JP3981495B2 - Hypereutectic Al-Ni-Fe alloy continuous casting rolled coil manufacturing method - Google Patents

Hypereutectic Al-Ni-Fe alloy continuous casting rolled coil manufacturing method Download PDF

Info

Publication number
JP3981495B2
JP3981495B2 JP10930099A JP10930099A JP3981495B2 JP 3981495 B2 JP3981495 B2 JP 3981495B2 JP 10930099 A JP10930099 A JP 10930099A JP 10930099 A JP10930099 A JP 10930099A JP 3981495 B2 JP3981495 B2 JP 3981495B2
Authority
JP
Japan
Prior art keywords
less
rolling
hypereutectic
alloy
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10930099A
Other languages
Japanese (ja)
Other versions
JP2000303156A (en
Inventor
武宜 土公
昭男 新倉
淳 福田
喜彦 神谷
保明 磯部
猛敏 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Furukawa Sky Aluminum Corp
Original Assignee
Denso Corp
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Furukawa Sky Aluminum Corp filed Critical Denso Corp
Priority to JP10930099A priority Critical patent/JP3981495B2/en
Publication of JP2000303156A publication Critical patent/JP2000303156A/en
Application granted granted Critical
Publication of JP3981495B2 publication Critical patent/JP3981495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧延性に優れた過共晶Al−Ni−Fe系合金連続鋳造圧延コイルの製造方法に関するものであり、さらに詳しくは、100μm以下の厚さまで冷間圧延可能な過共晶Al−Ni−Fe系合金連続鋳造圧延コイルを得るための製造方法に関する。
【0002】
【従来の技術】
アルミニウム合金にFe成分を添加すると、強度や耐熱性が向上することからアルミニウム合金箔やアルミニウム合金フィン材にFe成分を添加することはよく行われている。そしてさらに、Feと同時にNiを添加すると熱伝導性を低下させることなく強度を向上させることが可能なため、NiとFeを同時に添加することがフィン材ではしばしば行われる。
アルミニウム合金中でのNiおよびFeの固溶量は少ないために、DC(ダイキャスト)鋳造を行うと鋳造時にFeを含有する粗大な金属間化合物が生じ、成形性等に悪影響を及ぼす。そのため、冷却速度を上げて、鋳造時に生じる金属間化合物を微細化させる製造方法として、10mm程度より薄い板をアルミニウム合金溶湯から直接製造する連続鋳造圧延法が行われている。
連続鋳造圧延法では鋳造時の冷却速度が速いために、1wt%(以下、wt%を単に%という)以上のFeとNiを添加したアルミニウム合金でも金属間化合物を微細化することが可能であり、得られた合金の強度は高いためにフィン材の薄肉化に適しており、また、耐熱性が高いために箔圧延時に加工発熱で軟化しにくく箔圧延性が向上したものとなっている。
しかし、特性をさらに向上させるために、さらにFeおよびNiを添加し、過共晶のAl−Ni−Fe系合金とした場合は、連続鋳造コイルから100μm以下に極薄に圧延するとピンホールが発生したり、さらにひどいものでは厚み100μmに至る前に圧延中に破断してしまい圧延ができないこともある。
【0003】
【発明が解決しようとする課題】
したがって本発明は、過共晶Al−Ni−Fe系合金から連続鋳造して得たコイルを、さらに冷間圧延によって厚さ100μm以下に極めて薄肉化することができ、ピンホールなどの欠陥の発生を防止しうる、過共晶Al−Ni−Fe系合金連続鋳造圧延コイルの製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、箔やフィン材として使用可能な厚さである100μm以下に圧延可能な過共晶Al−Ni−Fe系合金コイルを製造するための、連続鋳造圧延方法についてなされたものである。
すなわち本発明は、
(1)0.1%以上3%以下のNiおよび1.7%以上3.2%以下のFeを含有した過共晶Al−Ni−Fe系合金を、溶湯温度を680℃以上780℃以下として、幅1mmあたり7kN以上の荷重をかけて、厚さ2mm以上4.5mm以下に連続鋳造圧延することを特徴とする厚さ100μm以下のアルミニウム合金薄板製造用の連続鋳造圧延コイルの製造方法、
(2)溶湯温度を合金の液相線温度より40℃以上かつ90℃以下の温度範囲だけ高くすることを特徴とする請求項1記載のアルミニウム合金薄板製造用の連続鋳造圧延コイルの製造方法、及び
(3)過共晶Al−Ni−Fe系合金を、1.2%以下のSi、3.0%以下のCo、0.3%以下のZr、0.3%以下のTi、6%以下のZn、0.3%以下のIn、0.3%以下のSn、1%以下のCu、1.3%以下のMn、1%以下のMgのうち1種または2種以上および不可避的不純物を含有した過共晶Al−Ni−Fe系合金とすることを特徴とする(1)または(2)項記載のアルミニウム合金薄板製造用の連続鋳造圧延コイルの製造方法
を提供するものである。
【0005】
【発明の実施の形態】
本発明の製造方法について以下に説明する。
本発明は過共晶Al−Ni−Fe系合金を対象とする。該合金から、通常のDC鋳造法や従来の連続鋳造圧延では、特性が優れた薄板を製造できないためである。
ここで、Ni含有量を0.1%以上3%以下、Feを1.7%以上3.2%以下としたのは、FeとNiのアルミニウム中での状態は似ており、NiによりAl−Niの過共晶、FeによりAl−Feの過共晶、両者によりAl−Fe−Niの過共晶となる場合があり、工業的には両者を添加する場合にはFeを多く添加することがほとんどのためである。
Feが1.7%未満の場合、従来からの連続鋳造圧延条件でコイルの製造ができるためである。また、Niが3wt%またはFeが3.2%を越えると鋳造時に合金が共晶温度まで過冷しきれなくなり、本発明方法を用いても、100μm以下の薄板まで圧延できる板が得られなくなることがあるので、Feの上限を3.2%とする。過共晶となるFe量の下限は一緒に添加される他の元素により若干変化するが、工業的に溶湯を製造する際にはばらつきがあるために、1.7%以上の場合に本発明の方法が有効となる。
以上の過共晶Al−Ni−Fe系合金には、最終的に得られる薄板の用途などに応じて種々の元素を本発明の目的の効果を損なわない範囲で含有してもよい。例えば、1.2%以下のSi、3.0%以下のCo、0.3%以下のZr、0.3%以下のTi、6%以下のZn、0.3%以下のIn、0.3%以下のSn、1%以下のCu、1.3%以下のMn、1%以下のMgのうち1種または2種以上および不可避的不純物を含有してもよい。これらの元素は主として合金を箔としたりフィン材とする際に特性上重要な働きを示すものである。上記範囲内であれば、本発明の製造方法を適用可能であるが、後述する金属間化合物の生成を減らすことと、合金の鋳造時の割れ性を抑える上で、それぞれ0.7%以下のSi、2.0%以下のCo、0.2%以下のZr、0.2%以下のTi、2%以下のZn、0.1%以下のIn、0.1%以下のSn、0.5%以下のCu、0.6%以下のMn、0.3%以下のMgにすることが好ましい。
【0006】
本発明では、上記合金溶湯を溶湯温度を680℃以上780℃以下として、幅(横幅)1mmあたり7kN以上の荷重をかけて、厚さ2mm以上4.5mm以下に連続鋳造圧延する。
本発明で用いる過共晶Al−Ni−Fe系合金の場合、従来、連続鋳造圧延した際に初晶としてAl−Fe、Al−Ni−Fe系等のFeやNiを含有する金属間化合物を晶出し、この金属間化合物の集合状態によって連続鋳造圧延以降の冷間圧延の際に割れ等が生じるのである。ちなみにDC鋳造を行う製造工程では、DC鋳造時の冷却速度は連続鋳造圧延より小さいために、連続鋳造圧延とは比較にならない大きさの金属間化合物が生じ、圧延時にピンホールや割れが起こる。
ここで、溶湯温度が680℃未満の場合、合金の固相線温度に溶湯温度が近いために、連続鋳造圧延時の凝固状態が、ロール表面の微妙な温度ばらつき等の微妙な条件変化により簡単に変化し、コイル内での材料の特性に変化を与えていることが推定される。また、780℃を越えると、連続鋳造圧延機の冷却能力が不足して、板厚方向の中心部にFeやNiを含有する金属間化合物が生じ、ピンホールや割れの原因となる上、エネルギー的にも無駄である。なお、ここで溶湯温度とは鋳造機のヘッドボックスの温度と定義する。ヘッドボックスとはノズルに溶湯を供給する直前に設けられ、湯を安定して供給するために湯をプールしておく部分である。
【0007】
以上の理由で溶湯温度を680℃以上780℃以下とするが、さらに、溶湯温度を合金の液相線温度より40℃以上かつ90℃以下の温度範囲だけ高くすることが本発明では推奨される。
溶湯温度と液相線温度との温度差が40℃未満の場合、連続鋳造圧延の溶湯をロール間に供給するノズル部分で冷却されてFeやNiを含有する金属間化合物が生じ、それがときどきロール間の溶湯に流れ込んでそのまま板材中に入り、ピンホールや割れの原因となるためである。また、液相線より90℃を越える溶湯温度の場合、合金溶湯を共晶温度まで過冷却することができず、過共晶のAl−Ni−Fe系金属間化合物が冷却の最初に粗大に生じ、これが、ピンホールや割れの原因となるためである。
このような温度の過共晶Al−Ni−Fe系合金溶湯を幅1mmあたり7kN以上の荷重下に、厚さ2mm以上4.5mm以下に連続鋳造圧延する。
【0008】
連続鋳造圧延の厚さは厚いほど、連続鋳造圧延時に生じる表面等の欠陥が少なく、トラブルが生じにくいために、工業的には5mm〜10mm程度が一般に用いられている。本発明の課題としている過共晶Al−Ni−Fe系合金の場合、厚さが大きい場合みかけ上欠陥がなく正常なコイルが製造できるが、冷間圧延の工程で割れやピンホールが発生する。これは、過共晶Al−Ni−Fe系合金の場合、初晶としてAl−Fe−Ni系等のFeを含有する金属間化合物を晶出することがあるが、連続鋳造圧延の厚さが大きいと合金全体が過冷却されて凝固せずに、板の厚さ方向中央部に金属間化合物が偏析するが、この金属間化合物の集合状態によって、冷間圧延工程で割れやピンホールが発生しやすくなることが原因していると考えられる。連続鋳造時の厚さが4.5mmを越えると、過冷却が不十分で上記金属間化合物の偏析が発生しやすくなるのである。また、厚さ2mm未満では連続鋳造圧延時点で割れや板厚変動が発生し、後の冷間圧延に供するコイルを製造できない。
【0009】
このような板厚の連続鋳造圧延コイルを製造するに当たり、幅1mmあたり7kN以上の荷重をかける条件で製造することが必要である。
従来の連続鋳造圧延での荷重は3kN/mm程度であるが、これを越える荷重をかける理由は以下の通りである。従来法において圧延荷重が7kN/mm未満の場合、凝固の界面1、2は図1(A)に模式的に示したようにロールの中心軸(鋳造品の中心)に近い位置で凝固が完了する形になる。対して本発明の条件ではロールの中心軸から遠い位置で凝固が完了する。さらに、図1(A)の凝固界面は断面方向から模式的に示したものであるが、それを上方向から見た板幅方向での凝固界面は図1(B)の1、2に示したように波打った形となっている。この波の大きさは圧延荷重が小さいほど大きい。そして、この圧延荷重が小さすぎると、すなわち7kN/mm未満では、このように波打っている中で、ロール中心軸に近い位置で凝固が完了する界面部分では未凝固の液相にNiおよびFeが濃化されやすくなり、濃化したNiおよびFeにより局部的にNiおよびFe成分が多い組成となったことにより、過冷却が生じにくくなり、過共晶NiおよびFeを原因とする金属間化合物を密に発生すると考えられる。この金属間化合物の集合が冷間圧延時に割れやピンホールの原因となる。
以上より、本発明では幅1mmあたり7kN以上の荷重をかけて連続鋳造圧延するものとするが、その上限は連続鋳造圧延装置の設備によって定まる限界までとする。
【0010】
ここで、連続鋳造圧延法とはハンター法、3C法等で知られるアルミニウム合金の鋳造圧延方法であり、直接圧延と呼ばれることもある。
本発明で製造した連続鋳造圧延コイルは、冷間圧延により100μm以下の薄板とするためのものである。100μm以下に圧延する際に生じる問題を解決した発明であるから、当然、100μmを越える厚さの材料として圧延することは可能であるが、本発明の製造条件で得られる金属組織が特性上必要でない限りは、わざわざ本発明の条件で製造したコイルを使用する必要は通常はない。本発明の製造条件は連続鋳造圧延法で特殊な圧延荷重条件で薄い板を製造するものであり、生産性が低下する(高荷重のため幅広板ができにくい等が原因)ことがあるためである。
なお、本発明条件で製造したコイルを冷間圧延するにあたり、冷間圧延工程の途中や前後に焼鈍を行っても構わない。
【0011】
【実施例】
以下に本発明を実施例に基づきさらに詳細に説明する。
表1に示す組成の各アルミニウム合金No.A、B、Cより、表2の連続鋳造圧延条件により各板厚のコイルを作製した。合金の液相線温度を併せて表2に示す。使用した連続鋳造圧延装置のロール径は618mmで、製造したコイルの幅は800mmである。得られたコイルに360℃にて2時間の焼鈍後、冷間圧延、焼鈍、冷間圧延の工程により厚さ0.06mmのフィン材用コイルを製造し、得られたコイルを16mmの幅にスリッター加工した。冷間圧延のパススケジュールは6mm→2.4mm→1mm→0.5mm→0.3mm→0.18mm→0.11mm→0.06mmであり、それぞれ最初の連続鋳造圧延コイルの板厚により最初の圧延パスの板厚が異なる。
冷間圧延の状況およびスリッター加工の状況を表3に示す。
【0012】
【表1】

Figure 0003981495
【0013】
【表2】
Figure 0003981495
【0014】
【表3】
Figure 0003981495
【0015】
表3の結果より、本発明を用いたものでは0.06mmまで圧延加工可能であったが、条件が異なる比較例では途中で圧延できないか、スリッター時に破断が生じた。なお、ここで比較例5は従来一般のアルミニウム合金(過共晶でない合金)の連続鋳造圧延で用いられる条件である。
【0016】
【発明の効果】
以上のように本発明では過共晶Al−Ni−Fe系合金の圧延薄板が製造可能となり、工業上で顕著な効果を奏するものである。
【図面の簡単な説明】
【図1】連続鋳造圧延での凝固状態を示す模式図である。図1(B)は図1(A)を上方向から見た際の模式図である。
【符号の説明】
1 凝固界面1(荷重が小さい場合)
2 凝固界面2(荷重が大きい場合)
3 連続鋳造圧延ロール表面
4 ロール中心軸[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hypereutectic Al—Ni—Fe alloy continuous cast rolled coil having excellent rolling properties, and more specifically, a hypereutectic Al— that can be cold-rolled to a thickness of 100 μm or less. The present invention relates to a manufacturing method for obtaining a Ni—Fe alloy continuous casting rolled coil.
[0002]
[Prior art]
When an Fe component is added to an aluminum alloy, strength and heat resistance are improved, and therefore, an Fe component is often added to an aluminum alloy foil or an aluminum alloy fin material. Further, when Ni is added at the same time as Fe, the strength can be improved without lowering the thermal conductivity. Therefore, Ni and Fe are often added simultaneously in the fin material.
Since the solid solution amounts of Ni and Fe in the aluminum alloy are small, when DC (die casting) casting is performed, a coarse intermetallic compound containing Fe is produced at the time of casting, which adversely affects the formability. Therefore, as a manufacturing method for increasing the cooling rate and refining the intermetallic compound produced during casting, a continuous casting and rolling method in which a plate thinner than about 10 mm is directly manufactured from a molten aluminum alloy is performed.
Since the continuous casting and rolling method has a high cooling rate at the time of casting, it is possible to refine the intermetallic compound even in an aluminum alloy to which 1 wt% (hereinafter, wt% is simply referred to as “%”) Fe and Ni are added. Since the obtained alloy is high in strength, it is suitable for thinning the fin material, and because of its high heat resistance, it is difficult to soften due to processing heat during foil rolling, and the foil rolling property is improved.
However, in order to further improve the characteristics, when Fe and Ni are further added to form a hypereutectic Al-Ni-Fe alloy, pinholes are generated when the continuous cast coil is rolled to a thickness of 100 μm or less. However, if it is more severe, it may break during rolling before reaching a thickness of 100 μm, and rolling may not be possible.
[0003]
[Problems to be solved by the invention]
Therefore, in the present invention, a coil obtained by continuous casting from a hypereutectic Al—Ni—Fe alloy can be further thinned to a thickness of 100 μm or less by cold rolling, and defects such as pinholes are generated. It is an object of the present invention to provide a method for producing a hypereutectic Al—Ni—Fe based alloy continuous casting rolled coil that can prevent the above.
[0004]
[Means for Solving the Problems]
This invention is made | formed about the continuous casting rolling method for manufacturing the hypereutectic Al-Ni-Fe-type alloy coil which can be rolled to 100 micrometers or less which is the thickness which can be used as foil or a fin material.
That is, the present invention
(1) A hypereutectic Al—Ni—Fe alloy containing 0.1% or more and 3% or less of Ni and 1.7% or more and 3.2% or less of Fe, and the molten metal temperature is 680 ° C. or more and 780 ° C. or less. As a method for producing a continuous cast and rolled coil for producing an aluminum alloy thin plate having a thickness of 100 μm or less, wherein a load of 7 kN or more per 1 mm width is applied and continuous casting and rolling is performed to a thickness of 2 mm to 4.5 mm,
(2) The method for producing a continuous cast and rolled coil for producing an aluminum alloy sheet according to claim 1, wherein the molten metal temperature is set higher by 40 ° C or more and 90 ° C or less than the liquidus temperature of the alloy, And (3) a hypereutectic Al—Ni—Fe alloy, 1.2% or less of Si, 3.0% or less of Co, 0.3% or less of Zr, 0.3% or less of Ti, 6% One or more of Zn, 0.3% or less of In, 0.3% or less of Sn, 1% or less of Cu, 1.3% or less of Mn, 1% or less of Mg, and unavoidable The present invention provides a method for producing a continuous cast rolled coil for producing an aluminum alloy sheet according to (1) or (2), characterized in that it is a hypereutectic Al-Ni-Fe alloy containing impurities. .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The production method of the present invention will be described below.
The present invention is directed to a hypereutectic Al—Ni—Fe alloy. This is because a thin plate having excellent characteristics cannot be produced from the alloy by a normal DC casting method or conventional continuous casting and rolling.
Here, the Ni content is 0.1% or more and 3% or less, and the Fe content is 1.7% or more and 3.2% or less. The states of Fe and Ni in aluminum are similar. -Ni hypereutectic, Fe-Al-Fe hypereutectic, and both may be Al-Fe-Ni hypereutectic. Industrially, when both are added, a large amount of Fe is added. That is for most.
This is because when Fe is less than 1.7%, the coil can be manufactured under the conventional continuous casting and rolling conditions. Further, if Ni exceeds 3 wt% or Fe exceeds 3.2%, the alloy cannot be completely cooled to the eutectic temperature during casting, and even if the method of the present invention is used, a plate that can be rolled to a thin plate of 100 μm or less cannot be obtained. Therefore, the upper limit of Fe is set to 3.2%. The lower limit of the amount of Fe that becomes hypereutectic varies slightly depending on other elements added together. However, since there is a variation when manufacturing molten metal industrially, the present invention is applied when the amount is 1.7% or more. This method is effective.
The hypereutectic Al—Ni—Fe-based alloy described above may contain various elements in a range that does not impair the object effects of the present invention, depending on the use of the finally obtained thin plate. For example, Si of 1.2% or less, Co of 3.0% or less, Zr of 0.3% or less, Ti of 0.3% or less, Zn of 6% or less, In of 0.3% or less,. One or more of 3% or less of Sn, 1% or less of Cu, 1.3% or less of Mn, and 1% or less of Mg and unavoidable impurities may be contained. These elements mainly exhibit an important function in characteristics when the alloy is used as a foil or a fin material. Within the above range, the production method of the present invention can be applied. However, in order to reduce the formation of intermetallic compounds described later and to suppress cracking at the time of casting of the alloy, each is 0.7% or less. Si, 2.0% or less Co, 0.2% or less Zr, 0.2% or less Ti, 2% or less Zn, 0.1% or less In, 0.1% or less Sn, 0. It is preferable to use Cu of 5% or less, Mn of 0.6% or less, and Mg of 0.3% or less.
[0006]
In the present invention, the molten alloy is continuously cast and rolled to a thickness of 2 mm to 4.5 mm with a melt temperature of 680 ° C. to 780 ° C. and a load of 7 kN or more per 1 mm of width (lateral width).
In the case of the hypereutectic Al—Ni—Fe alloy used in the present invention, conventionally, an intermetallic compound containing Fe or Ni such as Al—Fe, Al—Ni—Fe, etc. as the primary crystal when continuously cast and rolled is used. Crystallization and the aggregation state of the intermetallic compound cause cracks and the like during cold rolling after continuous casting rolling. Incidentally, in the manufacturing process in which DC casting is performed, since the cooling rate during DC casting is smaller than that of continuous casting and rolling, an intermetallic compound having a size that cannot be compared with continuous casting and rolling occurs, and pinholes and cracks occur during rolling.
Here, when the molten metal temperature is less than 680 ° C., the molten metal temperature is close to the solidus temperature of the alloy, so the solidification state during continuous casting and rolling is easy due to subtle changes in conditions such as subtle temperature variations on the roll surface. It is estimated that the material characteristics in the coil are changed. Further, if the temperature exceeds 780 ° C., the cooling capacity of the continuous casting mill is insufficient, and an intermetallic compound containing Fe or Ni is generated at the center in the thickness direction, causing pinholes and cracks, and energy. It is useless. Here, the molten metal temperature is defined as the temperature of the head box of the casting machine. The head box is a portion that is provided immediately before the molten metal is supplied to the nozzle and pools the hot water in order to stably supply the hot water.
[0007]
For the above reasons, the molten metal temperature is set to 680 ° C. or higher and 780 ° C. or lower, and it is further recommended in the present invention that the molten metal temperature is higher than the liquidus temperature of the alloy by a temperature range of 40 ° C. or higher and 90 ° C. or lower. .
When the temperature difference between the molten metal temperature and the liquidus temperature is less than 40 ° C., the molten metal of continuous casting and rolling is cooled at the nozzle portion that feeds between the rolls, and an intermetallic compound containing Fe and Ni is generated. This is because it flows into the molten metal between the rolls and enters the plate as it is, causing pinholes and cracks. Also, when the molten metal temperature exceeds 90 ° C. from the liquidus, the molten alloy cannot be supercooled to the eutectic temperature, and the hypereutectic Al—Ni—Fe intermetallic compound becomes coarse at the beginning of cooling. This is because it causes pinholes and cracks.
The hypereutectic Al—Ni—Fe alloy melt having such a temperature is continuously cast and rolled to a thickness of 2 mm to 4.5 mm under a load of 7 kN or more per 1 mm width.
[0008]
The thicker the continuous casting and rolling, the fewer defects on the surface and the like that occur during continuous casting and rolling, and the more difficult it is to cause trouble. Therefore, about 5 mm to 10 mm is generally used industrially. In the case of the hypereutectic Al-Ni-Fe alloy, which is the subject of the present invention, when the thickness is large, a normal coil can be produced without apparent defects, but cracks and pinholes occur in the cold rolling process. . This is because, in the case of a hypereutectic Al—Ni—Fe alloy, an intermetallic compound containing Fe such as Al—Fe—Ni may be crystallized as a primary crystal. If it is large, the entire alloy is supercooled and does not solidify, and the intermetallic compound is segregated in the center of the thickness direction of the plate. Depending on the aggregate state of this intermetallic compound, cracks and pinholes are generated in the cold rolling process. This is thought to be caused by the fact that it is easy to do. When the thickness during continuous casting exceeds 4.5 mm, the supercooling is insufficient and segregation of the intermetallic compound is likely to occur. On the other hand, if the thickness is less than 2 mm, cracks and plate thickness fluctuations occur at the time of continuous casting and rolling, and a coil for subsequent cold rolling cannot be manufactured.
[0009]
In producing such a continuous cast and rolled coil having a plate thickness, it is necessary to produce it under conditions that apply a load of 7 kN or more per 1 mm width.
The load in conventional continuous casting and rolling is about 3 kN / mm, and the reason for applying a load exceeding this is as follows. In the conventional method, when the rolling load is less than 7 kN / mm, the solidification interfaces 1 and 2 are solidified at a position close to the center axis of the roll (center of the cast product) as schematically shown in FIG. It becomes the form to do. On the other hand, under the conditions of the present invention, solidification is completed at a position far from the central axis of the roll. Further, the solidification interface in FIG. 1 (A) is schematically shown from the cross-sectional direction, and the solidification interface in the plate width direction when viewed from above is shown in 1 and 2 in FIG. 1 (B). It has a wavy shape. The magnitude of this wave increases as the rolling load decreases. If the rolling load is too small, that is, less than 7 kN / mm, the undulation is performed in this manner, and in the interface portion where solidification is completed at a position close to the roll central axis, Ni and Fe are added to the unsolidified liquid phase. Is easily concentrated, and since the concentrated Ni and Fe have a composition with a large amount of Ni and Fe components, supercooling is less likely to occur, and intermetallic compounds caused by hypereutectic Ni and Fe Is thought to occur densely. This set of intermetallic compounds causes cracks and pinholes during cold rolling.
From the above, in the present invention, continuous casting and rolling is performed with a load of 7 kN or more per 1 mm width, but the upper limit is set to the limit determined by the equipment of the continuous casting and rolling apparatus.
[0010]
Here, the continuous casting and rolling method is an aluminum alloy casting and rolling method known by the Hunter method, the 3C method, and the like, and is sometimes called direct rolling.
The continuous cast and rolled coil produced in the present invention is for making a thin plate of 100 μm or less by cold rolling. Since it is an invention that has solved the problems that occur when rolling to 100 μm or less, it can naturally be rolled as a material with a thickness exceeding 100 μm, but the metal structure obtained under the production conditions of the present invention is necessary in terms of characteristics. Unless it is not, it is not usually necessary to use a coil manufactured under the conditions of the present invention. The manufacturing condition of the present invention is to produce a thin plate under a special rolling load condition by a continuous casting rolling method, and the productivity may be reduced (due to difficulty in forming a wide plate due to high load). is there.
In addition, when cold-rolling the coil manufactured on condition of this invention, you may anneal in the middle of a cold rolling process, and before and after.
[0011]
【Example】
Hereinafter, the present invention will be described in more detail based on examples.
Each aluminum alloy No. 1 having the composition shown in Table 1 was used. From A, B, and C, coils having respective plate thicknesses were produced under the continuous casting and rolling conditions shown in Table 2. The liquidus temperature of the alloy is also shown in Table 2. The roll diameter of the used continuous casting and rolling apparatus is 618 mm, and the width of the manufactured coil is 800 mm. After annealing the obtained coil at 360 ° C. for 2 hours, a coil for fin material having a thickness of 0.06 mm is manufactured by cold rolling, annealing, and cold rolling processes, and the obtained coil is made to have a width of 16 mm. Slitter processing. The cold rolling pass schedule is 6 mm → 2.4 mm → 1 mm → 0.5 mm → 0.3 mm → 0.18 mm → 0.11 mm → 0.06 mm. The thickness of the rolling pass is different.
Table 3 shows the conditions of cold rolling and slitting.
[0012]
[Table 1]
Figure 0003981495
[0013]
[Table 2]
Figure 0003981495
[0014]
[Table 3]
Figure 0003981495
[0015]
From the results of Table 3, rolling using the present invention was possible up to 0.06 mm, but in comparative examples with different conditions, rolling was not possible on the way or fracture occurred during slitting. Here, Comparative Example 5 is a condition used in continuous casting and rolling of a conventional general aluminum alloy (an alloy that is not hypereutectic).
[0016]
【The invention's effect】
As described above, in the present invention, a rolled thin sheet of a hypereutectic Al—Ni—Fe alloy can be produced, and a remarkable effect can be achieved industrially.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a solidified state in continuous casting and rolling. FIG. 1B is a schematic diagram when FIG. 1A is viewed from above.
[Explanation of symbols]
1 Solidification interface 1 (when load is small)
2 Solidification interface 2 (when load is large)
3 Continuous casting roll surface 4 Roll central axis

Claims (3)

0.1wt%以上3wt%以下のNiおよび1.7wt%以上3.2wt%以下のFeを含有した過共晶Al−Ni−Fe系合金を、溶湯温度を680℃以上780℃以下として、幅1mmあたり7kN以上の荷重をかけて、厚さ2mm以上4.5mm以下に連続鋳造圧延することを特徴とする厚さ100μm以下のアルミニウム合金薄板製造用の連続鋳造圧延コイルの製造方法。A hypereutectic Al—Ni—Fe based alloy containing 0.1 wt% or more and 3 wt% or less of Ni and 1.7 wt% or more and 3.2 wt% or less of Fe is set to a width of 680 ° C. or more and 780 ° C. or less. A method for producing a continuous cast-rolled coil for producing an aluminum alloy sheet having a thickness of 100 μm or less, wherein a continuous casting and rolling is performed to a thickness of 2 mm to 4.5 mm by applying a load of 7 kN or more per 1 mm. 溶湯温度を合金の液相線温度より40℃以上かつ90℃以下の温度範囲だけ高くすることを特徴とする請求項1記載のアルミニウム合金薄板製造用の連続鋳造圧延コイルの製造方法。The method for producing a continuous cast rolled coil for producing an aluminum alloy sheet according to claim 1, wherein the molten metal temperature is set higher by 40 ° C or more and 90 ° C or less than the liquidus temperature of the alloy. 過共晶Al−Ni−Fe系合金を、1.2wt%以下のSi、3.0wt%以下のCo、0.3wt%以下のZr、0.3wt%以下のTi、6wt%以下のZn、0.3wt%以下のIn、0.3wt%以下のSn、1wt%以下のCu、1.3wt%以下のMn、1wt%以下のMgのうち1種または2種以上および不可避的不純物を含有した過共晶Al−Ni−Fe系合金とすることを特徴とする請求項1または2記載のアルミニウム合金薄板製造用の連続鋳造圧延コイルの製造方法。Hypereutectic Al—Ni—Fe-based alloy comprising 1.2 wt% or less Si, 3.0 wt% or less Co, 0.3 wt% or less Zr, 0.3 wt% or less Ti, 6 wt% or less Zn, 1 wt% or less of In, 0.3 wt% or less of Sn, 1 wt% or less of Cu, 1.3 wt% or less of Mn, 1.3 wt% or less of Mg, 1 wt% or less of Mg, and inevitable impurities The method for producing a continuous cast rolled coil for producing an aluminum alloy sheet according to claim 1 or 2, wherein a hypereutectic Al-Ni-Fe alloy is used.
JP10930099A 1999-04-16 1999-04-16 Hypereutectic Al-Ni-Fe alloy continuous casting rolled coil manufacturing method Expired - Fee Related JP3981495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10930099A JP3981495B2 (en) 1999-04-16 1999-04-16 Hypereutectic Al-Ni-Fe alloy continuous casting rolled coil manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10930099A JP3981495B2 (en) 1999-04-16 1999-04-16 Hypereutectic Al-Ni-Fe alloy continuous casting rolled coil manufacturing method

Publications (2)

Publication Number Publication Date
JP2000303156A JP2000303156A (en) 2000-10-31
JP3981495B2 true JP3981495B2 (en) 2007-09-26

Family

ID=14506703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10930099A Expired - Fee Related JP3981495B2 (en) 1999-04-16 1999-04-16 Hypereutectic Al-Ni-Fe alloy continuous casting rolled coil manufacturing method

Country Status (1)

Country Link
JP (1) JP3981495B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536949B2 (en) * 2000-03-23 2010-09-01 古河スカイ株式会社 Manufacturing method of brazing fin material
JP4886129B2 (en) 2000-12-13 2012-02-29 古河スカイ株式会社 Method for producing aluminum alloy fin material for brazing
EP1300480A1 (en) * 2001-10-05 2003-04-09 Corus L.P. Aluminium alloy for making fin stock material
KR101295807B1 (en) 2013-05-06 2013-08-12 자동차부품연구원 Fe-Ni solid solution phase strengthened aluminum alloys and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000303156A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
EP0039211B1 (en) Production of aluminium alloy sheet
US4126486A (en) Producing improved metal alloy products
US20100098580A1 (en) Casted aluminum alloy and method for producing the same as well as aluminum alloy material and method for producing the same
CN103205608B (en) Preparation method of rare earth aluminum-manganese alloy foil used for aluminum honeycomb panel core
KR101511632B1 (en) Method for manufacturing of Al-Zn alloy sheet using twin roll casting and Al-Zn alloy sheet thereby
US20170233856A1 (en) Feedstock for metal foil product and method of making thereof
JP2018507110A (en) Hot rolled lightweight martensitic steel sheet and method for producing the same
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
CN105220037A (en) The aluminium alloy heat sink material of superstrength is anti-corrosion Cutting free processing and method for making and application
CN105331852A (en) Ultrathin high-strength aluminum alloy fin material and preparation method and application thereof
JP5945370B2 (en) Method for producing aluminum-zinc-magnesium-copper alloy sheet with refined crystal grains
JP4379149B2 (en) Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for producing the same
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JP3981495B2 (en) Hypereutectic Al-Ni-Fe alloy continuous casting rolled coil manufacturing method
CN108588560B (en) Method for manufacturing continuous casting low-carbon micro-alloy thin strip steel containing superfine acicular ferrite
WO2008044936A1 (en) Magnesium alloy sheet process
JP2001262263A (en) Al-Mg SERIES Al ALLOY SHEET EXCELLENT IN FORMABILITY
JP2000301294A (en) PRODUCTION OF HYPER-EUTECTIC Al-Fe BASE ALLOY CONTINUOUSLY CAST AND ROLLED COIL
JP2007136464A (en) METHOD FOR MANUFACTURING Al-Mg-Si SYSTEM ALUMINUM ALLOY SHEET EXCELLENT IN SURFACE QUALITY
JPH06256916A (en) Production of aluminum alloy sheet
JP2001234270A (en) Method for producing aluminum alloy sheet having fine crystal grain structure and aluminum alloy sheet obtained by the same producing method
JP3836532B2 (en) Aluminum alloy plate for building materials and equipment and manufacturing method thereof
JPH08318301A (en) Manufacture of rolled ferritic alloy sheet
JPH03198950A (en) Method for continuously casting raw material for tin plate with twin roll method
JPH02133522A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees