JP3836532B2 - Aluminum alloy plate for building materials and equipment and manufacturing method thereof - Google Patents

Aluminum alloy plate for building materials and equipment and manufacturing method thereof Download PDF

Info

Publication number
JP3836532B2
JP3836532B2 JP04329596A JP4329596A JP3836532B2 JP 3836532 B2 JP3836532 B2 JP 3836532B2 JP 04329596 A JP04329596 A JP 04329596A JP 4329596 A JP4329596 A JP 4329596A JP 3836532 B2 JP3836532 B2 JP 3836532B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
plate
equipment
building materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04329596A
Other languages
Japanese (ja)
Other versions
JPH09235638A (en
Inventor
義朗 戸上
耕史 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP04329596A priority Critical patent/JP3836532B2/en
Publication of JPH09235638A publication Critical patent/JPH09235638A/en
Application granted granted Critical
Publication of JP3836532B2 publication Critical patent/JP3836532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建材及び器物用アルミニウム合金板とその製造方法であり、より詳しくは連続鋳造圧延法によって製造したAl合金であって、Al合金組成の改良により陽極酸化処理後の外観の均一性を改善した建材及び器物用アルミニウム合金板とその製造方法に関するものである。
【0002】
【従来の技術】
一般に建材及び器物用アルミニウム合金板の製造方法としては、所定のアルミニウム合金溶湯を半連続鋳造法により鋳造したスラブを均質化熱処理後、熱間圧延及び冷間圧延(必要に応じて焼鈍)を施すか若しくはアルミニウム合金溶湯を可動鋳型(図1に示す水冷したドラム4、5又は図2に示す水冷したベルト8、9)間に連続的に供給して、板厚30mm以下の鋳造板とし、その後これを冷間圧延(必要に応じその前、中、後に焼鈍を行う場合もある)して、所定の寸法の板材( 例えば板厚1〜3mm)とした後、建材の場合は防食、表面硬化、着色等を目的として陽極酸化処理(皮膜厚20μm前後)を施し、又器物の場合は成形加工(深絞り、張出加工等)し、さらに陽極酸化処理(皮膜厚20μm前後)を施して製品とするのが一般的である。
【0003】
しかしながら、建材及び器物用アルミニウム合金板は、上記工程により板にした後、前記のごとく最終的に陽極酸化処理が施されるため、板の金属組織の均一性が表面品質に大きく影響を及ぼす。すなわち金属組織にばらつきがあると陽極酸化処理後の外観が帯状あるいは斑状に不均一となり外観不良となる。
【0004】
この金属組織のばらつきを引き起こす原因の一つとして、鋳造組織の不均一が挙げられる。
例えば半連続鋳造法により鋳造されたスラブの鋳造組織は、一般に鋳肌から内部に移るに従いチル層、粗大セル層、微細セル層と組織が変化する。ここでチル層と粗大セル層を併せた部分は一般に額縁と呼ばれ不安定な金属組織となり表面品質に悪影響を及ぼすため、面削により削り落とすことが一般的である。
この方法によるアルミニウム合金板の製造は、このように面削したスラブを均質化熱処理および熱間圧延し、続いて冷間圧延(必要により焼鈍)して、所定の板としている。
【0005】
また連続鋳造圧延法は、鋳塊の均質化熱処理および熱間圧延工程が省略され、歩留りおよびエネルギー効率の向上等において非常に有効な方法であるとともに、溶湯の冷却速度を早くすることができるため合金成分が強制固溶され易く、かつ、第2相粒子が微細になり易いので、一般に耐衝撃性、成形性及び疲労強度の優れたアルミニウム合金板が得られるメリットがある。
【0006】
しかしながら、この連続鋳造圧延法は、その製造の基本原理から供給される溶湯に対し鋳型が連続的に移動するため、鋳造時の溶湯と可動鋳型の接触が不安定である。このために溶湯の冷却速度にばらつきを生じ易く、これが原因で鋳造板の鋳造組織が不均一となるという問題がある。
このような鋳造組織の不均一な鋳造板によって製造されたアルミニウム合金圧延板は、陽極酸化処理後の外観が不均一となり不良となる。
前記の連続鋳造圧延法によって製造された鋳造板の鋳造組織の不均一な部分を半連続鋳造法同様面削により落とすことは、板厚が30mm以下程度で薄く工程的にも困難であり、また通常この組織変動は板厚内部でも数mmの深さ若しくは場合によっては板厚中心部まで影響しているため、歩留まりを考えると現実的な方法ではない。
【0007】
このように連続鋳造圧延法は、半連続鋳造法に比べ生産効率および特性の面からは魅力ある方法であるが、鋳造組織に不均一が生じ、この部分を除去することも困難であるため、最終的に陽極酸化処理を施して、その処理後の外観の均一性が厳しく要求される建材及び器物用のアルミニウム合金板への適用ができなかった。
【0008】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の問題点を解決することである。具体的には連続鋳造圧延法により製造するAl合金板であって、陽極酸化処理後の外観の均一性を改善し、この特性に優れた建材及び器物用アミニウム合金板とその製造方法を提供することである。
【0009】
【課題を解決するための手段】
前記課題を解決するための請求項1の発明は、連続鋳造圧延法によるアルミニウム合金板であって、その合金組成がFe0.8wt%以下、Si1.0wt%以下、Cu0.2wt%以下、さらにBe0.0002〜0.01wt%、Sn0.001〜0.10wt%の1種もしくは2種を含有し、残部がAlと不可避的不純物とからなることを特徴とする建材及び器物用アルミニウム合金板である。
【0010】
また、請求項2の発明は、アルミニウム合金板の連続鋳造圧延法による製造方法であり、Fe0.8wt%以下、Si1.0wt%以下、Cu0.2wt%以下、さらにBe0.0002〜0.01wt%、Sn0.001〜0.10wt%の1種もしくは2種を含有し、残部がAlと不可避的不純物とからアルミニウム合金溶湯を可動鋳型間に供給して厚さ30mm以下の鋳造板に連続鋳造し、これを冷間圧延し、さらに最終冷間圧延することを特徴とする建材及び器物用アルミニウム合金板の製造方法である。
【0011】
【発明の実施の形態】
本発明について、以下詳細に説明する。
請求項1の発明は、連続鋳造圧延法によって製造した所定の合金組成からなる陽極酸化処理後の均一性に優れた建材及び器物用アルミニウム合金板である。
本発明における建材及び器物用アルミニウム合金の組成について、以下説明する。
Feは0.8wt%以下の範囲とする。Feは、陽極酸化処理面の均一化の作用を有する。Feはアルミニウム合金中の他の元素と結びつきAl−Fe系およびAl−Fe−Si系の金属間化合物を形成する元素であり、これらの金属間化合物のうち1〜20μmの金属間化合物は、再結晶粒微細化の効果があるとともに、均一微細な陽極酸化処理面を形成する効果がある。しかし、0.8wt%を越える含有量では、20μmを越える粗大化合物の形成により陽極酸化処理面が不均一となる。
【0012】
また、Siは1.0wt%以下の範囲とする。好ましくは0.5wt%以下、より好ましくは0.2wt%以下とする。Siは、通常不純物として含まれ、1.0wt%を越えると陽極酸化処理面において微視的なエッチング不足の斑点が散在する欠陥が出現しやすい傾向を示すので好ましくない。
Cuは、0.2wt%以下の範囲とする。Cuが0.2wt%を越えると耐蝕性が低下するからである。
【0013】
Beは、0.0002〜0.01wt%とする。Beは通常、アルミニウム地金中に含有しない元素であるが、本発明者らが研究を重ねた結果、アルミニウム合金溶湯中の表面酸化を抑制する作用があり、連続鋳造の際に鋳造ノズルへの酸化物の付着を防止し、溶湯の巾方向の乱れをなくして、鋳造時の溶湯と鋳型の接触を安定化させる効果がある。Beの範囲を上記としたのは、0.0002wt%未満では、上記の効果が得られず、0.01wt%を越えると効果が飽和して無駄となるからである。
【0014】
Snは、0.001〜0.10wt%とする。Snは通常、アルミニウム地金中に含有しない元素であるが、本発明者らが研究を重ねた結果、Beと同様の効果に加えて、連続鋳造の際にアルミニウム合金溶湯と鋳型間の固着を防止する潤滑作用がある。
一般に連続鋳造の場合、アルミニウム合金溶湯が鋳型と接触して凝固すると、溶湯と連続的に移動する鋳型の間で固着が生じることがある。この固着部は冷却速度が変化すること、および鋳型表面のアルミコーテイング層を破壊することから、表面近傍の鋳造組織が不連続となり、コイル表面に縞模様等の不具合が生ずる。Snの添加は、この固着現象を防止し鋳造時の溶湯と鋳型の接触を安定化させる効果がある。
この固着防止には、Snが0.001wt%未満では効果が少なく、また0.10wt%を越えると効果が飽和して無駄である。よってSnは上記の範囲とする。
なお、BeとSnは、どちらか1種でも上記効果が得られるが、2種とも添加したほうがより好ましい。
【0015】
その他の不純物としては、通常のアルミニウム地金に含まれているMn、Mg、Cr、Ni、V、Zn等があるが、これらは0.05wt%未満である場合には特に問題はない。また、任意的な添加元素としてTiおよびBの各0.1wt%以下の含有は、DC鋳造同様、鋳造時の凝固組織の微細化に有効である。
以上のような発明の構成とした建材及び器物用アルミニウム合金板は、陽極酸化処理で均一な表面が得られる。
【0016】
請求項2の発明は、前記建材及び器物用アルミニウム合金板を連続鋳造圧延法によって製造する具体的な製造方法に関するものである。
即ち前記組成のアルミニウム合金溶湯を可動鋳型間に供給して厚さ30mm以下の鋳造板に連続鋳造し、これを冷間圧延し、さらに最終冷間圧延することを特徴とする建材及び器物用アルミニウム合金板の製造方法である。
ここで、厚さ30mm以下の鋳造板に連続鋳造する理由は、前にも述べたように連続鋳造圧延法では溶湯の冷却速度を早くすることができるため合金成分が強制固溶され易く、かつ、第2相粒子が微細になり易いためこれにより材料特性として各種メリットが得られるが、板厚が30mmを越えると強制固溶に十分な冷却速度が得られず、金属間化合物が粗大化するので好ましくない。また、板厚があまり厚いと下工程での圧延回数が多くなり経済的でない。したがって板厚は薄ければ薄いほど良いが、好ましくは15mm以下、さらに好ましくは10mm以下が良い。
【0017】
なお、ここで対象としている連続鋳造圧延法における連続鋳造は、双ドラムを用いたハンター法、3C 法、双ベルトを用いたヘズレー法等が挙げられるが、本発明ではこれらのうちの特定の方法に何ら限定されるものではない。
なお、図1及び図2は、本発明における連続鋳造の一例を示すもので、それぞれ双ドラム4、5及び双ベルト8、9による可動鋳型装置で連続鋳造板6を製造する様子を示す説明図である。
まず所望の合金成分に調整されたアルミニウム合金溶湯3は、図示しない溶解保持炉からトラフを通じて一旦湯溜まり(通常ヘッドボックスなどと呼ばれている)1に溜められ、その後鋳造ノズル2を通って水冷された可動鋳型(ドラム4、5、ベルト8、9)へと導かれる。なお、6は鋳造板である。
【0018】
上記のように鋳造された鋳造板6は、必要に応じてその直後で圧延が行われるか若しくはそのままコイルに巻取られる。さらにその後冷間圧延により所望のサイズまで圧延(必要に応じてその前、中、後において1 〜数回の焼鈍を行う)されて、建材及び器物用アルミニウム合金板とし、建材については更に陽極酸化処理を施し、また器物については成形加工(深絞り、張出加工等)を行った後、更に陽極酸化処理を施し最終製品とされる。
なお、上記の圧延の際、冷間圧延率や焼鈍条件は特に規定するものではなく、任意の条件が可能である。
前記のごとく本発明法により製造された建材及び器物用アルミニウム合金板は、後に記す実施例でも明らかなごとく、最終的に行われる陽極酸化処理で、均一な外観表面が得られる。
【0019】
【実施例】
(実施例1)
表1に示した建材用アルミニウム合金溶湯を本発明例、比較例及び従来例として図1に示す双ドラム4、5を用いたハンター法によりそれぞれ板厚7mmおよび10mmの鋳造板6コイルとした。
なお、上記以外の鋳造条件は以下のとおりである。
・離型剤 :微粉カーボンを水に溶いた溶液
・鋳造板の板幅:1300mm
・溶湯温度 :700℃
・鋳造速度 :1000mm/min.
・冷却速度 :300〜700℃/sec.
これら鋳造板コイルを常法にて冷間圧延し、これを表1に示した条件で中間焼鈍を行い、さらに冷間圧延を施して厚さ2mmの建材用アルミニウム合金板を製造した。
【0020】
【表1】

Figure 0003836532
【0021】
このようにして得られた板について、以下に示す処理条件で陽極酸化処理し、厚さ15μmの酸化皮膜を形成した。
Figure 0003836532
【0022】
このようにして得られたサンプルについて、以下の方法で外観の均一性を評価した。
〔評価方法〕
外観を目視により観察し、処理後の外観の均一性が優れているもの◎、良好なもの○、やや劣っているもの△、劣っているもの×として判定を行った。
これらの試験結果を表1に併記した。
【0023】
表1から明らかなように、本発明の範囲の建材用アルミニウム合金板は、陽極酸化処理後の外観の均一性に優れていることが確認された。
【0024】
(実施例2)
表2に示した器物用アルミニウム合金溶湯を本発明例、比較例及び従来例として図1に示す双ドラム4、5を用いたハンター法によりそれぞれ板厚7mmおよび10mmの鋳造板6コイルとした。
なお、上記以外の鋳造条件は、実施例1と同様である。
これら鋳造板コイルを表2に示した条件で、冷間圧延および一部中間焼鈍を行い、さらに冷間圧延を施して厚さ2mmとした。この圧延板に更に400℃で10時間の最終焼鈍を施して器物用アルミニウム合金板を製造した。
【0025】
【表2】
Figure 0003836532
【0026】
これらの板について、深絞り加工を行って、深さ100mm、直径200mmの鍋状とし、更に実施例1と同様の条件で陽極酸化処理を行い厚さ20μmの皮膜を形成した。
このようにして得られた器物の外観を実施例1と同様な基準で評価し、その結果を表2に併記した。
【0027】
表2から明らかなように、本発明の範囲の器物用アルミニウム合金板は、陽極酸化処理後の外観の均一性に優れていることが確認された。
【0028】
【発明の効果】
以上の説明から明らかな如く、本発明によれば、連続鋳造圧延法で製造した建材及び器物用アルミニウム合金板は、陽極酸化処理後の外観の均一性に優れており、連続鋳造圧延法のメリットを充分に生かすことができる等工業上顕著な効果を有するものである。
【図面の簡単な説明】
【図1】双ドラムによる可動鋳型装置(ハンター法)で連続鋳造板を製造する一例を示す説明図である。
【図2】双ベルトによる可動鋳型装置(ヘズレー法)で連続鋳造板を製造する一例を示す説明図である。
【符号の説明】
1 湯溜まり(ヘッドボックス)
2 鋳造ノズル
3 溶湯
4、5 ドラム(可動鋳型)
6 鋳造板
8、9 ベルト(可動鋳型)
10〜13 ローラ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy plate for building materials and equipment and a method for producing the same. More specifically, the aluminum alloy plate is produced by a continuous casting and rolling method, and the uniformity of the appearance after anodizing treatment is improved by improving the Al alloy composition. The present invention relates to an improved aluminum alloy plate for building materials and equipment and a method for producing the same.
[0002]
[Prior art]
In general, as a manufacturing method of aluminum alloy sheets for building materials and equipment, a slab cast from a predetermined molten aluminum alloy by a semi-continuous casting method is subjected to a homogenization heat treatment, followed by hot rolling and cold rolling (annealing as necessary). Smelt or molten aluminum alloy is continuously supplied between the movable molds (water-cooled drums 4 and 5 shown in FIG. 1 or water-cooled belts 8 and 9 shown in FIG. 2) to form a cast plate having a thickness of 30 mm or less. This is cold-rolled (may be annealed before, during, and after if necessary) to obtain a plate material of a predetermined size (for example, a plate thickness of 1 to 3 mm), and in the case of building materials, anticorrosion and surface hardening. For the purpose of coloring, etc., anodizing treatment (film thickness of about 20 μm) is applied. In the case of containers, products are processed by molding (deep drawing, overhanging, etc.), and further anodized (film thickness of about 20 μm) It is one Is a basis.
[0003]
However, since the aluminum alloy plate for building materials and equipment is made into a plate by the above process and finally subjected to anodizing treatment as described above, the uniformity of the metal structure of the plate greatly affects the surface quality. That is, if there is variation in the metal structure, the appearance after the anodizing treatment becomes non-uniform in a strip shape or spots, resulting in poor appearance.
[0004]
One of the causes of the variation of the metal structure is non-uniformity of the cast structure.
For example, the cast structure of a slab cast by the semi-continuous casting method generally changes the structure of the chill layer, coarse cell layer, and fine cell layer as it moves from the casting surface to the inside. Here, the combined portion of the chill layer and the coarse cell layer is generally called a picture frame and becomes an unstable metal structure, which adversely affects the surface quality. Therefore, it is generally shaved off by chamfering.
In the production of an aluminum alloy plate by this method, the slab chamfered in this way is subjected to homogenization heat treatment and hot rolling, followed by cold rolling (annealing if necessary) to obtain a predetermined plate.
[0005]
In addition, the continuous casting and rolling method eliminates the ingot homogenization heat treatment and hot rolling steps, and is a very effective method for improving the yield and energy efficiency, and can increase the cooling rate of the molten metal. Since the alloy component is easily forcibly dissolved and the second phase particles are likely to be fine, there is generally an advantage that an aluminum alloy plate excellent in impact resistance, formability and fatigue strength can be obtained.
[0006]
However, in this continuous casting and rolling method, since the mold moves continuously with respect to the molten metal supplied from the basic principle of production, the contact between the molten metal and the movable mold during casting is unstable. For this reason, the cooling rate of the molten metal is likely to vary, which causes a problem that the cast structure of the cast plate becomes non-uniform.
An aluminum alloy rolled sheet produced with such a cast sheet having a non-uniform cast structure has a non-uniform appearance after anodizing and becomes defective.
It is difficult to remove a non-uniform portion of a cast structure of a cast plate produced by the continuous casting and rolling method by chamfering as in the semi-continuous casting method, because the plate thickness is about 30 mm or less and the process is difficult. Usually, this structural variation affects the depth of several millimeters or, depending on the case, to the central portion of the plate thickness even inside the plate thickness, which is not a practical method in view of the yield.
[0007]
As described above, the continuous casting rolling method is an attractive method in terms of production efficiency and characteristics as compared to the semi-continuous casting method, but non-uniformity occurs in the cast structure and it is difficult to remove this part. Finally, anodization treatment was performed, and it was not possible to apply to an aluminum alloy plate for building materials and equipment for which the uniformity of the appearance after the treatment was strictly required.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art. Specifically, it is an Al alloy plate manufactured by a continuous casting and rolling method, improving the uniformity of the appearance after anodizing treatment, and providing an aminium alloy plate for building materials and equipment excellent in this property and a method for manufacturing the same. That is.
[0009]
[Means for Solving the Problems]
The invention of claim 1 for solving the above-mentioned problem is an aluminum alloy plate formed by a continuous casting and rolling method, and the alloy composition thereof is Fe 0.8 wt% or less, Si 1.0 wt% or less, Cu 0.2 wt% or less, and Be0 An aluminum alloy sheet for building materials and equipment containing one or two of .0002 to 0.01 wt% and Sn 0.001 to 0.10 wt%, the balance being Al and inevitable impurities .
[0010]
The invention of claim 2 is a method for producing an aluminum alloy sheet by a continuous casting and rolling method, Fe 0.8 wt% or less, Si 1.0 wt% or less, Cu 0.2 wt% or less, and Be 0.0002 to 0.01 wt%. , Containing one or two of Sn 0.001 to 0.10 wt%, the balance being Al and inevitable impurities, supplying molten aluminum alloy between the movable molds and continuously casting into a cast plate having a thickness of 30 mm or less This is a method for producing an aluminum alloy plate for building materials and equipment , which is cold-rolled and further cold-rolled.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
The invention of claim 1 is an aluminum alloy plate for building materials and equipment having excellent uniformity after anodizing treatment, which is made of a predetermined alloy composition manufactured by a continuous casting and rolling method.
The composition of the building material and the aluminum alloy for equipment in the present invention will be described below.
Fe is made into the range below 0.8 wt%. Fe has the effect of homogenizing the anodized surface. Fe is an element that combines with other elements in the aluminum alloy to form Al—Fe and Al—Fe—Si intermetallic compounds. Among these intermetallic compounds, 1-20 μm intermetallic compounds are In addition to the effect of crystal grain refinement, it has the effect of forming a uniform and fine anodized surface. However, when the content exceeds 0.8 wt%, the anodized surface becomes non-uniform due to the formation of a coarse compound exceeding 20 μm.
[0012]
Moreover, Si is taken as 1.0 wt% or less. Preferably it is 0.5 wt% or less, more preferably 0.2 wt% or less. Si is usually contained as an impurity, and if it exceeds 1.0 wt%, defects tend to appear with microscopically insufficiently dull spots on the anodized surface, which is not preferable.
Cu is set to a range of 0.2 wt% or less. This is because when Cu exceeds 0.2 wt%, the corrosion resistance decreases.
[0013]
Be is 0.0002 to 0.01 wt%. Be is an element that is not usually contained in the aluminum ingot, but as a result of repeated research by the present inventors, it has an action of suppressing surface oxidation in the aluminum alloy molten metal, and is applied to the casting nozzle during continuous casting. There is an effect of preventing adhesion of oxides, eliminating disturbance in the width direction of the melt, and stabilizing the contact between the melt and the mold during casting. The reason why the range of Be is described above is that when the amount is less than 0.0002 wt%, the above effect cannot be obtained, and when it exceeds 0.01 wt%, the effect is saturated and wasted.
[0014]
Sn is 0.001 to 0.10 wt%. Sn is usually an element that is not contained in the aluminum ingot, but as a result of repeated research by the present inventors, in addition to the same effect as Be, adhesion between the molten aluminum alloy and the mold during continuous casting is achieved. There is a lubricating action to prevent.
In general, in the case of continuous casting, when the molten aluminum alloy comes into contact with the mold and solidifies, the molten metal and the continuously moving mold may be fixed. This fixed part changes the cooling rate and destroys the aluminum coating layer on the mold surface, so that the cast structure in the vicinity of the surface becomes discontinuous, and defects such as stripes occur on the coil surface. The addition of Sn has the effect of preventing this sticking phenomenon and stabilizing the contact between the molten metal and the mold during casting.
This prevention of sticking is less effective if Sn is less than 0.001 wt%, and if it exceeds 0.10 wt%, the effect is saturated and wasted. Therefore, Sn is set to the above range.
In addition, although the said effect is acquired even if one of Be and Sn is added, it is more preferable to add both.
[0015]
As other impurities, there are Mn, Mg, Cr, Ni, V, Zn and the like contained in a normal aluminum metal, but there is no particular problem when these are less than 0.05 wt%. Further, the inclusion of 0.1 wt% or less of each of Ti and B as optional additive elements is effective for refining the solidified structure during casting, as in DC casting.
The building material and the aluminum alloy sheet for equipment having the above-described configuration can obtain a uniform surface by anodizing treatment.
[0016]
The invention of claim 2 relates to a specific manufacturing method for manufacturing the building material and the aluminum alloy sheet for equipment by a continuous casting and rolling method.
That is, aluminum for building materials and equipment characterized by supplying molten aluminum alloy of the above composition between movable molds and continuously casting it into a cast plate having a thickness of 30 mm or less, cold rolling this, and finally cold rolling. It is a manufacturing method of an alloy plate.
Here, the reason for continuous casting on a cast plate having a thickness of 30 mm or less is that, as described above, in the continuous casting and rolling method, the cooling rate of the molten metal can be increased, so that the alloy components are easily forcibly dissolved, and Since the second phase particles tend to be fine, various merits are obtained as material characteristics. However, if the plate thickness exceeds 30 mm, a sufficient cooling rate for forced solid solution cannot be obtained, and the intermetallic compound becomes coarse. Therefore, it is not preferable. On the other hand, if the plate thickness is too thick, the number of rolling operations in the lower process increases, which is not economical. Accordingly, the thinner the plate thickness, the better. However, it is preferably 15 mm or less, more preferably 10 mm or less.
[0017]
In addition, the continuous casting in the continuous casting and rolling method that is the subject here includes the Hunter method using a twin drum, the 3C method, the Hazeley method using a twin belt, and the like. It is not limited at all.
FIGS. 1 and 2 show an example of continuous casting in the present invention, and are explanatory views showing how the continuous cast plate 6 is manufactured by a movable mold apparatus using twin drums 4 and 5 and twin belts 8 and 9, respectively. It is.
First, molten aluminum alloy 3 adjusted to a desired alloy composition is temporarily stored in a hot water pool (usually called a head box) 1 through a trough from a melting and holding furnace (not shown), and then water-cooled through a casting nozzle 2. Is guided to the movable mold (drums 4, 5, belts 8, 9). Reference numeral 6 denotes a cast plate.
[0018]
The cast plate 6 cast as described above is rolled immediately after that, if necessary, or wound as it is on a coil. After that, it is rolled to the desired size by cold rolling (annealing one to several times before, during, and after if necessary) to obtain aluminum alloy sheets for building materials and equipment, and the building materials are further anodized After processing, the container is subjected to forming processing (deep drawing, overhang processing, etc.), and then subjected to further anodizing treatment to obtain a final product.
In the above rolling, the cold rolling rate and annealing conditions are not particularly specified, and arbitrary conditions are possible.
As described above, the aluminum alloy plate for building materials and equipment manufactured by the method of the present invention can obtain a uniform appearance surface by the final anodic oxidation treatment, as will be apparent from the examples described later.
[0019]
【Example】
Example 1
The molten aluminum alloy for building materials shown in Table 1 was made into 6 coils of cast plates having a plate thickness of 7 mm and 10 mm, respectively, by the Hunter method using the twin drums 4 and 5 shown in FIG. 1 as examples of the present invention, comparative examples and conventional examples.
The casting conditions other than the above are as follows.
-Mold release agent: Solution in which fine carbon is dissolved in water-Cast plate width: 1300 mm
-Molten metal temperature: 700 ° C
Casting speed: 1000 mm / min.
Cooling rate: 300 to 700 ° C./sec.
These cast plate coils were cold-rolled by a conventional method, subjected to intermediate annealing under the conditions shown in Table 1, and further cold-rolled to produce a 2 mm thick aluminum alloy plate for building materials.
[0020]
[Table 1]
Figure 0003836532
[0021]
The plate thus obtained was anodized under the following processing conditions to form an oxide film having a thickness of 15 μm.
Figure 0003836532
[0022]
The samples thus obtained were evaluated for appearance uniformity by the following method.
〔Evaluation methods〕
The appearance was visually observed, and the judgment was made as ◎ excellent in uniformity of the appearance after treatment, good ◯, slightly inferior Δ, inferior ×.
These test results are also shown in Table 1.
[0023]
As is clear from Table 1, it was confirmed that the aluminum alloy sheet for building materials within the scope of the present invention was excellent in the uniformity of the appearance after the anodizing treatment.
[0024]
(Example 2)
The molten aluminum alloy for equipment shown in Table 2 was made into 6 coils of cast plates having a plate thickness of 7 mm and 10 mm, respectively, by the Hunter method using the twin drums 4 and 5 shown in FIG. 1 as examples of the present invention, comparative examples and conventional examples.
The casting conditions other than the above are the same as in Example 1.
These cast plate coils were cold-rolled and partially annealed under the conditions shown in Table 2, and further cold-rolled to a thickness of 2 mm. The rolled plate was further subjected to final annealing at 400 ° C. for 10 hours to produce an aluminum alloy plate for equipment.
[0025]
[Table 2]
Figure 0003836532
[0026]
These plates were deep-drawn into a pan shape having a depth of 100 mm and a diameter of 200 mm, and further anodized under the same conditions as in Example 1 to form a film having a thickness of 20 μm.
The appearance of the container thus obtained was evaluated according to the same criteria as in Example 1, and the results are also shown in Table 2.
[0027]
As apparent from Table 2, it was confirmed that the aluminum alloy sheet for equipment within the scope of the present invention was excellent in the uniformity of the appearance after the anodizing treatment.
[0028]
【The invention's effect】
As is clear from the above description, according to the present invention, the aluminum alloy sheet for building materials and equipment manufactured by the continuous casting and rolling method is excellent in the uniformity of the appearance after the anodizing treatment, and the merit of the continuous casting and rolling method. It has a significant industrial effect, such as being able to make full use of.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of manufacturing a continuous cast plate by a movable mold apparatus (hunter method) using a twin drum.
FIG. 2 is an explanatory view showing an example in which a continuous cast plate is manufactured by a movable mold device using a double belt (Hezley method).
[Explanation of symbols]
1 Hot water pool (head box)
2 Casting nozzle 3 Molten metal 4, 5 Drum (movable mold)
6 Casting plates 8, 9 Belt (movable mold)
10-13 Roller

Claims (2)

連続鋳造圧延法によるアルミニウム合金板であって、その合金組成がFe0.8wt%以下、Si1.0wt%以下、Cu0.2wt%以下、さらにBe0.0002〜0.01wt%、Sn0.001〜0.10wt%の1種もしくは2種を含有し、残部がAlと不可避的不純物とからなることを特徴とする建材及び器物用アルミニウム合金板An aluminum alloy sheet obtained by a continuous casting and rolling method, the alloy composition of which is Fe 0.8 wt% or less, Si 1.0 wt% or less, Cu 0.2 wt% or less, Be 0.0002 to 0.01 wt%, Sn 0.001 to 0. An aluminum alloy plate for building materials and equipment , containing 10 wt% of one or two kinds, the balance being made of Al and inevitable impurities. アルミニウム合金板の連続鋳造圧延法による製造方法であり、Fe0.8wt%以下、Si1.0wt%以下、Cu0.2wt%以下、さらにBe0.0002〜0.01wt%、Sn0.001〜0.10wt%の1種もしくは2種を含有し、残部がAlと不可避的不純物とからアルミニウム合金溶湯を可動鋳型間に供給して厚さ30mm以下の鋳造板に連続鋳造し、これを冷間圧延し、さらに最終冷間圧延することを特徴とする建材及び器物用アミニウム合金板の製造方法It is a manufacturing method by continuous casting and rolling of an aluminum alloy plate, Fe 0.8 wt% or less, Si 1.0 wt% or less, Cu 0.2 wt% or less, Be0.0002 to 0.01 wt%, Sn 0.001 to 0.10 wt% 1 or 2 of the following, and the balance is Al and unavoidable impurities are supplied between the movable mold and molten aluminum alloy is continuously cast into a cast plate having a thickness of 30 mm or less, which is cold-rolled, A method for producing an aminium alloy plate for building materials and equipment, characterized by subjecting to final cold rolling .
JP04329596A 1996-02-29 1996-02-29 Aluminum alloy plate for building materials and equipment and manufacturing method thereof Expired - Fee Related JP3836532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04329596A JP3836532B2 (en) 1996-02-29 1996-02-29 Aluminum alloy plate for building materials and equipment and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04329596A JP3836532B2 (en) 1996-02-29 1996-02-29 Aluminum alloy plate for building materials and equipment and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09235638A JPH09235638A (en) 1997-09-09
JP3836532B2 true JP3836532B2 (en) 2006-10-25

Family

ID=12659805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04329596A Expired - Fee Related JP3836532B2 (en) 1996-02-29 1996-02-29 Aluminum alloy plate for building materials and equipment and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3836532B2 (en)

Also Published As

Publication number Publication date
JPH09235638A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
US4238248A (en) Process for preparing low earing aluminum alloy strip on strip casting machine
US7478665B2 (en) Method of manufacturing magnesium alloy material
US4614224A (en) Aluminum alloy can stock process of manufacture
EP1188501B1 (en) method and apparatus for continuous casting of aluminium bearing alloy
US20070144630A1 (en) Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake hardenability
JP5509222B2 (en) Hot rolled thin cast strip product and manufacturing method thereof
JP4379149B2 (en) Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for producing the same
US5466312A (en) Method for making aluminum foil and cast strip stock for aluminum foilmaking and products therefrom
EP1727918A1 (en) High copper low alloy steel sheet
US6439451B1 (en) Method of making aluminum alloy plate for bearing
JP3642915B2 (en) Aluminum alloy base plate with excellent surface treatment appearance
JP3836532B2 (en) Aluminum alloy plate for building materials and equipment and manufacturing method thereof
CN1144889C (en) Production of aluminum alloy strip for use in making thin gauge foils
JP3901764B2 (en) Method for producing aluminum alloy sheet for foil
JP3973540B2 (en) Aluminum alloy sheet having excellent wear resistance and method for producing the same
JP2007136464A (en) METHOD FOR MANUFACTURING Al-Mg-Si SYSTEM ALUMINUM ALLOY SHEET EXCELLENT IN SURFACE QUALITY
JP2006130545A (en) TWIN ROLL TYPE CONTINUOUS CASTING-ROLLING METHOD FOR Al-Mg-Si-BASED ALLOY PLATE, Al-Mg-Si-BASED ALLOY PLATE, AND AUTOMOBILE OUTER PLATE PRODUCED BY CONTINUOUS CASTING-ROLLING METHOD, AND CASTING ROLL
JPH08510962A (en) Method and device for manufacturing semi-finished products
JP3919843B2 (en) Manufacturing method of aluminum alloy sheet for building materials and equipment
JP3981495B2 (en) Hypereutectic Al-Ni-Fe alloy continuous casting rolled coil manufacturing method
JP7058751B2 (en) Metal products with improved surface properties and methods for manufacturing them
JPH09235639A (en) Aluminum alloy sheet for foil and its production
RU2181149C2 (en) Method for manufacture of sheet material for production of cans for drinks
JPH10130766A (en) Direct cast and rolled sheet excellent in moldability and surface quality and small in secular change and its production
JP2002178113A (en) Cast slab having excellent solidified structure and steel obtained by working the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees