast and rolled hypereutectic Al--Fe alloy having excellent rollability, and more particularly to a method for cold rolling to a thickness of 100 .mu.m or less. The present invention relates to a method for producing a hypereutectic Al-Fe alloy continuous cast and rolled coil.

【0002】[0002]

【従来の技術】アルミニウム合金にFe成分を添加する
と、強度や耐熱性が向上することからアルミニウム合金
箔やアルミニウム合金フィン材にFe成分を添加するこ
とはよく行われている。アルミニウム合金中でのFeの
固溶量は少ないために、DC(ダイキャスト)鋳造を行
うと鋳造時にFeを含有する粗大な金属間化合物が生
じ、成形性等に悪影響を及ぼす。そのため、冷却速度を
上げて、鋳造時に生じる金属間化合物を微細化させる製
造方法として、10mm程度より薄い板をアルミニウム
合金溶湯から直接製造する連続鋳造圧延法が行われてい
る。連続鋳造圧延法では鋳造時の冷却速度が速いため
に、1wt%(以下、wt%を単に%という)以上のF
eを添加したアルミニウム合金でも金属間化合物を微細
化することが可能であり、得られた合金の強度は高いた
めにフィン材の薄肉化に適しており、また、耐熱性が高
いために箔圧延時に加工発熱で軟化しにくく箔圧延性が
向上したものとなっている。しかし、特性をさらに向上
させるために、さらにFeを添加し、過共晶のAl−F
e系合金とした場合は、連続鋳造コイルから100μm
以下に極薄に圧延するとピンホールが発生したり、さら
にひどいものでは厚み100μmに至る前に圧延中に破
断してしまい圧延ができないこともある。
2. Description of the Related Art When an Fe component is added to an aluminum alloy, strength and heat resistance are improved, so that an Fe component is often added to an aluminum alloy foil or an aluminum alloy fin material. Since the solid solution amount of Fe in the aluminum alloy is small, when DC (die casting) casting is performed, a coarse intermetallic compound containing Fe is generated at the time of casting, which has an adverse effect on formability and the like. Therefore, as a manufacturing method for increasing the cooling rate and miniaturizing intermetallic compounds generated at the time of casting, a continuous casting and rolling method for directly manufacturing a sheet thinner than about 10 mm from a molten aluminum alloy is performed. In the continuous casting and rolling method, the cooling rate at the time of casting is high, so that the F content is not less than 1 wt% (hereinafter, wt% is simply referred to as%).
It is possible to refine the intermetallic compound even with an aluminum alloy to which e is added, and the strength of the obtained alloy is high, which is suitable for thinning the fin material. In addition, since the heat resistance is high, foil rolling is performed. Sometimes it is difficult to soften due to the heat generated during processing, and the foil rollability is improved. However, in order to further improve the characteristics, Fe is further added, and the hypereutectic Al-F
When using e-based alloy, 100μm from continuous casting coil
In the following, when the material is rolled to an extremely thin thickness, pinholes may be generated, and in the case of a more severe material, the material may break during rolling before reaching a thickness of 100 μm, and may not be rolled.

【0003】[0003]

【発明が解決しようとする課題】したがって本発明は、
過共晶Al−Fe系合金から連続鋳造して得たコイル
を、さらに冷間圧延によって厚さ100μm以下に極め
て薄肉化することができ、ピンホールなどの欠陥の発生
を防止しうる、過共晶Al−Fe系合金連続鋳造圧延コ
イルの製造方法を提供することを目的とする。
Accordingly, the present invention provides
A coil obtained by continuous casting from a hypereutectic Al-Fe alloy can be extremely thinned to a thickness of 100 μm or less by cold rolling, and can prevent the occurrence of defects such as pinholes. It is an object of the present invention to provide a method for producing a continuous cast-rolled coil of a monocrystalline Al-Fe alloy.

【0004】[0004]

【課題を解決するための手段】本発明は、箔やフィン材
として使用可能な厚さである100μm以下に圧延可能
な過共晶Al−Fe系合金コイルを製造するための、連
続鋳造圧延方法についてなされたものである。すなわち
本発明は、(1)1.7%以上3.2%以下のFeを含
有した過共晶Al−Fe系合金を、溶湯温度を680℃
以上780℃以下として、幅1mmあたり7kN以上の
荷重をかけて、厚さ2mm以上4.5mm以下に連続鋳
造圧延することを特徴とする厚さ100μm以下のアル
ミニウム合金薄板製造用の連続鋳造圧延コイルの製造方
法、(2)溶湯温度を合金の液相線温度より40℃以上
かつ90℃以下の温度範囲だけ高くすることを特徴とす
る請求項1記載のアルミニウム合金薄板製造用の連続鋳
造圧延コイルの製造方法、及び(3)過共晶Al−Fe
系合金を、1.2%以下のSi、3.0%以下のCo、
0.3%以下のZr、0.3%以下のTi、6%以下の
Zn、0.3%以下のIn、0.3%以下のSn、1%
以下のCu、1.3%以下のMn、1%以下のMgのう
ち1種または2種以上および不可避的不純物を含有した
過共晶Al−Fe系合金とすることを特徴とする(1)
または(2)項記載のアルミニウム合金薄板製造用の連
続鋳造圧延コイルの製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a continuous casting and rolling method for producing a hypereutectic Al-Fe alloy coil which can be rolled to a thickness of 100 μm or less, which can be used as a foil or a fin material. It was made about. That is, the present invention provides (1) a hypereutectic Al-Fe-based alloy containing 1.7% or more and 3.2% or less Fe at a molten metal temperature of 680 ° C.
A continuous cast and rolled coil for manufacturing an aluminum alloy thin plate having a thickness of 100 μm or less, wherein the coil is continuously cast and rolled to a thickness of 2 mm or more and 4.5 mm or less while applying a load of 7 kN or more per 1 mm width at a temperature of not less than 780 ° C. 2. A continuous cast and rolled coil for manufacturing an aluminum alloy sheet according to claim 1, wherein (2) the temperature of the molten metal is higher than the liquidus temperature of the alloy by a temperature range of 40 ° C. or more and 90 ° C. or less. And (3) hypereutectic Al-Fe
The base alloy is made of 1.2% or less of Si, 3.0% or less of Co,
0.3% or less Zr, 0.3% or less Ti, 6% or less Zn, 0.3% or less In, 0.3% or less Sn, 1%
(1) A hypereutectic Al-Fe alloy containing one or more of Cu, Mn of 1.3% or less, and Mg of 1% or less and inevitable impurities.
Another object of the present invention is to provide a method for producing a continuous cast and rolled coil for producing an aluminum alloy sheet as described in (2).

【0005】[0005]

【発明の実施の形態】本発明の製造方法について以下に
説明する。本発明は過共晶Al−Fe系合金を対象とす
る。該合金から、通常のDC鋳造法や従来の連続鋳造圧
延では、特性が優れた薄板を製造できないためである。
ここで、Fe含有量を1.7%以上3.2%以下とした
のは、1.7%未満の場合、従来からの連続鋳造圧延条
件でコイルの製造ができるためである。また、3.2%
を越えると鋳造時に合金が共晶温度まで過冷しきれなく
なり、本発明方法を用いても、100μm以下の薄板ま
で圧延できる板が得られなくなることがあるので、Fe
の上限を3.2%とする。過共晶となるFe量の下限は
一緒に添加される他の元素により若干変化するが、工業
的に溶湯を製造する際にはばらつきがあるために、1.
7%以上の場合に本発明の方法が有効となる。以上の過
共晶Al−Fe系合金には、最終的に得られる薄板の用
途などに応じて種々の元素を本発明の目的の効果を損な
わない範囲で含有してもよい。例えば、1.2%以下の
Si、3.0%以下のCo、0.3%以下のZr、0.
3%以下のTi、6%以下のZn、0.3%以下のI
n、0.3%以下のSn、1%以下のCu、1.3%以
下のMn、1%以下のMgのうち1種または2種以上お
よび不可避的不純物を含有してもよい。これらの元素は
主として合金を箔としたりフィン材とする際に特性上重
要な働きを示すものである。上記範囲内であれば、本発
明の製造方法を適用可能であるが、後述する金属間化合
物の生成を減らすことと、合金の鋳造時の割れ性を抑え
る上で、それぞれ0.7%以下のSi、2.0%以下の
Co、0.2%以下のZr、0.2%以下のTi、2%
以下のZn、0.1%以下のIn、0.1%以下のS
n、0.5%以下のCu、0.6%以下のMn、0.3
%以下のMgにすることが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The manufacturing method of the present invention will be described below. The present invention is directed to a hypereutectic Al-Fe alloy. This is because a thin plate having excellent properties cannot be produced from the alloy by a normal DC casting method or a conventional continuous casting and rolling method.
Here, the reason why the Fe content is set to 1.7% or more and 3.2% or less is that when the Fe content is less than 1.7%, the coil can be manufactured under the conventional continuous casting and rolling conditions. In addition, 3.2%
If the temperature exceeds 300 ° C., the alloy cannot be supercooled to the eutectic temperature during casting, and even if the method of the present invention is used, a sheet that can be rolled to a sheet having a thickness of 100 μm or less may not be obtained.
Is set to 3.2%. The lower limit of the amount of Fe that becomes hypereutectic varies slightly depending on other elements added together. However, there is a variation in manufacturing a molten metal industrially.
When it is 7% or more, the method of the present invention is effective. The hypereutectic Al-Fe-based alloy may contain various elements depending on the use of the finally obtained thin plate, etc., within a range that does not impair the effects of the present invention. For example, 1.2% or less of Si, 3.0% or less of Co, 0.3% or less of Zr, 0.
3% or less Ti, 6% or less Zn, 0.3% or less I
n, 0.3% or less of Sn, 1% or less of Cu, 1.3% or less of Mn, or 1% or less of Mg, and may contain unavoidable impurities. These elements exhibit important functions in terms of characteristics when mainly forming an alloy into a foil or a fin material. Within the above range, the production method of the present invention can be applied. However, in order to reduce the generation of intermetallic compounds described below and to suppress cracking during casting of the alloy, each is 0.7% or less. Si, 2.0% or less Co, 0.2% or less Zr, 0.2% or less Ti, 2%
Zn below, In below 0.1%, S below 0.1%
n, Cu of 0.5% or less, Mn of 0.6% or less, 0.3
% Of Mg is preferable.

【0006】本発明では、上記合金溶湯を溶湯温度を6
80℃以上780℃以下として、幅(横幅)1mmあた
り7kN以上の荷重をかけて、厚さ2mm以上4.5m
m以下に連続鋳造圧延する。本発明で用いる過共晶Al
−Fe系合金の場合、従来、連続鋳造圧延した際に初晶
としてAl−Fe系等のFeを含有する金属間化合物を
晶出し、この金属間化合物の集合状態によって連続鋳造
圧延以降の冷間圧延の際に割れ等が生じるのである。ち
なみにDC鋳造を行う製造工程では、DC鋳造時の冷却
速度は連続鋳造圧延より小さいために、連続鋳造圧延と
は比較にならない大きさの金属間化合物が生じ、圧延時
にピンホールや割れが起こる。ここで、溶湯温度が68
0℃未満の場合、合金の固相線温度に溶湯温度が近いた
めに、連続鋳造圧延時の凝固状態が、ロール表面の微妙
な温度ばらつき等の微妙な条件変化により簡単に変化
し、コイル内での材料の特性に変化を与えていることが
推定される。また、780℃を越えると、連続鋳造圧延
機の冷却能力が不足して、板厚方向の中心部にFeを含
有する金属間化合物が生じ、ピンホールや割れの原因と
なる上、エネルギー的にも無駄である。なお、ここで溶
湯温度とは鋳造機のヘッドボックスの温度と定義する。
ヘッドボックスとはノズルに溶湯を供給する直前に設け
られ、湯を安定して供給するために湯をプールしておく
部分である。
According to the present invention, the above alloy melt is heated to a temperature of 6
At a temperature of 80 ° C. or more and 780 ° C. or less, a load of 7 kN or more per 1 mm of width (width) is applied, and a thickness of 2 mm to 4.5 m is applied.
m and continuous casting and rolling. Hypereutectic Al used in the present invention
Conventionally, in the case of an Fe-based alloy, an intermetallic compound containing Fe, such as an Al-Fe system, is crystallized as a primary crystal during continuous casting and rolling. Cracks and the like occur during rolling. Incidentally, in the manufacturing process of DC casting, since the cooling rate at the time of DC casting is lower than that of continuous casting and rolling, an intermetallic compound having a size incomparable with that of continuous casting and rolling is generated, and pinholes and cracks occur at the time of rolling. Here, the molten metal temperature is 68
If the temperature is less than 0 ° C., the solidification state during continuous casting and rolling changes easily due to subtle changes in conditions such as subtle temperature variations on the roll surface because the molten metal temperature is close to the solidus temperature of the alloy. It is presumed that the properties of the material are changed. On the other hand, when the temperature exceeds 780 ° C., the cooling capacity of the continuous casting and rolling mill is insufficient, and an intermetallic compound containing Fe is formed at the center in the sheet thickness direction, which causes pinholes and cracks, and also has an energy problem. Is also useless. Here, the molten metal temperature is defined as the temperature of the head box of the casting machine.
The head box is provided immediately before the molten metal is supplied to the nozzle, and is a part for pooling the molten metal in order to stably supply the molten metal.

【0007】以上の理由で溶湯温度を680℃以上78
0℃以下とするが、さらに、溶湯温度を合金の液相線温
度より40℃以上かつ90℃以下の温度範囲だけ高くす
ることが本発明では推奨される。溶湯温度と液相線温度
との温度差が40℃未満の場合、連続鋳造圧延の溶湯を
ロール間に供給するノズル部分で冷却されてFeを含有
する金属間化合物が生じ、それがときどきロール間の溶
湯に流れ込んでそのまま板材中に入り、ピンホールや割
れの原因となるためである。また、液相線より90℃を
越える溶湯温度の場合、合金溶湯を共晶温度まで過冷却
することができず、過共晶のAl−Fe系金属間化合物
が冷却の最初に粗大に生じ、これが、ピンホールや割れ
の原因となるためである。このような温度の過共晶Al
−Fe系合金溶湯を幅1mmあたり7kN以上の荷重下
に、厚さ2mm以上4.5mm以下に連続鋳造圧延す
る。
For the above reasons, the temperature of the molten metal is set to 680 ° C. to 78
In the present invention, it is recommended that the temperature of the molten metal be higher than the liquidus temperature of the alloy by a temperature range of 40 ° C. or more and 90 ° C. or less. When the temperature difference between the molten metal temperature and the liquidus temperature is less than 40 ° C., the molten metal of the continuous casting and rolling is cooled at the nozzle portion for supplying the molten metal between the rolls, and an Fe-containing intermetallic compound is generated. And flows into the plate material as it is, causing pinholes and cracks. Further, when the temperature of the molten metal exceeds 90 ° C. from the liquidus line, the molten alloy cannot be supercooled to the eutectic temperature, and hypereutectic Al-Fe-based intermetallic compounds are generated coarsely at the beginning of cooling. This causes pinholes and cracks. Hypereutectic Al at such a temperature
-Continuous casting and rolling of the molten Fe-based alloy to a thickness of 2 mm or more and 4.5 mm or less under a load of 7 kN or more per 1 mm in width.

【0008】連続鋳造圧延の厚さは厚いほど、連続鋳造
圧延時に生じる表面等の欠陥が少なく、トラブルが生じ
にくいために、工業的には5mm〜10mm程度が一般
に用いられている。本発明の課題としている過共晶Al
−Fe系合金の場合、厚さが大きい場合みかけ上欠陥が
なく正常なコイルが製造できるが、冷間圧延の工程で割
れやピンホールが発生する。これは、過共晶Al−Fe
系合金の場合、初晶としてAl−Fe系等のFeを含有
する金属間化合物を晶出することがあるが、連続鋳造圧
延の厚さが大きいと合金全体が過冷却されて凝固せず
に、板の厚さ方向中央部に金属間化合物が偏析するが、
この金属間化合物の集合状態によって、冷間圧延工程で
割れやピンホールが発生しやすくなることが原因してい
ると考えられる。連続鋳造時の厚さが4.5mmを越え
ると、過冷却が不十分で上記金属間化合物の偏析が発生
しやすくなるのである。また、厚さ2mm未満では連続
鋳造圧延時点で割れや板厚変動が発生し、後の冷間圧延
に供するコイルを製造できない。
As the thickness of the continuous casting and rolling is larger, defects such as a surface and the like generated during the continuous casting and rolling are less and troubles are less likely to occur. Therefore, about 5 mm to 10 mm is generally used industrially. Hypereutectic Al as the subject of the present invention
In the case of an Fe-based alloy, if the thickness is large, a normal coil can be manufactured without apparent defects, but cracks and pinholes are generated in the cold rolling process. This is hypereutectic Al-Fe
In the case of a system alloy, an intermetallic compound containing Fe such as an Al-Fe system may be crystallized as a primary crystal, but if the thickness of continuous casting and rolling is large, the entire alloy is supercooled and does not solidify. , The intermetallic compound segregates at the center in the thickness direction of the plate,
It is considered that the aggregation state of the intermetallic compound causes cracks and pinholes to be easily generated in the cold rolling step. If the thickness during continuous casting exceeds 4.5 mm, the supercooling is insufficient and segregation of the intermetallic compound is likely to occur. On the other hand, if the thickness is less than 2 mm, cracks and sheet thickness fluctuations occur at the time of continuous casting and rolling, and it is not possible to manufacture a coil to be used for subsequent cold rolling.

【0009】このような板厚の連続鋳造圧延コイルを製
造するに当たり、幅1mmあたり7kN以上の荷重をか
ける条件で製造することが必要である。従来の連続鋳造
圧延での荷重は3kN/mm程度であるが、これを越え
る荷重をかける理由は以下の通りである。従来法におい
て圧延荷重が7kN/mm未満の場合、凝固の界面1、
2は図1(A)に模式的に示したようにロールの中心軸
(鋳造品の中心)に近い位置で凝固が完了する形にな
る。対して本発明の条件ではロールの中心軸から遠い位
置で凝固が完了する。さらに、図1(A)の凝固界面は
断面方向から模式的に示したものであるが、それを上方
向から見た板幅方向での凝固界面は図1(B)の1、2
に示したように波打った形となっている。この波の大き
さは圧延荷重が小さいほど大きい。そして、この圧延荷
重が小さすぎると、すなわち7kN/mm未満では、こ
のように波打っている中で、ロール中心軸に近い位置で
凝固が完了する界面部分では未凝固の液相にFeが濃化
されやすくなり、濃化したFeにより局部的にFe成分
が多い組成となったことにより、過冷却が生じにくくな
り、過共晶Feを原因とする金属間化合物を密に発生す
ると考えられる。この金属間化合物の集合が冷間圧延時
に割れやピンホールの原因となる。以上より、本発明で
は幅1mmあたり7kN以上の荷重をかけて連続鋳造圧
延するものとするが、その上限は連続鋳造圧延装置の設
備によって定まる限界までとする。
In manufacturing a continuous cast rolled coil having such a thickness, it is necessary to manufacture the coil under a condition of applying a load of 7 kN or more per 1 mm in width. The load in the conventional continuous casting and rolling is about 3 kN / mm, but the reason for applying a load exceeding this is as follows. In the conventional method, when the rolling load is less than 7 kN / mm, the solidification interface 1,
As shown in FIG. 1A, solidification 2 is completed at a position near the center axis of the roll (the center of the casting). On the other hand, under the conditions of the present invention, solidification is completed at a position far from the center axis of the roll. Further, the solidification interface in FIG. 1 (A) is schematically shown from the cross-sectional direction, and the solidification interface in the plate width direction when viewed from above is indicated by 1, 2 in FIG. 1 (B).
It has a wavy shape as shown in Fig. The magnitude of this wave increases as the rolling load decreases. If the rolling load is too small, that is, if the rolling load is less than 7 kN / mm, Fe is concentrated in the unsolidified liquid phase at the interface portion where solidification is completed at a position close to the roll central axis in such waving. It is considered that super-cooling is unlikely to occur due to the increased localization of the Fe component locally due to the concentrated Fe, so that intermetallic compounds caused by hypereutectic Fe are generated densely. This aggregation of intermetallic compounds causes cracks and pinholes during cold rolling. As described above, in the present invention, continuous casting and rolling is performed by applying a load of 7 kN or more per 1 mm in width, but the upper limit is set to a limit determined by equipment of a continuous casting and rolling device.

【0010】ここで、連続鋳造圧延法とはハンター法、
3C法等で知られるアルミニウム合金の鋳造圧延方法で
あり、直接圧延と呼ばれることもある。本発明で製造し
た連続鋳造圧延コイルは、冷間圧延により100μm以
下の薄板とするためのものである。100μm以下に圧
延する際に生じる問題を解決した発明であるから、当
然、100μmを越える厚さの材料として圧延すること
は可能であるが、本発明の製造条件で得られる金属組織
が特性上必要でない限りは、わざわざ本発明の条件で製
造したコイルを使用する必要は通常はない。本発明の製
造条件は連続鋳造圧延法で特殊な圧延荷重条件で薄い板
を製造するものであり、生産性が低下する(高荷重のた
め幅広板ができにくい等が原因)ことがあるためであ
る。なお、本発明条件で製造したコイルを冷間圧延する
にあたり、冷間圧延工程の途中や前後に焼鈍を行っても
構わない。
Here, the continuous casting and rolling method is a hunter method,
This is a method of casting and rolling an aluminum alloy known by the 3C method and the like, and is sometimes referred to as direct rolling. The continuous cast and rolled coil manufactured in the present invention is for cold rolling to make a thin plate of 100 μm or less. Since this invention solves the problem that occurs when rolling to 100 μm or less, it is naturally possible to roll as a material having a thickness exceeding 100 μm, but the metal structure obtained under the manufacturing conditions of the present invention is required in terms of characteristics. Unless otherwise, it is not usually necessary to use coils manufactured under the conditions of the present invention. The production conditions of the present invention are for producing a thin plate under a special rolling load condition by a continuous casting and rolling method, and the productivity may be reduced (because a high load makes it difficult to produce a wide plate). is there. In cold rolling the coil manufactured under the conditions of the present invention, annealing may be performed during or before and after the cold rolling step.

【0011】[0011]

【実施例】以下に本発明を実施例に基づきさらに詳細に
説明する。表1に示す組成の各アルミニウム合金No.
A、B、Cより、表2の連続鋳造圧延条件により各板厚
のコイルを作製した。合金の液相線温度を併せて表2に
示す。使用した連続鋳造圧延装置のロール径は618m
mで、製造したコイルの幅は800mmである。得られ
たコイルに360℃にて2時間の焼鈍後、冷間圧延、焼
鈍、冷間圧延の工程により厚さ0.06mmのフィン材
用コイルを製造し、得られたコイルを16mmの幅にス
リッター加工した。冷間圧延のパススケジュールは6m
m→2.4mm→1mm→0.5mm→0.3mm→
0.18mm→0.11mm→0.06mmであり、そ
れぞれ最初の連続鋳造圧延コイルの板厚により最初の圧
延パスの板厚が異なる。冷間圧延の状況およびスリッタ
ー加工の状況を表3に示す。
The present invention will be described in more detail with reference to the following examples. Each aluminum alloy No. having the composition shown in Table 1 was used.
From A, B, and C, coils of each thickness were produced under the continuous casting and rolling conditions in Table 2. Table 2 also shows the liquidus temperatures of the alloys. The roll diameter of the continuous casting and rolling equipment used is 618 m
m and the width of the manufactured coil is 800 mm. After annealing the obtained coil at 360 ° C. for 2 hours, a coil for a fin material having a thickness of 0.06 mm was manufactured by the steps of cold rolling, annealing, and cold rolling, and the obtained coil was reduced to a width of 16 mm. Slitter processed. 6m cold rolling pass schedule
m → 2.4mm → 1mm → 0.5mm → 0.3mm →
0.18 mm → 0.11 mm → 0.06 mm, and the thickness of the first rolling pass differs depending on the thickness of the first continuous cast rolling coil. Table 3 shows the state of the cold rolling and the state of the slitter processing.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】表3の結果より、本発明を用いたものでは
0.06mmまで圧延加工可能であったが、条件が異な
る比較例では途中で圧延できないか、スリッター時に破
断が生じた。なお、ここで比較例5は従来一般のアルミ
ニウム合金(過共晶でない合金)の連続鋳造圧延で用い
られる条件である。
From the results shown in Table 3, it was found that, in the case of using the present invention, rolling could be performed up to 0.06 mm, but in Comparative Examples having different conditions, rolling could not be performed on the way, or fracture occurred during slitting. Here, Comparative Example 5 is a condition used in continuous casting and rolling of a conventional general aluminum alloy (an alloy that is not hypereutectic).

【0016】[0016]

【発明の効果】以上のように本発明では過共晶Al−F
e系合金の圧延薄板が製造可能となり、工業上で顕著な
効果を奏するものである。
As described above, in the present invention, hypereutectic Al-F
A rolled thin plate of an e-based alloy can be manufactured, and this has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続鋳造圧延での凝固状態を示す模式図であ
る。図1(B)は図1(A)を上方向から見た際の模式
図である。
FIG. 1 is a schematic diagram showing a solidification state in continuous casting and rolling. FIG. 1B is a schematic diagram when FIG. 1A is viewed from above.

【符号の説明】[Explanation of symbols]

1 凝固界面1(荷重が小さい場合) 2 凝固界面2(荷重が大きい場合) 3 連続鋳造圧延ロール表面 4 ロール中心軸 Reference Signs List 1 solidification interface 1 (when load is small) 2 solidification interface 2 (when load is large) 3 continuous casting and rolling roll surface 4 roll center axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1.7wt%以上3.2wt%以下のF
eを含有した過共晶Al−Fe系合金を、溶湯温度を6
80℃以上780℃以下として、幅1mmあたり7kN
以上の荷重をかけて、厚さ2mm以上4.5mm以下に
連続鋳造圧延することを特徴とする厚さ100μm以下
のアルミニウム合金薄板製造用の連続鋳造圧延コイルの
製造方法。
1. An F content of not less than 1.7 wt% and not more than 3.2 wt%.
e-containing hypereutectic Al-Fe alloys at a molten metal temperature of 6
7kN per 1mm width at 80 ℃ or more and 780 ℃ or less
A method for producing a continuous cast and rolled coil for producing an aluminum alloy sheet having a thickness of 100 μm or less, wherein the above-mentioned load is applied to continuously cast and roll to a thickness of 2 mm or more and 4.5 mm or less.
【請求項2】 溶湯温度を合金の液相線温度より40℃
以上かつ90℃以下の温度範囲だけ高くすることを特徴
とする請求項1記載のアルミニウム合金薄板製造用の連
続鋳造圧延コイルの製造方法。
2. The temperature of the molten metal is set at 40 ° C. below the liquidus temperature of the alloy.
The method for producing a continuous cast and rolled coil for producing an aluminum alloy sheet according to claim 1, wherein the temperature is raised by a temperature range of 90 ° C or less.
【請求項3】 過共晶Al−Fe系合金を、1.2wt
%以下のSi、3.0wt%以下のCo、0.3wt%
以下のZr、0.3wt%以下のTi、6wt%以下の
Zn、0.3wt%以下のIn、0.3wt%以下のS
n、1wt%以下のCu、1.3wt%以下のMn、1
wt%以下のMgのうち1種または2種以上および不可
避的不純物を含有した過共晶Al−Fe系合金とするこ
とを特徴とする請求項1または2記載のアルミニウム合
金薄板製造用の連続鋳造圧延コイルの製造方法。
3. A hypereutectic Al—Fe-based alloy containing 1.2 wt.
% Si or less, 3.0 wt% or less Co, 0.3 wt%
Zr below, Ti below 0.3 wt%, Zn below 6 wt%, In below 0.3 wt%, S below 0.3 wt%.
n, 1 wt% or less Cu, 1.3 wt% or less Mn,
The continuous casting for manufacturing an aluminum alloy sheet according to claim 1 or 2, wherein the alloy is a hypereutectic Al-Fe-based alloy containing one or more kinds of Mg of not more than wt% and unavoidable impurities. Manufacturing method of rolled coil.
JP10928699A 1999-04-16 1999-04-16 PRODUCTION OF HYPER-EUTECTIC Al-Fe BASE ALLOY CONTINUOUSLY CAST AND ROLLED COIL Pending JP2000301294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10928699A JP2000301294A (en) 1999-04-16 1999-04-16 PRODUCTION OF HYPER-EUTECTIC Al-Fe BASE ALLOY CONTINUOUSLY CAST AND ROLLED COIL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10928699A JP2000301294A (en) 1999-04-16 1999-04-16 PRODUCTION OF HYPER-EUTECTIC Al-Fe BASE ALLOY CONTINUOUSLY CAST AND ROLLED COIL

Publications (1)

Publication Number Publication Date
JP2000301294A true JP2000301294A (en) 2000-10-31

Family

ID=14506334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10928699A Pending JP2000301294A (en) 1999-04-16 1999-04-16 PRODUCTION OF HYPER-EUTECTIC Al-Fe BASE ALLOY CONTINUOUSLY CAST AND ROLLED COIL

Country Status (1)

Country Link
JP (1) JP2000301294A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231378A (en) * 2005-02-25 2006-09-07 Katagi Aluminum Products Ltd Method for producing aluminum alloy sheet with continuous casting
JP2008200752A (en) * 2007-01-22 2008-09-04 Toyota Central R&D Labs Inc Aluminum alloy casting material, method for production of the aluminum alloy casting material, aluminum alloy material, and method for production of aluminum alloy material
CN111893350A (en) * 2020-08-08 2020-11-06 广东华昌铝厂有限公司 High-thermal-conductivity wrought aluminum alloy and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231378A (en) * 2005-02-25 2006-09-07 Katagi Aluminum Products Ltd Method for producing aluminum alloy sheet with continuous casting
JP2008200752A (en) * 2007-01-22 2008-09-04 Toyota Central R&D Labs Inc Aluminum alloy casting material, method for production of the aluminum alloy casting material, aluminum alloy material, and method for production of aluminum alloy material
CN111893350A (en) * 2020-08-08 2020-11-06 广东华昌铝厂有限公司 High-thermal-conductivity wrought aluminum alloy and preparation method thereof
CN111893350B (en) * 2020-08-08 2021-12-07 广东华昌集团有限公司 High-thermal-conductivity wrought aluminum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5027844B2 (en) Method for producing aluminum alloy molded product
JP2002241910A (en) Method for producing aluminum alloy fin material for brazing
JP4958267B2 (en) Magnesium alloy material and method for producing the same
JP2008308761A (en) Method for producing high strength aluminum alloy material for automobile heat exchanger having excellent erosion resistance and used for high strength automobile heat exchanger member produced by brazing
JP2008308760A (en) High-strength aluminum alloy material for automobile heat-exchanger excellent in formability and erosion resistance used for member for high-strength automobile heat exchanger produced by brazing, and method for production thereof
JP4534573B2 (en) Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
JP2008024964A (en) High-strength aluminum alloy sheet and producing method therefor
KR101511632B1 (en) Method for manufacturing of Al-Zn alloy sheet using twin roll casting and Al-Zn alloy sheet thereby
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP4359231B2 (en) Method for producing aluminum alloy molded product, and aluminum alloy molded product
JP2004160543A (en) Method of manufacturing ingot for manufacturing ti-containing copper alloy plate or bar of excellent workability
CA2739484C (en) A feedstock for metal foil product and method of making thereof
JP2007268547A (en) Method for producing aluminum alloy cast plate
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP3981495B2 (en) Hypereutectic Al-Ni-Fe alloy continuous casting rolled coil manufacturing method
JP2000301294A (en) PRODUCTION OF HYPER-EUTECTIC Al-Fe BASE ALLOY CONTINUOUSLY CAST AND ROLLED COIL
US6106641A (en) Aluminum alloy sheet for cross fin and production thereof
WO2008044936A1 (en) Magnesium alloy sheet process
CN106715755A (en) Cast titanium slab for use in hot rolling and unlikely to exhibit surface defects, and method for producing same
JPH10121177A (en) Aluminum alloy sheet excellent in high speed ironing formability for di can drum and manufacture therefor
KR20160036297A (en) Method for manufacturing magnesium alloy sheet and magnesium alloy sheet manufactured thereby
JP2012107339A (en) Aluminum alloy sheet for automobile and manufacturing method therefor
JP4109178B2 (en) Method for producing aluminum alloy fin material for brazing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Effective date: 20080707

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080812

Free format text: JAPANESE INTERMEDIATE CODE: A02